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On the product of vector spaces in a commutative field extension

Shalom Eliahou, Michel Kervaire and Cédric Lecouvey

Abstract

Let K ⊂ L be a commutative field extension. Given K-subspaces A, B of L, we consider
the subspace 〈AB〉 spanned by the product set AB = {ab | a ∈ A, b ∈ B}. If dimK A = r and
dimK B = s, how small can the dimension of 〈AB〉 be? In this paper we give a complete answer
to this question in characteristic 0, and more generally for separable extensions. The optimal
lower bound on dimK〈AB〉 turns out, in this case, to be provided by the numerical function

κK,L(r, s) = min
h

(⌈r/h⌉ + ⌈s/h⌉ − 1)h,

where h runs over the set of K-dimensions of all finite-dimensional intermediate fields K ⊂ H ⊂
L. This bound is closely related to one appearing in additive number theory.

1 Introduction

Let K ⊂ L be an extension of commutative fields. Let A,B ⊂ L be non-zero K-subspaces of L.
We denote by

〈AB〉
the K-subspace of L generated by the product set

AB = {ab | a ∈ A, b ∈ B}.

Of course, if A,B are finite-dimensional, then so is 〈AB〉 which satisfies the easy estimates

max{dimK A,dimK B} ≤ dimK〈AB〉 ≤ (dimK A)(dimK B).

The above lower bound is sharp in the very special circumstance A = B = H where H is an
intermediate field extension K ⊂ H ⊂ L. But in general, if dimK A,dimK B are specified in
advance, how small can dimK〈AB〉 be? In other words, given positive integers r, s ≤ dimK L, we
define

µK,L(r, s) = min{dimK〈AB〉},
where the minimum is taken over all K-subspaces A,B of L satisfying

dimK A = r, dimK B = s.

For example, one has µK,L(h, h) = h whenever h = [H : K] = dimK H is the degree of a finite-
dimensional intermediate field extension K ⊂ H ⊂ L.

Perhaps surprisingly, the combinatorial function µK,L(r, s) can be explicitly determined for
arbitrary r, s under mild hypotheses, as we do here. Our answer is provided by the following
numerical function. Define

κK,L(r, s) = min
h

(⌈r/h⌉ + ⌈s/h⌉ − 1)h,
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where h = [H : K] runs over the set of K-dimensions of all finite-dimensional intermediate fields
K ⊂ H ⊂ L.

For example, if [L : K] is a prime number p, then the only admissible values for h = [H : K] are
1 and p, whence κK,L(r, s) = min{r + s − 1, p}. (See Example 5.2.) We shall prove the following
result.

Theorem 1.1 Let K ⊂ L be a commutative field extension in which every algebraic element of L
is separable over K. Then, for all positive integers r, s ≤ dimK L, we have

µK,L(r, s) = κK,L(r, s).

There are close links between this result and additive number theory, as explained in Section 2.
The proof of Theorem 1.1 is split between Sections 3 and 4. After some examples in Section 5, we
look more closely, in Section 6, at the case of finite Galois extensions. In the last two sections, we
discuss the separability hypothesis in Theorem 1.1.

2 Links with additive number theory

The question explored in this paper is analogous to a classical one in groups, namely that of
minimizing the cardinality of product sets AB where A,B run over all subsets of cardinality r, s in
a given group G. In multiplicative notation, this amounts to study the function

µG(r, s) = min{|AB| : A,B ⊂ G, |A| = r, |B| = s}.

While unknown in general, this function has recently been fully determined in the abelian case.
The answer is expressed in terms of the numerical function κG(r, s) defined as follows. For any
group G, let H(G) be the set of orders of finite subgroups of G, and set

κG(r, s) = min
h∈H(G)

(⌈r/h⌉ + ⌈s/h⌉ − 1)h

for all positive integers r, s ≤ |G|. Here is the result obtained in [1].

Theorem 2.1 Let G be an arbitrary abelian group. Then, for all positive integers r, s ≥ 1, we
have µG(r, s) = κG(r, s).

