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DEFINABILITY OF GROUPS IN ℵ0-STABLE METRIC STRUCTURES

ITAÏ BEN YAACOV

Abstract. We prove that in a continuous ℵ0-stable theory every type-definable group
is definable. The two main ingredients in the proof are:

(i) Results concerning Morley ranks (i.e., Cantor-Bendixson ranks) from [Ben], allow-
ing us to prove the theorem in case the metric is invariant under the group action;
and

(ii) Results concerning the existence of translation-invariant definable metrics on type-
definable groups and the extension of partial definable metrics to total ones.

We conclude this paper with a development of basic stability theory for continuous logic.

Introduction

Definable sets, as well as more complex definable objects (e.g., groups) play a central
and essential role in classical model theory. These are (usually) subsets of the ambient
structure which are defined by a single formula of classical first order logic.

Continuous first order logic was proposed in [BU] as an extension of classical first
order logic, obtained by replacing the two-element set of truth values {T, F} with the
compact interval [0, 1]. It allows to consider various classes of complete metric structures
as elementary classes and to study definability therein. However, some things do become
more complicated in continuous logic, and in particular the classical notion of a definable
set splits in two. First, a set is a predicate, and a definable set is a definable predicate,
i.e., a definable function into the set {T, F} (or {0, 1}). As such, the correct analogue
is a definable continuous predicate, i.e., a definable function to [0, 1] – it is definable in
the sense that it is given by a continuous first order formula, or at the very least, by a
uniform limit of such. But when thinking of definable objects, such as groups, there is
an essential asymmetry between what is inside (which interests us) and what is outside
(about which we could hardly care less, especially if the set is stably embedded). The
same asymmetry arises when we wish to quantify over a definable set. In that case the
notion of a definable predicate is inadequate and we are led to the notion of a definable
set : this is a closed set the distance to which is a definable predicate, or equivalently,
over which we may quantify (see Fact 1.7 below).
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2 ITAÏ BEN YAACOV

The class of definable set in a continuous structure is far less well-behaved than in
classical logic. For example, the family of all definable subsets of Mn does not form a
Boolean algebra, as it is not always closed under complement or intersection. Worse still,
it is not at all obvious whether non trivial definable sets even exist. Indeed, examples
exist of theories which do not admit enough definable sets, i.e., where there are distinct
types which nonetheless agree on all definable sets (such an example is the theory of real
closed fields augmented by a predicate P (x) = st(|x−a|)∧1 where st(·) denotes the real
standard part and a is some infinite element). As all known examples of this pathology
are unstable it make sense to ask whether all stable continuous theories admit enough
definable sets.

One of the beautiful aspects of stable group theory in classical logic is the proof that
there are also “enough definable groups”, namely, that every type-definable group is the
intersection of definable subgroups of a definable group. In the case of an ℵ0-stable theory,
chain conditions along with the previous general fact yield that every type-definable group
is definable. In continuous logic we can prove adequate analogues of the chain conditions
for sequences of definable (or type-definable) groups for ℵ0-stable theories, but we do not
know how to prove enough definable groups exist in stable theories.

In the present paper we give a direct proof of the fact that in an ℵ0-stable theory every
type-definable group is definable, leaving open the question of the existence of definable
groups in general stable theories. In the special case of the theory of probability algebras
this has already been proved by Alexander Berenstein [Ber06].

In Section 1 we discuss various definability classes of sets and functions.
In Section 2 we prove the main theorem using some technical results concerning Morley

ranks (i.e., Cantor-Bendixson ranks) from [Ben]. We do this under the assumption of
the invariance of the metric under the group operation (Theorem 2.11). The rest of the
paper aims towards the removal of this assumption.

In Section 3 we discuss stable type-definable groups. In particular we discuss the
existence and basic properties generic types, as well as some easy descending chain con-
ditions.

In Section 4 we study definable metrics other than the standard one. In particular, we
study when and how partial definable metrics (on a definable or type-definable set) can
be extended to total ones.

In Section 5 we prove the full version of main theorem and give some corollaries.
Finally, in Appendix A we give a more complete treatment of type-definable groups

in stable continuous theories. For this purpose we first elaborate some general stability
theory for the continuous context which was missing from [BU].

1. Definability properties

1.1. Definability classes of sets.

Definition 1.1. (i) A type-definable set X is the set of realisations of an arbitrary
set of conditions {ϕi(x) = 0: i < λ}.
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(ii) A zero set X is the set of realisations of a single condition ψ(x) = 0, where ψ(x)
is a definable predicate. We then say that X is the zero set of ψ.

(iii) A definable set X is a closed set for which d(x,X) is a definable predicate.
Type-definable sets and zero sets will only be considered in sufficiently saturated struc-

tures, while definable sets make sense in an arbitrary structure.

Clearly, every zero set is type-definable, and every definable set X is the zero set of
d(x,X). In terms of types, we know that a type-definable set X corresponds to closed
sets of types [X] ⊆ Sn(A) where A contains all the parameters appearing in the definition
of X.

Definition 1.2. Let X and Y be two type-definable sets. We say that Y is a logical
neighbourhood of X, in symbols X < Y , if there is a set of parameters A over which both
X and Y are defined such that [X] ⊆ [Y ]◦ in Sn(A).

Notice that the interior of [Y ] does depend on A (i.e., if A′ ⊇ A then [Y ]◦ calculated
in Sn(A

′) may be larger than the pullback of the interior of [Y ] in Sn(A)). We may
nonetheless choose any parameter set we wish:

Lemma 1.3. Assume that X is type-definable with parameters in B, Y type-definable
possibly with additional parameters not in B. Then:

(i) If X < Y then [X] ⊆ [Y ]◦ in Sn(A) for any set A over which both X and Y are
defined.

(ii) If X < Y then there is an intermediate logical neighbourhood X < Z < Y , which
can moreover be taken to be a zero of a formula with parameters in B.

(iii) If Y ∩X = ∅ then there is a logical neighbourhood Z > X such that Z ∩Y = ∅.
Moreover, we may take Z to be a zero set defined over B.

Proof. Assume X > Y , where X is type-definable over B, and Y over A ⊇ B. Let Φ
consist of all formulae ϕ(x̄) over B which are zero on X. If ϕ, ψ ∈ Φ then ϕ∨ψ ∈ Φ, and
X is defined by the partial type p(x̄) = {ϕ(x̄) ≤ r : ϕ ∈ Φ, r > 0}. By a compactness in
Sn(A) there is a condition ϕ(x̄) ≤ r in p(x̄) which already implies x̄ ∈ Y . Let Z be the
zero set of the formula ϕ(x̄) −. r′ where 0 < r′ = k

2−m < r.
Then in Sn(A) we have [X] ⊆ [ϕ(x̄) < r′] ⊆ [ϕ(x̄) ≤ r′] ⊆ [ϕ(r̄) < r] ⊆ [Y ], i.e.,

[X] ⊆ [Z]◦ ⊆ [Z] ⊆ [Y ]◦, proving the first two item. The third item now follows from the
fact that Sn(A) is a normal topological space. �1.3

Lemma 1.4. A type-definable set X is a zero set if and only if [X] is a (closed) Gδ set.

Proof. This is just a topological statement, saying that in a compact Hausdorff space
Y , a closed subset K ⊆ Y is the zero set of some f ∈ C(Y, [0, 1]) if and only if it is
a Gδ set. This is in fact true in an arbitrary normal space: left to right is immediate,
while right to left involves a straightforward construction using ω applications Urysohn’s
Lemma. �1.4
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It follows that finite unions and countable intersections of zero sets are zero sets. In
particular, a set X which is type-definable by a countable set of conditions is a zero set.

Later on we will use the following result:

Lemma 1.5. Let X =
∏

i<nX
mi
i be a type-definable set, (so each Xi is one) and Y ⊇ X

a zero set. Then there are zero sets Yi ⊇ Xi such that Y ⊇
∏

i<n Y
mi
i .

Proof. We will only show that if X×X ′ is a type-definable set and Y ⊇ X×X ′ is a zero
set then there is a zero set Y ′ ⊇ X ′ such that Y ⊇ X × Y ′. The result then follows since
the intersection of finitely (or even countably) many zero sets is a zero set.