For instance, this contains the well-known Cauchy-Davenport theorem for cyclic groups G of
prime order p, namely µG(r, s) = min{r + s−1, p} for all 1 ≤ r, s ≤ p. See [3] for a survey of recent
results on µG(r, s).

The function κG(r, s) appears in various guises and contexts, for instance as the Hopf-Stiefel
function r ◦ s in algebraic topology or in the theory of quadratic forms. See [2] for a survey on this
ubiquitous function.

The reader will notice the close resemblance between Theorems 1.1 and 2.1. The methods
of proof are also quite similar. In order to prove that the kappa-function is a lower bound, the
key tools are a theorem of Kneser for abelian groups [8], and a linear version of it for separable
extensions [6]. Regarding the optimality of the bound, the key tool is the small sumsets property,
amounting to the inequality µG(r, s) ≤ r + s− 1 for abelian groups [1]. The analogous estimate for
field extensions K ⊂ L, namely µK,L(r, s) ≤ r + s − 1, plays the same role and will be shown to
hold in full generality.
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In Section 6, we shall see that both versions of the kappa-function, namely κG for a group G
and κK,L for a field extension K ⊂ L, actually coincide for finite Galois extensions with abelian
Galois group G.

For general background on commutative field extensions and on additive number theory, we
refer to [7] and [9], respectively.

3 Proof that κK,L is a lower bound

We now go back to the field extension setting. In order to prove inequality µK,L(r, s) ≥ κK,L(r, s)
of Theorem 1.1, we shall need the following linear version [6] of a famous theorem of Kneser [8] in
additive number theory.

Theorem 3.1 (Hou, Leung and Xiang) Let K ⊂ L be a commutative field extension in which
every algebraic element of L is separable over K. Let A,B ⊂ L be nonzero finite-dimensional
K-subspaces of L. Let H be the stabilizer of 〈AB〉. Then

dimK〈AB〉 ≥ dimK A + dimK B − dimK H.

The separability hypothesis of the above theorem is discussed in Section 8.

Proof of inequality µK,L(r, s) ≥ κK,L(r, s) of Theorem 1.1. Let A,B ⊂ L be K-subspaces
of L with dimK A = r, dimK B = s. We must prove that dimK〈AB〉 ≥ κK,L(r, s). As in Theo-
rem 3.1, let H be the stabilizer of the subspace 〈AB〉, i.e.

H = {x ∈ L | x〈AB〉 ⊂ 〈AB〉}.

Then of course, H is a subfield of L containing K, and we have

H〈AB〉 = 〈AB〉.

We shall apply Theorem 3.1 to the pair 〈HA〉, 〈HB〉 of K-subspaces of L. The first observation is
that this pair has the same product as the pair A,B:

〈〈HA〉〈HB〉〉 = 〈HAB〉 = 〈AB〉.

In particular, the stabilizer of the product is still H. By Theorem 3.1, we obtain

dimK〈AB〉 ≥ dimK〈HA〉 + dimK〈HB〉 − dimK H.

Let g = dimK H. Factoring g in the above formula, we get

dimK〈AB〉 ≥ (
dimK〈HA〉

g
+

dimK〈HB〉
g

− 1)g. (1)

Now, 〈HA〉 is an H-subspace of L, and therefore dimK〈HA〉 is a multiple of dimK H = g. Moreover,
the integer (dimK〈HA〉)/g is greater than or equal to (dimK A)/g = r/g. It follows that

dimK〈HA〉
g

≥
⌈r

g

⌉

.
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The same estimate holds with B, s replacing A, r, respectively. Plugging this information into
inequality (1), we get

dimK〈AB〉 ≥ (⌈r/g⌉ + ⌈s/g⌉ − 1)g.

Finally, given that g is the dimension of an intermediate field K ⊂ H ⊂ L, we have

(⌈r/g⌉ + ⌈s/g⌉ − 1)g ≥ κK,L(r, s),

by definition of this κ-function. It follows that dimK〈AB〉 ≥ κK,L(r, s). We have now shown, as
claimed, that

µK,L(r, s) ≥ κK,L(r, s)

for all positive integers r, s ≤ dimK L.

4 Optimality

It remains to prove inequality µK,L(r, s) ≤ κK,L(r, s) of Theorem 1.1. This is a construction
problem. Given positive integers r, s ≤ dimK L, we must exhibit a pair of K-subspaces A,B ⊂ L
with dimK A = r, dimK B = s and dimK〈AB〉 ≤ κK,L(r, s). We start with a lemma on simple
extensions.

Lemma 4.1 Let H ⊂ L be a commutative field extension, let α ∈ L and set M = H(α). Then,
for all positive integers r, s ≤ dimH M , we have

µH,M (r, s) ≤ r + s − 1.

Proof. Assume first that α is transcendental over H. Given integers r, s ≥ 1, let A = 〈1, α, . . . , αr−1〉
be the H-subspace of M spanned by the first r powers of α, and similarly let B = 〈1, α, . . . , αs−1〉.
Then dimH A = r, dimH B = s and dimH〈AB〉 = dimH〈1, α, . . . , αr+s−2〉 = r + s − 1.

Assume now that α is algebraic over H, of degree [M : H] = m. In particular, the set
{1, α, . . . , αm−1} is an H-basis of M . Given positive integers r, s ≤ m, let A = 〈1, α, . . . , αr−1〉 and
B = 〈1, α, . . . , αs−1〉 as above. Then dimH A = r, dimH B = s, and dimH〈AB〉 ≤ r + s − 1 since
〈AB〉 is spanned by the set {αi}0≤i≤r+s−2.

In either case, our explicit pair of subspaces A,B yields the desired estimate µH,M(r, s) ≤
r + s − 1.

As a side remark, note that the above formula remains valid if either r = 0 or s = 0, but
not if both r = s = 0. Using the Primitive Element Theorem for separable extensions, here is a
consequence that we shall need.

Proposition 4.2 Let H ⊂ L be a commutative field extension which is separable or contains a
transcendental element. Then, for all positive integers r, s ≤ dimH L, we have

µH,L(r, s) ≤ r + s − 1.

Proof. If L contains a transcendental element α, we are done by the lemma above. (Indeed, with
M = H(α) we have µH,L(r, s) ≤ µH,M (r, s) ≤ r + s − 1.) Assume now that L is algebraic and
separable over H. Given positive integers r, s ≤ dimH L, let U ⊂ L be any linearly independent
set of size max{r, s}. Set L0 = H(U), the subfield of L generated by U over H. It follows from
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the present assumptions on L, that L0 is a finite and separable extension of H, with [L0 : H] =
m ≥ max{r, s}. By the Primitive Element Theorem, there exists an element α ∈ L0 such that
L0 = H(α). We now conclude with Lemma 4.1.

The above result is in fact valid without any separability hypothesis, as shown in Section 7 with
a little longer argument. However, the present version is sufficient to help us conclude the proof of
Theorem 1.1.

Proof of inequality µK,L(r, s) ≤ κK,L(r, s). Let r, s be positive integers not exceeding [L : K].
Let h0 = [H : K] be the K-dimension of a finite-dimensional intermediate field extension K ⊂ H ⊂
L for which κK,L(r, s) attains its value, i.e. such that

κK,L(r, s) = (⌈r/h0⌉ + ⌈s/h0⌉ − 1)h0.

(Note that such an h0 exists and cannot exceed r + s − 1 since, using h = 1 in the definition of
κK,L, we have κK,L(r, s) ≤ r + s − 1.) Set r0 = ⌈r/h0⌉, s0 = ⌈s/h0⌉. Of course ⌈r/h0⌉, ⌈s/h0⌉ ≤
[L : K]/h0 = [L : H]. From the hypotheses on the extension L over K, it follows that L, as an
extension over H, is either separable or else contains a transcendental element. By Proposition 4.2,
we have µH,L(r0, s0) ≤ r0 + s0 − 1. Thus there exist H-subspaces A0, B0 ⊂ L such that

dimH A0 = r0,

dimH B0 = s0,

dimH〈A0B0〉 ≤ r0 + s0 − 1.