Let ϕ(x, y) = 0 define Y . For n < ω consider the partial type {x ∈ X} ∪ {y ∈
X ′} ∪ {ϕ(x, y) ≥ 2−n}. As it is inconsistent Y admits a logical neighbourhood Yn > X ′

such that {x ∈ X} ∪ {y ∈ Yn} ∪ {ϕ(x, y) ≥ 2−n} is inconsistent. Moreover, choosing
the sets Yn by induction on n we may arrange that Yn > Yn+1. Let Y ′ =

⋂

Yn. Then
[Y ′] =

⋂

[Yn] is a closed Gδ set, and Y ⊇ X × Y ′. �1.5

In many situations we may wish do show that if a condition holds on a type-definable
set then it holds on some zero set containing it. This is (tautologically) the case if the
condition itself a zero set. It is still true if the condition in question is a containment
(i.e., implication) of zero sets.

Lemma 1.6. Let ϕ(x̄) and ψ(x̄) be two definable predicates, X a type-definable set, and
assume that for all x̄ ∈ X: ϕ(x̄) = 0 =⇒ ψ(x̄) = 0. Then there exist a zero set Y ⊇ X
on which ϕ(x̄) = 0 =⇒ ψ(x̄) = 0 holds as well.

Proof. For every ε > 0 there is δ(ε) > 0 such that for all x̄ ∈ X: ϕ(x̄) < δ(ε) =⇒
ψ(x̄) ≤ ε. Indeed, if not, then we can obtain a contradiction to our assumption using
compactness. We can therefore take Y to be the zero set of:

χ(x̄) =
∑

n<ω

2−n−1
(

(δ(2−n) −. ϕ(x̄)) ∧ (ψ(x̄) −. 2−n)
)

. �1.6

Finally, when it comes to definable sets, we will use the following equivalent charac-
terisations:

Fact 1.7. Let M be a model, X ⊆Mn closed subset. Then the following are equivalent:

(i) X is definable.
(ii) X is the zero set of a definable predicate ϕ(x̄), and d(x̄, X) ≤ ϕ(x̄).
(iii) For every ε > 0, the set B̄(X, ε) (which is always type-definable) is a logical

neighbourhood of X.
(iv) For every definable predicate ϕ(x̄, ȳ), the predicate supx̄∈X ϕ(x̄, ȳ) is definable.
(v) For every formula ϕ(x̄, ȳ), the predicate supx̄∈X ϕ(x̄, ȳ) is definable.

Lemma 1.8. The product and union of two definable sets are definable.
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Proof. If X and Y are definable then d((x, y), X × Y ) = d(x,X) ∨ d(y, Y ), where we
equip the product sort with the maximum metric. If they are in the same sort then
d(x,X ∪ Y ) = d(x,X) ∧ d(x, Y ). �1.8

A finite intersection of definable sets needs not be definable in general. When it comes
to infinite unions, we propose two results.

Lemma 1.9. Let X be a type-definable set, and assume X =
⋃

i<αXi where {Xi : i < α}
is a possibly infinite (yet bounded) family of definable sets. Then X is definable.

Proof. By Fact 1.7 all we need to check is that for every ε > 0 the set B̄(X, ε) is a logical
neighbourhood of X. Indeed:

B̄(X, ε) ⊇ B(X, ε) =
⋃

i<α

B(Xi, ε) ⊇
⋃

i<α

B̄(Xi, ε/2),

whereby:

[B̄(X, ε)]◦ ⊇
⋃

i<α

[B̄(Xi, ε/2)]◦ ⊇
⋃

i<α

[Xi] = [X]. �1.9

Similarly, a definable union of definable sets is definable:

Lemma 1.10. Let Xā be a family of uniformly definable sets with parameters in a
definable set Y . That is to say that there is a definable predicate ϕ(x̄, ȳ) such that
d(x̄, X̄ā) = ϕ(x̄, ā) for every ā ∈ Y . Then Z =

⋃

ā∈Y Xā is definable.

Proof. First, Z is a closed set by a simple compactness argument. Then we have:
d(x̄, Z) = inf ȳ∈Y d(x̄, Xȳ) = inf ȳ∈Y ϕ(x̄, ȳ). �1.10

Finally, every compact set is definable, and in a particularly convenient manner:

Lemma 1.11. Let M be a model, K ⊆ M a (metrically) compact set. Then K is
definable. Moreover, if ϕ(x̄, y) is a definable predicate then infy∈K ϕ(x̄, y) is equal to a
forced limit of continuous combinations of instances of ϕ with parameters in K (i.e., it
is a ϕ-predicate over K) and for any tuple x̄, the infimum is attained by some y ∈ K.

Proof. As K is compact we can find a sequence (ci : i < ω) ⊆ K such that for ev-
ery ε > 0 there is m(ε) such that K ⊆

⋃

i<m(ε)B(ci, ε). Let ε 7→ δ(ε) be the uni-

form continuity modulus of ϕ(x̄, y) with respect to y, meaning that d(y, y′) < δ(ε) =⇒
|ϕ(x̄, y) − ϕ(x̄, y′)| ≤ ε. Then

inf
y∈K

ϕ(x̄, y) = F lim
n

∧

i<m(δ(2−n))

ϕ(x̄, ci).

Finally, the infimum of a continuous function on a compact set is always attained. �1.11
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1.2. Partial definable predicates and functions. We will consider objects such as
predicates and functions which are only defined on some type-definable set.

Definition 1.12. Let X be a type-definable set.

(i) A partial type-definable predicate ψ(x̄) on X, is given by a continuous mapping
ψ : [X] → [0, 1], where [X] is the closed set of complete types corresponding to
X. We call X the domain of ψ, denoted dom(ψ), and for ā ∈ X we denote by
ψ(ā) the truth value ψ(tp(ā)).

(ii) It is definable on X if it is the restriction of a definable predicate to X.
(iii) A partial type-definable function f(x̄) on X is one whose graph is given by a

partial type Gf(x̄, y). That is to say that Gf(x̄, y) ∪ Gf (x̄, z) � y = z and that
dom(f) = X is defined by the partial type ∃y Gf(x̄, y). With a slight abuse of
notation we may write it as f : X → M or f : X(M) →M , although the model
M (and even its complete theory) may vary.

(iv) It is definable on X if the predicate d(f(x̄), y) is definable on X ×M .

We may allow parameters in the definitions by naming them in the language. Also, when
explicitly specifying the domain we will usually drop the qualifier “partial”.

It is a straightforward exercise to verify that every partial definable predicate or func-
tion is type-definable. We wish to prove the converse.

We start with a fact from general topology concerning the extensions of continuous
functions.

Fact 1.13 (Tietze’s Extension Theorem). Let X be a normal space, C ⊆ X closed, and
let f : C → [0, 1] be a continuous function. Then f admits an extension to a continuous

function f̃ : X → [0, 1].

Lemma 1.14. Let ψ(x<n, y) be a definable predicate, and f : X → M a type-definable
partial n-ary function. Then ψ(x̄, f(x̄)) is a partial type-definable predicate on X.

Proof. Assume everything is defined without parameters, and let K = [X] ⊆ Sn(T ).

Then f induces a continuous function f̂ : K → Sn+1(T ) sending tp(ā) 7→ tp(ā, f(ā)), and

ψ(x̄, f(x̄)) is given by the composition ψ ◦ f̂ : K → [0, 1]. �1.14

Proposition 1.15. Every partial type-definable predicate or function is definable.

Proof. For predicates, this is just Tietze’s Extension Theorem. For functions, assume that
f : X →M is a type-definable function. Then f ′ : X×M →M defined by f ′(x̄, y) = f(x̄)
is type-definable as well. Let ψ(x̄, y, z) = d(y, z). Then ψ(x̄, y, f ′(x̄, y)) = d(y, f(x̄)) is a
type-definable, and therefore definable, predicate on X ×M . �1.15

This means that of the notions defined above we only need to retain those of partial
definable functions and predicates. Moreover, while partial definable predicates are not
entirely superfluous, most of the time we will avoid them, replacing any such partial
predicate with an (arbitrary) total definable predicate extending it.
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Notation 1.16. By the notation ϕ(x̄) ⊒ ψ(x̄) we mean that ϕ(x̄) is a definable predicate
extending a partial definable predicate ψ(x̄).

Remark 1.17. One can add to the language a sort S[0,1] for the interval [0, 1], along with
the tautological predicate id[0,1] : S[0,1] → [0, 1] (such a sort will usually exist in Leq).
Then a partial predicate on a type-definable set X is definable if and only if factors
through a definable function to S[0,1].

If Y ⊆ X are type-definable, we may say that Y is definable relative to X if d(x, Y ) is
a partial definable predicate on X.

Lemma 1.18. If X is definable and Y ⊆ X is definable relative to X then Y is definable.

Proof. Let ϕ(x) ⊒ d(x, Y ) (where d(x, Y ) is defined on X). Then for all x: d(x, Y ) =
infy∈X

(

d(x, y) ∔ ϕ(y)
)

. �1.18

Since we do not always know how to extend a partial definable function to a total one,
it is worthwhile to notice the following fact:

Lemma 1.19. Let X be a definable set and let f be a partial definable function whose
domain contains X. Then f(X) is definable as well.

Proof. Let ϕ(x, y) ⊒ d(x, f(y)). Then d(x, f(X)) = infy∈X ϕ(x, y), which is a definable
predicate since X is definable, whereby f(X) is. �1.19

It is usually fairly easy to reduce questions about arbitrary type-definable sets to
questions about zero sets. For example, while it is not always possible to extend a partial
definable function to a total one, one can always extend it to a zero set containing its
domain:

Lemma 1.20. Let X be a type-definable set, f : X → M a definable function on X.
Then there is a zero set Y ⊇ X such that f extends do a definable function on Y .

Moreover, for every choice of ϕ(x̄, y) ⊒ d(f(x̄), y) there is a zero set Y ⊇ X such that
ϕ↾Y×M defines the graph of a partial definable function f ′ : Y →M (which extends f).

Proof. Let ϕ(x̄, y) ⊒ d(f(x̄), y), and let:

ψ(x̄, y, z) =
(

d(y, z) −. ϕ(x̄, y) −. ϕ(x̄, z)
)

∨
(

ϕ(x̄, y) −. d(y, z) −. ϕ(x̄, z)
)

∨ inf
t
ϕ(x̄, t)

Then ψ is zero on X ×M2, and by Lemma 1.5 there is a zero set Y ⊇ X such that ψ is
zero on Y ×M2 as well. This means that for all x̄ ∈ Y there is y0 such that ϕ(x̄, y0) = 0,
and that for any other y one has ϕ(x̄, y) = d(y, y0). Thus ϕ(x̄, y) = d(f ′(x̄), y) for some
function f ′ : Y → M extending f . �1.20

If the original type-definable set is closed under the function(s) we wish to extend, we
can make sure that so is the extension:

Proposition 1.21. Assume that we are given:
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(i) For each i < n sets Xi ⊆ Yi where Xi is type-definable and Yi is a zero set.
(ii) An ordinal α ≤ ω, and for each j < α a partial definable function

fj :
∏

i<nX
mi,j

i → Xℓj .

Then there are zero sets Yi ⊇ Zi ⊇ Xi and partial definable functions gj :
∏

i<n Z
mi,j

i →
Zℓj extending fj.

Moreover, if we are given definable predicate ϕj(x̄j , ȳj) ⊒ d(fj(x̄j), yj) then we can
arrange that ϕj(x̄j , yj) ⊒ d(gj(x̄j), yj) as well.

Proof. For simplicity of notation we will consider the special case of a single function
f : Xm → X ⊆M , as the general case is identical (but with a lot more indexes).

Let ϕ(x̄, y) ⊒ d(f(x̄), y) be given (or just choose one). By Lemma 1.20, and possibly
replacing the given zero set Y ⊇ X with a smaller zero set, we may assume there is a
partial definable function g : Y m → M such that ϕ(x̄, y) ⊒ g(f(x̄), y).

Let Y0 = Y . Given a zero set Yk satisfying Y ⊇ Yk ⊇ X let Wk = g−1(Yk)∩ Y
m
k . Then

Wk ⊇ Xm is a zero set and by Lemma 1.5 we can find a zero set Yk+1 ⊇ X such that
W ⊇ Y m

k+1, i.e., such that Yk+1 ⊆ Yk and g(Y m
k+1) ⊆ Yk.

In this manner we construct a countable decreasing sequence of zero sets Y = Y0 ⊇
Y1 ⊇ . . . ⊇ Yk ⊇ . . . ⊇ X such that g(Y m

k+1) ⊆ Yk. Then Z =
⋂

k Yk is a zero set,
Y ⊇ Z ⊇ X and g(Zm) ⊆ Z, as required. �1.21

On the other hand, in later section we will have to consider logical neighbourhoods
of domains of partial definable functions (specifically: logical neighbourhoods of type-
definable groups, on which the group law is a partial definable function). While the
function does not necessarily extend as such, we can extend it as a multi-valued function,
which in addition will be approximately well-defined on small enough neighbourhoods of
the original domain.

Lemma 1.22. Let X be a type-definable set, f : X → M a partial definable func-
tion. Then there is a definable predicate ϕf(x̄, y) ⊒ d(f(x̄), y) satisfying in addition

supx̄ infy ϕf (x̄, y) = 0. Letting f̃(x̄) = {y : ϕf (x̄) = 0} we have:

(i) For all x̄: f̃(x̄) 6= ∅;

(ii) If x̄ ∈ X then f̃(x̄) = {f(x̄)};
(iii) For every ε > 0 there is a logical neighbourhood Y > X such that for all x̄ ∈ Y :

diam(f̃(x̄)) ≤ ε.

Proof. First choose any ϕf,0(x̄, y) ⊒ d(f(x̄), y). Then define: ϕf(x̄, y) = ϕf,0(x̄, y) −
infz ϕf,0(x̄, z). As x̄ ∈ X implies infz ϕf,0(x̄, z) = 0 we still have ϕf (x̄, y) ⊒ d(f(x̄), y)
whence the second item. On the other hand supx̄ infy ϕf (x̄, y) = 0 follows from the
definition and implies the first item.

Finally, consider the partial type saying that {x̄ ∈ X} ∪ {y, z ∈ f̃(x̄)} ∪ {d(y, z) ≥ ε}.

It is inconsistent by the second item, so (by compactness) {x̄ ∈ Y } ∪ {y, z ∈ f̃(x̄)} ∪
{d(y, z) ≥ ε} is inconsistent for some logical neighbourhood Y > X. �1.22
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In classical logic every partial definable function on a type-definable set X can be
extended to a definable set containing X. Whether this is true in continuous logic is still
open, but we can show this up to an extension of the sort on which the function acts via
an isometric embedding in a larger sort.

Lemma 1.23. Let S1 and S2 be two (imaginary) sorts, X ⊆ S1 type-definable, and
f : X → S2 a partial definable function (usually we would have S1 = Mn and S2 = Mm

being powers of the home sort). Then:

(i) We can find ϕ(x, y) ⊒ d(f(x), y) satisfying:

ϕ(x, y) − ϕ(x, y′) ≤ d(y, y′) ≤ ϕ(x, y) + ϕ(x, y′).(1)

(ii) There exists an imaginary sort S3, a definable isometric embedding θ : S2 →֒ S3,

and a total definable function f̂ : S1 → S3 extending θ ◦ f , such that moreover
ϕ(x, y) = d(f̂(x), θ(y)).

Proof. Choose ϕ0(x, y) ⊒ d(f(x), y) and let ϕ(x, y) = supz |ϕ0(x, z) − d(z, y)|. Notice
that for x ∈ X we have ϕ(x, y) = supz |d(f(x), z) − d(z, y)| = d(f(x), y), i.e., ϕ(x, y) ⊒
d(f(x), y) as well.