Now, viewed as K-subspaces of L, their dimensions are multiplied by h0. Thus, we have

dimK A0 = r0h0,

dimK B0 = s0h0,

dimK〈A0B0〉 ≤ (r0 + s0 − 1)h0 = κK,L(r, s).

Therefore µK,L(r0h0, s0h0) ≤ κK,L(r, s). Now r ≤ r0h0, s ≤ s0h0, and clearly the function µK,L(r, s)
is nondecreasing in each variable. It follows that

µK,L(r, s) ≤ µK,L(r0h0, s0h0) ≤ κK,L(r, s),

as claimed. The proof of Theorem 1.1 is now complete.

5 Examples

We now give three examples illustrating Theorem 1.1.

Example 5.1 (Transcendental extensions) Assume that L is a purely transcendental extension
of K. In that case, the unique finite-dimensional intermediate extension K ⊂ H ⊂ L is H = K
itself. It follows that κK,L(r, s) = r + s − 1 and thus, by Theorem 1.1, we have

µK,L(r, s) = r + s − 1

for all positive integers r, s. (See also Theorem 6.3 and the remark following it in [4].)
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Example 5.2 (A linear version of the Cauchy-Davenport Theorem) Let K ⊂ L be a com-
mutative field extension of prime degree [L : K] = p. Asssume that char(K) is distinct from p.
Then, for all 1 ≤ r, s ≤ p, we have

µK,L(r, s) = min{r + s − 1, p}. (2)

(Compare with the original Cauchy-Davenport Theorem in Section 2.) Indeed, by our assump-
tion char(K) 6= p, the extension is separable. Thus Theorem 1.1 applies and gives µK,L(r, s) =
κK,L(r, s). Finally, since the only intermediate fields K ⊂ H ⊂ L are H = K and H = L, we have
κK,L(r, s) = min{r + s − 1, p} by definition of this function.

Actually, formula (2) also holds if char(K) = p, as we shall show in a future publication.

Example 5.3 (An extension of degree 16) Consider the extension Q ⊂ Q( 16
√

2). This is a
separable extension of degree 16, obviously containing intermediate extensions of degree 2, 4 and 8.
It follows that, for all 1 ≤ r, s ≤ 16, we have

µ
Q,Q( 16

√
2)(r, s) = κ

Q,Q( 16
√

2)(r, s) = min
h|16

(⌈r/h⌉ + ⌈s/h⌉ − 1)h.

This is exactly the classical Hopf-Stiefel function r ◦ s [2]. We now tabulate this function in order
to sense its quite complicated behavior. The value of r ◦ s is the coefficient in row r and column s
of the matrix below:



























































1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16
3 4 4 4 7 8 8 8 11 12 12 12 15 16 16 16
4 4 4 4 8 8 8 8 12 12 12 12 16 16 16 16
5 6 7 8 8 8 8 8 13 14 15 16 16 16 16 16
6 6 8 8 8 8 8 8 14 14 16 16 16 16 16 16
7 8 8 8 8 8 8 8 15 16 16 16 16 16 16 16
8 8 8 8 8 8 8 8 16 16 16 16 16 16 16 16
9 10 11 12 13 14 15 16 16 16 16 16 16 16 16 16
10 10 12 12 14 14 16 16 16 16 16 16 16 16 16 16
11 12 12 12 15 16 16 16 16 16 16 16 16 16 16 16
12 12 12 12 16 16 16 16 16 16 16 16 16 16 16 16
13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16
15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16



























































For example, one finds 11 ◦ 4 = 12 and 11 ◦ 5 = 15. The fact that the lower antidiagonal part of
the matrix is constant and equal to 16 is part of the following more general phenomenon.