Let χ(t) be a formula for which 0 and 1 are possible truth values, and let

ψ(z, xyt) = χ(t) ∧ ϕ0(x, z) + (¬χ(t)) ∧ d(y, z).

Let S3 = {[xyt] : x, t ∈ S1, y ∈ S2} be the sort of canonical parameters of instances of
ψ(z, xyt). We recall that the metric on it is given by: d([xyt], [x′y′t′]) = supz |ψ(z, xyt)−
ψ(z, x′y′t′)|.

The embedding θ : S2 →֒ S3 is given by y 7→ [x0y0̃] where χ(0̃) = 0 and x0 ∈ S1 is
arbitrary. This is indeed isometric and does not depend on the choice of either 0̃ or x0

as ψ(z, x0y0̃) = d(y, z). Thus d(θ(y), θ(y′)) = supz |d(y, z) − d(y′, z)| = d(y, z).

Similarly we define f̂ : S1 → S3 by x 7→ [xy01̃] where χ(1̃) = 1, obtaining ψ(z, xy01̃) =

ϕ0(x, z). In particular for x ∈ S1 and y ∈ S2 we have d(f̂(x), θ(y)) = ϕ(x, y) as required,
from which follows (1).

Finally, if x ∈ X then d(θ ◦ f(x), θ(y)) = d(f(x), y) = ϕ(x, y) = d(f̂(x), θ(y)), so f̂
extends θ ◦ f and the proof is complete. �1.23

Question 1.24. Given a type-definable set X and a partial definable function f : X →M ,
can one find a definable set Y ⊇ X such that f extends to a definable f̂ : Y →M? This
is true in classical logic.

2. The main theorem (first approximation)

Once we have defined (type-)definable sets and functions we automatically have cor-
responding notions for more complex algebraic structures. For example:

Definition 2.1. By a type-definable group we mean a type-definable set G equipped with
a definable function · : G2 → G defining a group law on G.
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It is definable if the set G is definable.

Notice that if 〈G, ·〉 is a type-definable group with parameters in A then its identity eG
belongs to dcl(A): indeed, every automorphism of the universal domain fixing A would
fix eG. Similarly, the function x 7→ x−1 is definable on G with parameters in A, its graph
given by Gx−1(x, y) = G·(x, y, eG).

The main goal of this article is to give some sufficient conditions under which type-
definable groups are definable. For example, we have already essentially proved:

Proposition 2.2. Let G be a type-definable group, H ≤ G a subgroup of bounded index,
and assume H is definable. Then so is G.

Proof. Say G/H = {giH : i < λ}. Each coset giH is definable as the image of H under
the partial definable function x 7→ gix (Lemma 1.19). Then by Lemma 1.9 G =

⋃

i<λ giH
implies that G is definable. �2.2

2.1. Invariant metrics. The main theorem states that in an ℵ0-stable theory, every
type-definable group is definable. As a first approximation, we will prove this under the
assumption that the metric is invariant under the group operation:

Definition 2.3. A metric defined on a type-definable group is left-invariant (right-
invariant) if it is invariant under left (right) translation. It is invariant if it is both
left- and right-invariant. It is inverse-invariant if it is invariant under x 7→ x−1.

Clearly if the metric is left-invariant (or right-invariant) and inverse-invariant then it
is right-invariant (or left-invariant) and therefore invariant. Conversely, if the metric is
invariant then it is in particular inverse-invariant, as we have: d(x−1, y−1) = d(x−1y, e) =
d(y, x) = d(x, y).

In classical first order logic it is an easy consequence of compactness that on every
type-definable group, the group law and inverse can be extended to be well-defined (and
make some sense) on some definable set containing the group, i.e., on some logical neigh-
bourhood of the group. In the continuous sense things are trickier, and the best we can
hope for is a logical neighbourhood on which an approximate product is approximately
well-defined and (in case the metric on the group is invariant) approximately isometric.

Lemma 2.4. Let G be a type-definable group on which the metric is invariant. Let
ϕ·(x, y, z) ⊒ d(xy, z) be as in Lemma 1.22, x̃·y = {z : ϕ.(x, y, z) = 0}.

Then for every ε > 0 and logical neighbourhood X > G there is an intermediate logical
neighbourhood X > Y > G such that Y ·̃Y ⊆ X, and multiplication is almost isometric
in the sense that for all x, y, y′ ∈ Y and for all z ∈ x̃·y, z′ ∈ x̃·y′ (or z ∈ y ·̃x, z′ ∈ y′·̃x):
|d(y, y′) − d(z, z′)| ≤ ε.
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Proof. Since X > G we can find a formula χG,X(x) which is equal to 0 on G and to 1
outside X. Then all the following partial types are contradictory:

x, y ∈ G, z ∈ x̃·y, χG,X(z) = 1,

x, y, y′ ∈ G, z ∈ x̃·y, z′ ∈ x̃·y′, |d(y, y′) − d(z, z′)| ≥ ε,

x, y, y′ ∈ G, z ∈ y ·̃x, z′ ∈ y′·̃x, |d(y, y′) − d(z, z′)| ≥ ε.

By compactness there exist a logical neighbourhood X > Y > G such that they are still
contradictory when G is replaced everywhere with Y , and this Y will do. �2.4

2.2. Cantor-Bendixson and Morley ranks. We will use ℵ0-stability via Morley
ranks, i.e., Cantor-Bendixson ranks in Sn(M) where M is a sufficiently saturated model.
Such ranks were studied in detail in [Ben] in the general setting of topometric spaces. In
fact, that paper discusses several possible notions of Cantor-Bendixson ranks, of which
we will use one.

Notation 2.5. In this paper, CBε will denote what is denoted in [Ben] by CBf,ε, i.e.,
the Cantor-Bendixson rank based on the removal of open ε-finite sets.

Definition 2.6. Let X be a type-definable set of n-tuples. We define the ε-Morley rank
of X as RMε(X) = CBSn(M)

ε (X), where M is any sufficiently saturated model containing
the parameters needed for X (this does not depend on the choice of M). If α = RMε(X)

then [X] ∩ Sn(M)
(α)
ε is ε-finite, i.e., ε-d-finite for some d, and we define the ε-Morley

degree of X to be dMε(X) = d.

Lemma 2.7. Let X be a type-definable set. For all r > 0 there are 0 < ε < r′ < r such
that RMr′(X) = RMr′−ε(X).

Proof. For n < ω define rn = r(1 − 2−n−1). Then (rn : n < ω) is an increasing sequence,
whereby RMrn(X) is a decreasing sequence of ordinals and therefore stabilises from some
point onwards. Thus we may take r′ = rn+1 and ε = rn+1 − rn for any n large enough.

�2.7

We recall some definitions and the main result we will use from [Ben, Section 3.3].

Notation 2.8. Let X, Y be two compact spaces, R ⊆ X × Y a closed relation. For
x ∈ X and A ⊆ Y we define:

Rx = {y ∈ Y : (x, y) ∈ R},

R∀A = {x ∈ X : Rx ⊆ A},

R∃A = {x ∈ X : Rx ∩ A 6= ∅}.

Fact 2.9. Let X, Y be two compact topometric spaces, R ⊆ X ×Y a closed relation, and
ε, δ > 0 such that for all (x, y), (x′, y′) ∈ R: if dY (y, y′) ≤ δ then dX(x, x′) ≤ ε. Let K ⊆
X and F ⊆ Y be closed sets such that K ⊆ (R∃Y )◦ ∩ R∀F . Then CBX

ε (K) ≤ CBY
δ (F ).
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Proof. [Ben, Theorem 3.23]. �2.9

The following result contains the technical core of the proof of the (first approximation
of the) main theorem. Given a logical neighbourhood of G on which product is well-
behaved and a point in that neighbourhood (outside G), we can approximately translate
G by that element, obtaining an approximately isometric copy of G. Using the Fact cited
above we can compare the Morley ranks of G and of this approximate copy. In addition,
if the element we translate by is far enough from G, then so will be the entire copy.

Lemma 2.10. Let G be a group on which the metric is invariant.
Then for every ε > 0 and logical neighbourhood X > G there exists an intermediary

logical neighbourhood X > Y > G such that for all r > ε either Y ⊆ B̄(G, r) or there is
a type-definable subset Z ⊆ X such that d(Z,G) > r − ε and RMr−ε(Z) ≥ RMr(G).

Proof. Apply Lemma 2.4 to X > G and ε > 0 to obtainX > Y > G. If Y ⊆ B̄(G, r) then
we are done, so assume the contrary, i.e., that there exists y0 ∈ Y such that d(y0, G) > r.
Set Z = y0̃·G ⊆ X, which is type-definable.

To see that d(G,Z) > r − ε, let g ∈ G and z ∈ Z. Then z ∈ y0̃·h for some h ∈ G.
Let g′ = gh−1 ∈ G, so d(y0, g

′) > r. Since y0, g
′, h ∈ Y we have |d(z, g) − d(y0, g

′)| ≤ ε,
whereby d(z, g) > r − ε. By a compactness argument it follows that d(G,Z) > r − ε.

Let M be a fairly saturated model containing all necessary parameters, including y0,
and let S = S(M). Set

R = {(tp(u/M), tp(v/M)) : u ∈ Y, v ∈ y0̃·u}.

Then R ⊆ S2 is a closed relation, [Y ] = R∃S and [G] ⊆ R∀[Z], so [G] ⊆ (R∃S)◦ ∩ R∀[Z].
On the other, if (p, q), (p′q′) ∈ R then |d(p, p′) − d(q, q′)| ≤ ε, so d(q, q′) ≤ r − ε =⇒
d(p, p′) ≤ r. Applying Fact 2.9 we get:

RMr(G) = CBS
r ([G]) ≤ CBS

r−ε([Z]) = RMr−ε(Z). �2.10

2.3. The definability proof. So far we haven’t used yet the assumption of ℵ0-stability
(the ranks in Lemma 2.10 could be infinite).

Theorem 2.11. Let G be a type-definable group in an ℵ0-stable theory on which the
metric is invariant. Then G is definable.

Proof. Let r > 0, and we will show that B̄(G, r) > G. There is no harm if we decrease
r, so by Lemma 2.7 we may assume that RMr(G) = RMr−ε(G) for some 0 < ε < r.

By compactness we can find X > G such that RMr−ε(G) = RMr−ε(X) and
dMr−ε(G) = dMr−ε(X). Apply Lemma 2.10 to find X > Y > G such that either
Y ⊆ B̄(G, r) or there is Z ⊆ Y such that d(G,Z) > r − ε and RMr−ε(Z) ≥ RMr(G) =
RMr−ε(G).
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In the second case we have RMr−ε(G) = RMr−ε(Z) = RMr−ε(X), so from d(G,Z) >
r − ε we obtain:

dMr−ε(G) = dMr−ε(X) ≥ dMr−ε(G ∪ Z)

≥ dMr−ε(G) + dMr−ε(Z)

> dMr−ε(G).

This is impossible, so B̄(G, r) ⊇ Y > G, as required. �2.11

3. Stable type-definable groups

3.1. Generic elements and types in stable groups. Here we will generalise to con-
tinuous logic various classical facts concerning generic types and connected components
of definable and type-definable groups in stable theories. The reader who is willing to
accept that everything works more or less as in classical stable theories (see Fact 3.3
below) may safely skip it.

Let G be a type-definable group in a complete stable theory T . We will work inside
a monster model M̄ � T , and identify G with the set of elements G(M̄). Naming
the parameters used for defining G in the language we may assume G is type-definable
without parameters. If A ⊆ M̄ , by SG(A) we denote the space of complete types over A
of members of G, with the induced topology. The closed subsets of SG(A) correspond to
subsets of G which are type-definable over A.

In order to prove the bare essentials needed in this paper we can use a general fact
about the existence of generic elements and types for type-definable groups in thick simple
cats. It uses the notion of dividing-generic types, which coincides with classical notions
of genericity in the case of stable theories, and allows to extend the theory of generic
elements in groups to simple ones (see Pillay [Pil98]).

Definition 3.1. Let G be a type-definable group in a simple (or stable) continuous
theory, A any set of parameters, and g ∈ G. We say that g is dividing-generic over A, or
that tp(g/A) ∈ SG(A) is dividing-generic, if whenever h ∈ G and g |⌣A

h then hg |⌣ h,A.

For the rest of this section we will just say “generic” instead of “dividing-generic”.

Fact 3.2. Let G be a type-definable group in a simple continuous theory (or in a stable
one, which is a special case). Then:

(i) Generic elements exist over every set.
(ii) An element g is generic over A if and only if g−1 is. It follows that if g is generic

over A and g |⌣A
h then gh |⌣ h,A as well.

(iii) An element g is generic over A if and only if it is generic over ∅ and g |⌣A.
(iv) If g, h ∈ G, g is generic over A and g |⌣A

h then gh and hg are generic over A.

Proof. This is shown in the more general setting of a type-definable group in a thick
simple cat in [Ben03, Section 1.3]. �3.2
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If M is any model, then the group G(M) acts on SG(M). Indeed, if g ∈ G(M)
and h ∈ G (i.e., h ∈ G(M̄)) then tp(gh/M) only depends on g and on tp(h/M), and
we set g tp(h/M) = tp(gh/M). Clearly, if g′ ∈ G(M) as well and p ∈ SG(M) then
g′(gp) = (g′g)p so this is a group action. Note that if p is generic then gp is generic as
well.

Now let N � M be any elementary extension. If h � p↾N then h |⌣M
N , whereby

g, h |⌣M
N and finally gh |⌣M

N , so (gp)↾N = g(p↾N). In other words, G acts on the

class of parallelism classes of types. For a stationary type p (say p ∈ SG(M)) we define
Stab(p) as the stabiliser of the parallelism class of p under the action of G. Since p is
definable, Stab(p) is a type-definable subgroup of G, with parameters in Cb(p). Again,
the action sends parallelism classes of generic types to such. Since there is only a set of
parallelism classes of generic types, Stab(p) has bounded index in G for generic p.

Let H ≤ G be a type-definable subgroup, say over some model M , of bounded index in
G. Then we can write G =

⋃

i<λ giH and choose g ∈ G which is generic over M ∪{gi : i <

λ}. Then g ∈ giH for some i < λ, so g−1
i g ∈ H is generic over M . In other words, there

is some generic type p over acleq(∅) such that H contains a realisation of p↾M , and
therefore all its realisations. It follows that H contains Stab(p↾M) = Stab(p), which is
of bounded index, so H can be written as a (bounded) union of cosets of Stab(p). It
follows that the collection of type-definable subgroups of bounded index over arbitrary
parameters is a set (rather than a proper class), whose intersection is the smallest type-
definable subgroup of bounded index, denoted G0 and called the connected component
of G. As G0 is smallest among type-definable subgroups of bounded index over any set
of parameters, it is automorphism invariant and thus type-definable without parameters.
It is also clearly normal in G. Note however that G0 is not necessarily the intersection of
subgroups of finite index in G (some may therefore wish to use the notation G00 instead,
and we understand them).

Let p be a stationary generic type, say over a set A, and let M ⊇ A contain represen-
tatives of all cosets of G0. On the one hand Stab(p) ≥ G0 as it has bounded index. On
the other hand, all realisations of p↾M must lie in a single coset g0G

0 for some g0 ∈ M ,
whereby all realisations of p must lie in the same coset. We obtain

G0 ≤ Stab(p) ⊆ {gh−1 : g, h � p} ⊆ G0,

so equality holds all the way. As G acts transitively on the cosets of G0, every such
coset contains a generic type. Assume now that p, p′ ∈ SG(M) are both generic in some
coset and let g |⌣M

g′ realise p and p′, respectively. Then g−1g′ ∈ G0 = Stab(p) and

g |⌣M
g−1g′ whereby g′ � p. It follows that in each coset of G0 there is a unique generic

type.
Let q denote the unique generic type in G0 over some model and let p = q↾

∅
. Then q is

a non forking extension of p, and as G0 is automorphism-invariant, p must be stationary.
If g � p then g−1 ∈ G0 is also generic, whereby g−1 � p as well (one may say that
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p−1 = p). We conclude that G0 contains a unique generic type p and G0 = {gh−1 : g, h �
p} = {gh : g, h � p}.