Remark 5.4 If [L : K] = n, then κK,L(r, s) = n whenever r, s ≤ n and r + s ≥ n + 1.

Indeed, denote fh(r, s) = (⌈r/h⌉+⌈s/h⌉−1)h. Then κK,L(r, s) = minh fh(r, s), where h runs over a
certain set of divisors of n, namely the K-degrees of intermediate extensions. If r + s ≥ n + 1, then
fh(r, s) ≥ n + 1 − h. But since fh(r, s) is a multiple of h, it follows that fh(r, s) ≥ n + h − h = n.
Finally, with h = n we get fn(r, s) = n, and the formula follows.
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6 Finite Galois extensions

In this section we consider the case of a finite Galois extension K ⊂ L with Galois group G, and
attempt to compare the function κG from group theory to its linear version κK,L.

By basic Galois theory, there is a bijection between intermediate extensions K ⊂ H ⊂ L and
subgroups of G = Gal(L/K), namely H 7→ Gal(L/H). The cardinality of the subgroup of G
corresponding to H is given by the formula

|Gal(L/H)| = [L : H] = [L : K]/[H : K].

Recall that κG(r, s) is defined, in the case at hand, by minimizing the expression

(⌈r/h⌉ + ⌈s/h⌉ − 1)h

over all subgroup cardinalities h = |Gal(L/H)| = [L : H]. However, in the definition of κK,L(r, s),
the minimum is rather taken over the numbers h = [H : K]. Thus, the functions κK,L(r, s) and
κG(r, s) cannot be directly compared in general, except in the particular case where all divisors of
|G| happen to be subgroup cardinalities; this occurs for instance if G is abelian or a p-group. This
observation yields the following consequences of Theorem 1.1.

Corollary 6.1 Let K ⊂ L be a Galois extension with finite Galois group G of order n. Assume
that every divisor d of n is a subgroup cardinality. Then, for all positive integers r, s ≤ n = [L : K],
we have

µK,L(r, s) = κG(r, s) = min
d|n

(⌈r/d⌉ + ⌈s/d⌉ − 1)d.

Assuming further that G is abelian, and using Theorem 2.1, we get an equality on the level of
µ-functions.

Corollary 6.2 Let K ⊂ L be a Galois extension with finite abelian Galois group G of order n.
Then, for all positive integers r, s ≤ n = [L : K], we have

µK,L(r, s) = µG(r, s). (3)

However, note that equality (3) does not hold in general if G is nonabelian, even if all divisors of
|G| are subgroup cardinalities. For instance, for the nonabelian group G = Z/7Z ⋊ Z/3Z of order
21, it is known that µG(5, 9) = κG(5, 9)+1 = 13; this provides, by Corollary 6.1, a counterexample
to equality (3).

7 The small products property

In this section we show that Proposition 4.2 is valid in an arbitrary commutative field extension
H ⊂ L, not necessarily separable. Indeed, we shall prove that, for all positive integers r, s ≤ [L : H],
there exist H-subspaces A,B of L with dimH A = r, dimH B = s and dimH〈AB〉 ≤ r + s − 1. We
might call this the small products property, in analogy with the small sumsets property for groups.

Proposition 7.1 Let H ⊂ L be a commutative field extension. Then, for all positive integers
r, s ≤ dimH L, we have

µH,L(r, s) ≤ r + s − 1.
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Proof. As in the proof of Proposition 4.2, we are done if L contains a transcendental element over
H. Assume now that L is algebraic over H. If [L : H] is infinite, then L contains intermediary
extensions H ⊂ L′ ⊂ L with [L′ : H] finite but arbitrarily large. (Indeed, take L′ = H(u1, . . . , un)
for any finite choice of u1, . . . , un ∈ L.) Hence we may further assume that [L : H] is finite. Let
H ⊂ M ⊂ L be an intermediate extension for which the statement of the proposition is true,
namely satisfying

µH,M(r0, s0) ≤ r0 + s0 − 1 (4)

for all 1 ≤ r0, s0 ≤ [M : H]. Such extensions exist, for instance M = H. We may further assume
that M is maximal for this small products property. If M = L we are done. If not, let α ∈ L \ M,
say of degree d over M . For the record, the set {1, α, . . . , αd−1} is an M -basis of M(α). We shall
show that the statement of the proposition still holds for the extension H ⊂ M(α), a contradiction
to the maximality of M .