We have been doing everything so far assuming G was type-definable over ∅. Allowing
parameters we get:

Fact 3.3. Let G be a type-definable group with parameters in some set A in a stable
theory. Then G admits a smallest type-definable subgroup of bounded index G0, which
contains a unique (up to parallelism) stationary generic type p of G. Moreover, p can be
taken to be over A and G0 can be recovered as the set {gh : g, h � p}.

It follows that G is connected (i.e., G = G0) if and only if it has a unique generic type.

3.2. Chain conditions.

Definition 3.4. Let {Xn : n < ω} be a descending sequence of sets in a metric space.
We say that the sequence approximately stabilises if for every ε > 0 there is nε < ω such
that Xnε ⊆ B(Xn, ε) for all n.

Lemma 3.5. Assume {Xn : n < ω} is a descending sequence of closed subsets of a
complete metric space (e.g., type-definable subsets of a continuous structure), and let
X =

⋂

nXn. Then {Xn : n < ω} approximately stabilises if and only if for all ε > 0 there
is nε such that Xnε ⊆ B(X, ε).

Proof. Right to left is immediate, so we prove left to right. By assumption for all m
there is nm such that Xnm ⊆ B(Xn, 2

−m) for all n. Let m0 be such that 2−m0 < ε.
We claim that nε = nm0+1 will do. Indeed, let x0 ∈ Xnm0+1

. Given xk ∈ Xnm0+k+1
,

let xk+1 ∈ Xnm0+k+2
be such that d(xk, xk+1) < 2−m0−k−1. Then the sequence {xk}

converges to some point x, satisfying d(x, xk) < 2−m0−k. Notice that for all n we have
xk ∈ Xn for k large enough. Thus x ∈ Xn for all n, whereby x ∈ X. We conclude that
d(x0, X) < 2−m0 < ε, whence Xnm0+1

⊆ B(X, ε) as required. �3.5

Lemma 3.6. Let {Xn : n < ω} be a descending sequence of definable sets. If the chain
approximately stabilises (in any model) then X =

⋂

Xn is a definable. The converse
holds in sufficiently saturated models.

Proof. Assume first the sequence approximately stabilises. By Lemma 3.5 we have for
all ε > 0: Xnε ⊆ B(X, ε), whereby X ⊆ Xnε/2

⊆ B(Xnε/2
, ε/2) ⊆ B(X, ε) for all ε > 0.

Since Xnε/2
is definable and this holds for all ε, X is definable.

Conversely, assume X is definable, and that the equality X =
⋂

Xn holds in a suf-
ficiently saturated model. Then by compactness, for all ε > 0 there is nε such that
{x ∈ Xnε} ∪ {d(x,X) ≥ ε} is contradictory, whereby Xnε ⊆ B(X, ε). �3.6

Definition 3.7. We say that a class C of sets satisfies the metric descending chain
condition (MDCC) if every descending chain in C approximately stabilises.

Theorem 3.8. Let G be a family of uniformly definable groups in a stable theory, meaning
that there is a definable predicate ϕ(x, y) such that for every G ∈ G the predicate d(x,G)
is an instance ϕ(x, aG). Then G satisfies the MDCC.
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It follows that the intersection of a decreasing chain of uniformly definable groups in a
stable theory is definable.

Proof. Assume {Gn : n < ω} ⊆ G is a descending chain, and let d(x,Gn) = ϕ(x, an).
Then the sequence of definable predicates ϕ(x, an) is increasing, and by definition of
stability (no order property) it must converge uniformly.

Now let ε > 0. Then there is some nε such that ϕ(x, an) < ϕ(x, anε) + ε for all n,
which implies that Gnε ⊆ B(Gn, ε) for all n. �3.8

Lemma 3.9. Let G be a type-definable group in an ℵ0-stable structure and assume G
admits an invariant metric. Then the class of type-definable subgroups of G satisfies the
MDCC.

Proof. Assume {Gn : n < ω} ⊆ G is a descending chain of type-definable groups, and let
G =

⋂

Gn, which is type-definable as well. Let ε > 0, and let (α, d) = (RM, dM)ε(G).
First, G admits a logical neighbourhood X > G such that (RM, dM)ε(X) = (α, d).
Second, there exists nε such that Gnε ⊆ X, in which case (RM, dM)ε(Gnε) = (α, d).
We claim that Gnε ⊆ B̄(G, ε). Indeed, if g ∈ Gnε and d(g,G) > ε then d(gG,G) =
d(g,G) (by invariance of the metric). Thus dMε(Gnε) ≥ dMε(G ∪ gG) ≥ 2 dMε(G), a
contradiction. �3.9

In Section 5 we will use the main theorem to do away with the invariance assumption.

4. Definable metrics

4.1. Extensions of partial definable metrics. Metrics and pseudo-metrics are a spe-
cial (and distinguished) kind of predicates.

Definition 4.1. (i) A definable (pseudo-)metric is a definable predicate defining a
(pseudo-metric).

(ii) Let X be a type-definable set. A partial definable (pseudo-)metric on X is a
definable partial predicate on X ×X defining a (pseudo-)metric there.

Again, when specifying the domain we will drop the “partial”. On the other hand,
when wishing to make explicit that a definable metric is not partial, we will say it is
total.

All type-definable metrics on a set X are essentially the same. This has first been
proved in [Ben05], but since the setting is somewhat different and the proof is short we
repeat it.

Lemma 4.2. Let d1 and d2 be two definable metrics on a type-definable set X. Then
they are uniformly equivalent. Moreover, if d1 is a definable total metric and d2 is the
standard metric d on that sort, then replacing d with d1 does not change the notion of a
definable set.



DEFINABILITY OF GROUPS IN ℵ0-STABLE METRIC STRUCTURES 17

Proof. Indeed, Let ε > 0, and consider the partial type {x, y ∈ X} ∪ {d1(x, y) ≥ ε} ∪
{d2(x, y) ≤ 2−n : n < ω}. As d2 is a metric this partial type is inconsistent, and by
compactness there exists n < ω such that for all x, y ∈ X: d2(x, y) ≤ 2−n =⇒ d1(x, y) <
ε. As this works for all ε > 0, and when exchanging the roles of d1 and d2, they are
uniformly equivalent.

For the moreover part, use the characterisation of definable sets via quantification in
Fact 1.7, which does not depend on the metric. �4.2

While we know that every partial definable metric, say on X, extends to a total
definable predicate, it is not clear whether it can extend to a total definable metric. We
will give some partial results in this direction.

The best result is under the assumption that X is definable. We start with a few
lemmas that allow us to reduce the case of a metric to the case of a pseudo-metric. In
fact the reduction step holds more generally for zero sets.

Lemma 4.3. Let X be any set of points, d1 and d2 two pseudo-metrics on X. Then
d1 ∨ d2 is a pseudo-metric on X.

Proof. Let d3 = d1 ∨ d2. Clearly d3(x, x) = 0 and d3(x, y) = d3(y, x). For the triangle
inequality, given x, y, z ∈ X we may assume that d3(x, y) = d1(x, y) in which case
d3(x, y) ≤ d1(x, z) + d1(y, z) ≤ d3(x, z) + d3(y, z). �4.3

Lemma 4.4. Let X be a zero set. Then there exists a definable pseudo-metric d1 with
the following properties:

(i) For all x, y ∈ X: d1(x, y) = 0.
(ii) If x 6= y and x /∈ X then d1(x, y) > 0.

It follows that if d2 is a definable pseudo-metric whose restriction to X is a metric then
d1 ∨ d2 is a definable metric which agrees with d2 on X.

Proof. Let X be the zero set of ϕ(x). Define:

d1(x, y) = sup
z

|ϕ(x) ∧ d(x, z) − ϕ(y) ∧ d(y, z)| .

Clearly, d1 is a definable pseudo-metric and x, y ∈ X =⇒ d1(x, y) = 0. On the other
hand, if x 6= y and x /∈ X then d1(x, y) ≥ ϕ(x) ∧ d(x, y) > 0.