Let r, s ≤ [M(α) : H] = [M : H]d. Performing a slightly modified euclidean division by [M : H],
we may write

r = q1[M : H] + r0,

s = q2[M : H] + s0,

with remainders 1 ≤ r0, s0 ≤ [M : H] and quotients q1, q2 ≤ d − 1.
Since µH,M (r0, s0) ≤ r0 + s0 − 1, we may choose H-subspaces A0, B0 ⊂ M such that

dimH A0 = r0,
dimH B0 = s0,
dimH〈A0B0〉 ≤ r0 + s0 − 1.

We may assume q1 +q2 ≥ 1, for otherwise r = r0, s = s0 and we are done in this case by assumption
on M . We now define

A = M · {1, α, . . . , αq1−1} ⊕ A0 · αq1 ,

B = M · {1, α, . . . , αq2−1} ⊕ B0 · αq2 ,

provided q1, q2 ≥ 1. If q1 = 0 or q2 = 0, we simply set A = A0 or B = B0, respectively. In all cases,
viewing A,B as vector spaces over H, we have

dimH A = q1[M : H] + r0 = r,

dimH B = q2[M : H] + s0 = s.

(Recall that 1, α, . . . , αd−1 are linearly independent over M , that q1, q2 ≤ d − 1 and that A0, B0 ⊂
M .) Now, taking the product of A and B, it is plain that we get

〈AB〉 ⊂ M · {1, α, . . . , αq1+q2−1} ⊕ 〈A0B0〉 · αq1+q2.

It follows that
dimH〈AB〉 ≤ (q1 + q2)[M : H] + (r0 + s0 − 1) = r + s − 1,

and the proof of the proposition is complete.
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8 Two conjectures

In Theorems 1.1 and 3.1, the extension K ⊂ L is assumed to have all its algebraic elements
separable. Are these results still valid without this hypothesis? The answer for Theorem 3.1 is
conjectured in [5] to be positive.

Conjecture 8.1 (X.D.Hou) Let K ⊂ L be a commutative field extension, and let A,B ⊂ L be
nonzero finite-dimensional K-subspaces of L. Let H be the stabilizer of 〈AB〉. Then

dimK〈AB〉 ≥ dimK A + dimK B − dimK H.

It is shown in [5] that the statement of the conjecture holds for dimK A ≤ 5.

It remains to decide whether the separability hypothesis in Theorem 1.1 can be removed. We
conjecture that this is the case.

Conjecture 8.2 Let K ⊂ L be a commutative field extension. Then, for all positive integers
r, s ≤ dimK L, one should have

µK,L(r, s) = κK,L(r, s).

This conjecture in fact follows from Conjecture 8.1. Indeed, our proof of Theorem 1.1 relies on
both Theorem 3.1 and Proposition 4.2. Removing the separability hypotheses in these two results
yields Conjecture 8.1 and Proposition 7.1, respectively. With the latter statements, our proof of
Theorem 1.1 becomes a derivation of Conjecture 8.2 from Conjecture 8.1. In particular, by the
above-mentioned result in [5], Conjecture 8.2 holds at least for r ≤ 5.

Of course, by Theorem 1.1, Conjecture 8.2 holds for all separable extensions, and in particular
in characteristic 0.

Acknowledgment: During the preparation of this paper, the first author has partially benefited from a research

contract with the Fonds National Suisse pour la Recherche Scientifique.
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