Finally, assume that d2 is a definable pseudo-metric which is a metric on X. By
Lemma 4.3, d1 ∨ d2 is a (definable) pseudo-metric. The hypotheses now imply it is a
metric and agrees with d2 on X. �4.4

Proposition 4.5. Let X be a definable set, d1 a definable (pseudo-)metric on X. Then
d1 extends to a definable (pseudo-)metric.

Proof. Choose ψ1(x, y) ⊒ d1(x, y), and define:

d2(x, y) = sup
z∈X

|ψ1(x, z) − ψ1(y, z)|
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Then d2 is a definable pseudo-metric extending d1. In case d1 is a metric, d2 is a definable
pseudo-metric whose restriction to X is a metric, so by Lemma 4.4 there is a definable
metric d3 extending d1. �4.5

We now move to considering the extension problem for partial definable
(pseudo-)metrics on type-definable sets. We first observe this can be reduced to zero
sets:

Lemma 4.6. Assume X is a type-definable set and d1 a definable (pseudo-)metric on X.
Then there exists a zero set Y ⊇ X such that d1 extends to a definable (pseudo-)metric
d2 on Y .

Proof. In fact we will prove something slightly stronger, namely that if ψ1 ⊒ d1 is any
definable predicate extending d1 then there exists a zero set Y ⊇ X such that ψ1 defines
a (pseudo-)metric on Y .

For this, let ψ2(x, y, z) = ψ1(x, x)∨ (ψ1(x, y)−
. ψ1(x, z)−

. ψ1(y, z)). Then ψ2 is zero on
X3, and by Lemma 1.5 there is a zero set Y ⊇ X such that ψ2 is zero on Y 3.

In case d1 is a metric we have d1(x, y) = 0 =⇒ d(x, y) = 0 on X2. By Lemma 1.6
(and Lemma 1.5) there is a zero set Y ′ ⊇ X such that d1(x, y) = 0 =⇒ d(x, y) = 0 for
x, y ∈ Y ′. Then ψ1 defines a metric on the zero set Y ∩ Y ′ ⊇ X. �4.6

Joining Lemma 4.6 with Lemma 4.4, we reduce the extension problems for partial
metrics to the extension of pseudo-metrics on zero sets. Unfortunately, we do not know
whether it is always true and suspect that in its full generality it may fail. The best
approximation we have is:

Lemma 4.7. Let X be a zero set, d1 a definable pseudo-metric on X. Then there exists
a decreasing sequence of definable pseudo-metrics d2,n which converges uniformly to d1

on X.

Proof. Let X be the zero set of ϕ, and let ψ1(x, y) ⊒ d1(x, y). For n < ω let ϕn(x) =
1 −. 2nϕ(x): thus ϕ(x) = 0 =⇒ ϕn(x) = 1, and ϕ(x) ≥ 2−n =⇒ ϕn(x) = 0. Now let:

d2,n(x, y) = sup
z

|ϕn(z) ∧ ψ1(x, z) − ϕn(z) ∧ ψ1(y, z)|.

Clearly d2,n is a definable pseudo-metric for every n and d2,n ≥ d2,n+1. In addition, if
x, y ∈ X then choosing z = x we see that d2,n(x, y) ≥ d1(x, y).

Assume towards a contradiction that the pseudo-metrics d2,n do not converge uniformly
to d1 on X. Then there is some ε > 0 such that for all n < ω there are an, bn ∈ X and
cn such that |ϕn(cn) ∧ ψ1(an, cn) − ϕn(cn) ∧ ψ1(bn, cn)| ≥ d1(an, bn) + ε. This implies in
particular that ϕ(cn) ≤ 2−n and |ψ1(an, cn)−ψ1(bn, cn)| ≥ d1(an, bn)+ε. By compactness
there are a, b, c ∈ X such that |ψ1(a, c) − ψ1(b, c)| ≥ d1(a, b) + ε, which is impossible as
ψ1 agrees with d1 on X and d1 is a pseudo-metric. �4.7

Question 4.8. Let X be a zero set, d1 a definable pseudo-metric on X. Can d1 always be
extended to a total definable pseudo-metric? Are there additional assumptions on the
theory (e.g., stability or ℵ0-stability) under which this is true?
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As it turns out, Lemma 4.7 is very useful for our purposes. We will look for an
alternative weakening of the metric extension problem: given a type-definable set X
equipped with a definable metric d1, we will look for a total definable metric d2 which,
although does not extend d1, does preserve its invariance properties.

For this purpose we will use a few technical results from [Ben05, Section 2.3]. There we
proved that in a Hausdorff cat in which there are not too many ways for two elements to
be distinct (technically: the distance cofinality is at most countable), there is a definable
metric. For this purpose one first constructs a symmetric definable predicate ϕ(x, y) (a
definable function in the terminology of [Ben05], and denoted there by h(x, y)) satisfying
ϕ(x, y) = 0 ⇐⇒ x = y. Then one needs to replace ϕ with one which also satisfies the
triangle inequality.

In the of an open Hausdorff cat, one can just define d(x, y) = supz |ϕ(x, z) − ϕ(y, z)|,
which is definable metric. In the general case the metric supz |ϕ(x, z) − ϕ(y, z)| needs
not be definable, and a more complicated construction is required to extract a definable
metric from ϕ directly without recourse to quantification. The same tools apply here.

Fact 4.9. Let g : [0, 1]2 → [0, 1] be symmetric, non decreasing, and satisfy for all u, w, t ∈
[0, 1]: g(0, t) = t and if g(u, w) < t then there is u < v ≤ 1 such that g(v, w) < t.

Then there is a function f : D → [0, 1], where D = {k2−n : n < ω, 0 ≤ k ≤ 2n} denotes
the set of all dyadic fractions in [0, 1], such that:

(i) f is strictly increasing.
(ii) f ≤ idD.
(iii) For every t, u ∈ D ∩ (0, 1]: t+ u ≤ 1 =⇒ g(f(t), f(u)) < f(t+ u).

Proof. This is [Ben05, Lemma 2.19], with the sole difference being that we require f(t) ≤ t
for all t ∈ D rather than only for t = 1

2n . The only modification in the proof is in the

construction of f( k
2n ) for odd 3 ≤ k < 2n. There we have f(k−1

2n ) ≤ k−1
2n < k

2n by the

induction hypothesis, and f(k−1
2n ) < min{s′, f(k+1

2n )} as in the original proof, so we can

choose f( k
2n ) such that f(k−1

2n ) < f( k
2n ) < min{s′, f(k+1

2n ), k
2n}. �4.9

The following result was implicit in [Ben05, Section 2.3] (modulo the slight improve-
ment above to the requirement on f):

Proposition 4.10. Let ϕ(x, y) be a symmetric and reflexive definable predicate, by which
we means that ϕ(x, y) = ϕ(y, x) and ϕ(x, x) = 0. Then there is a continuous increasing
function h : [0, 1] → [0, 1], satisfying h(0) = 0 and h(x) ≥ x, such that h ◦ ϕ(x, y) is
a definable pseudo-metric. If in addition x 6= y =⇒ ϕ(x, y) > 0 then h ◦ ϕ(x, y) is a
definable metric.

Proof. Define g : [0, 1]2 → [0, 1] by:

g(t, u) = sup{ϕ(x, y) : ∃z ϕ(x, z) ≤ t ∧ ϕ(y, z) ≤ u}.

As in the Claim following the proof of [Ben05, Lemma 2.19], g satisfies the assumptions
of Fact 4.9. Thus there is a function f : D → [0, 1] such that:



20 ITAÏ BEN YAACOV

(i) f is strictly increasing.
(ii) f ≤ idD.
(iii) For every t, u ∈ D ∩ (0, 1]:

t+ u ≤ 1 =⇒ g(f(t), f(u)) < f(t+ u)

We define h : [0, 1] → [0, 1] to be a weak inverse of f : h(t) = sup{u ∈ D : f(u) < t}.
As f is strictly increasing it follows that h(t) = inf{u ∈ D : f(u) > t}, and that h is
continuous and weakly increasing. In addition, f ≤ idD =⇒ h ≥ id[0,1].

Let ψ(x, y) = h ◦ ϕ(x, y), which is a definable predicate by continuity of h. Clearly
ψ is reflexive and symmetric as well, and it is left to show that it satisfies the triangle
inequality. Indeed, assume not, that is ψ(x, y) > ψ(x, z) + ψ(y, z) + ε for some x, y, z.
As ψ(x, z) + ε/2 > ψ(x, z) = h ◦ ϕ(x, z), there is u ∈ D, u < ψ(x, z) + ε/2, such that
f(u) > ϕ(x, z). Similarly there is w < ψ(y, z) + ε/2 in D such that f(w) > ϕ(y, z). As
u+ w < ψ(x, y) ≤ 1 we have:

ϕ(x, y) ≤ g(ϕ(x, z), ϕ(y, z)) ≤ g(f(u), f(w)) < f(u+ w) < f(ψ(x, y)).

In other words we have ϕ(x, y) < (f ◦ h)(ϕ(x, y)), contradicting the definition of h.
We’ve shown that h ◦ ϕ(x, y) is a pseudo-metric. If ϕ satisfies ϕ(x, y) = 0 =⇒ x = y,

so does h ◦ ϕ (as h ≥ id), which is therefore a metric. �4.10

Putting it all together we get:

Theorem 4.11. Let X be a type-definable set, d1 a partial definable (pseudo-)metric on
X. Then there exist a total definable (pseudo-)metric d2 and a continuous increasing
function h : [0, 1] → [0, 1] such that h(0) = 0, h ≥ id and d2 ⊒ h ◦ d1.

Proof. First, by Lemma 4.6 we may assume X is a zero set, defined by ϕ(x) = 0. Let
ψ1 ⊒ d1, and define:

ψ2(x, y) = (ψ1(x, y) ∧ ψ1(y, x)) −
. ψ1(x, x) −

. ψ1(y, y),

ψ3(x, y) = d(x, y) ∧ (ϕ(x) ∨ ϕ(y)),

ϕ4(x, y) = ψ2 ∨ ψ3.

Then ψ2 ⊒ d1 as well and ψ3↾X2 is zero, whereby ψ4 ⊒ d1. In addition ψ2, ψ3 and ψ4 are
all symmetric and reflexive, and we may apply Proposition 4.10 to find h as such that
d2 = h ◦ ψ4 is a total pseudo-metric.

Assume now that d1 is a metric. Then for x 6= y, if x, y ∈ X then ψ2(x, y) = d1(x, y) 6=
0, and otherwise ψ3(x, y) 6= 0, so either way ψ4(x, y) 6= 0. Thus d2 is a total metric. �4.11

4.2. Existence of invariant metrics. In general type-definable groups need not be
invariant. For definable groups this is easily resolved:

Proposition 4.12. Let 〈G, ·〉 be a definable group. Then G admits a total definable
invariant metric (i.e., a total definable metric on the sort of G which is invariant on G).
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Proof. For simplicity assume G is definable in the home sort. Since G is a definable set,
the predicate d(x,G) is definable, and we may quantify over members of G. Let:

ψ0(u, v, x, y) ⊒ d(uxv, uyv)

ψ1(x, y) = sup
u,v∈G

ψ0(u, v, x, y)

d1(x, y) = ψ1(x, y)↾x,y∈G

This means that for x, y ∈ G we have: d1(x, y) = supu,v∈G d(uxv, uyv). This is easily
verified to define an invariant metric on G, which can be extended to a total definable
metric by Proposition 4.5. �4.12

In the case of a type-definable group we only have partial results. First, as before we
can reduce any problem to the case of zero sets:

Lemma 4.13. Let G be a type-definable group. Then there exists a type-definable su-
pergroup G′ ≥ G whose domain is a zero set. Moreover, if d1 is an invariant definable
metric on G, and ψ1 ⊒ d1, we can choose G′ so that d2 = ψ1↾G′ is an invariant metric
on G′.

Proof. Using Proposition 1.21 we find a zero set X0 ⊇ G to which the law of G and the
inverse mappings extend to definable mappings ·′ : X2

0 → X0 and −1′ : X0 → X0. The
satisfaction of the identity (x ·′ y) ·′ z = x ·′ (y ·′ z) (i.e., d((x ·′ y) ·′ z, x ·′ (y ·′ z)) = 0) in
X0 translates a condition of the form ϕass(x, y, z) = 0. By Lemma 1.5 there is a zero set
X1 such that X0 ⊇ X1 ⊇ G and such that ϕass is zero on X3

1 . We take care of x ·′ e = x
and x ·′ x−1′ = e similarly. We end up with a zero set X0 ⊇ X2 ⊇ G on which all the
identities above hold. Now X2 needs not be closed under product and inverse, but that
is taken care of by a second application of Proposition 1.21. �4.13

Remark 4.14. This argument would work for any kind of functional structure defined by
a set of identities (e.g., rings). Adding Lemma 1.6 we can further extend the argument
to structures whose definition involves an implication, such as integral domains. We have
already seen an example of that in Lemma 4.6.

Alternatively, given a partial invariant definable metric on G we can extend it to a
total definable metric up to some uniform modification which preserves the invariance.

Proposition 4.15. Let G be a type-definable group admitting a partial invariant definable
metric. Then it also admits a total one.

Proof. Just apply Theorem 4.11 to the partial invariant metric. �4.15

Theorem 4.16. Assume G is a connected type-definable group in a stable theory. Then
there exists a total metric which is invariant on G.

Proof. Let p(x) be the unique generic type of G. Again let ψ0(u, v; x, y) ⊒ d(uxv, uyv).
As (p⊗p)(u, v) is a definable stationary type over the same parameters as G, let ψ1(x, y)
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be its ψ0-definition. Thus, if x, y ∈ G and u, v are any independent generic elements over
x, y, then ψ1(x, y) = d(uxv, uyv).

Let d1(x, y) = ψ1(x, y)↾G2 , and we claim it is an invariant metric on G. To verify it
is a metric, let x, y, z ∈ G be any three elements. Then choosing u, v to be independent
generics over x, y, z we can verify the metric axioms for this triplet. We also get that uz, v
are two independent generics over x, y, whereby d1(zx, zy) = d(uzxv, uzyv) = d1(x, y).
Right-invariance is verified similarly.

Apply Proposition 4.15 to conclude. �4.16

5. The main theorem (full version)

Theorem 5.1. A type-definable group in an ℵ0-stable theory is definable.

Proof. By Proposition 2.2 it will suffice to show that the connected component of G is
definable, so we may assume that G is connected. Then by Theorem 4.16 there exists
a total definable metric d1 which is invariant on G. By Lemma 4.2 we may replace the
ambient metric with d1.

Now apply Theorem 2.11. �5.1

Notice that in the proof we needed to pass to the connected component since we do
know yet (although it seems plausible) whether a general type-definable group in a stable
theory admits an invariant metric. Moreover, the passage from an partial invariant defin-
able metric on the connected component to a total one required allowing a modification
to that metric. A posteriori we have:

Corollary 5.2. Let G be a type-definable group in an ℵ0-stable theory. Then:

(i) G admits an invariant metric.
(ii) Every partial metric on G extends to a total one.

Proof. By the main theorem, G is definable, so just apply Proposition 4.12 and Proposi-
tion 4.5. �5.2

We can now remove the invariance hypothesis from Lemma 3.9:

Theorem 5.3. Let G be a type-definable group in an ℵ0-stable structure. Then the class
of type-definable subgroups of G satisfies the MDCC.

Proof. Notice that if we replace the ambient metric with a uniformly equivalent one we
do not affect the MDCC. Thus, by Corollary 5.2 we may assume that the metric on the
group is invariant and evoke Lemma 3.9. �5.3

Appendix A. Some more continuous stability theory

The author feels somewhat unsatisfied with the hasty treatment of generic types given
in Section 3, especially as it relies on results proved in a completely different (even though,
strictly speaking, more general) context, namely that of groups definable in thick simple
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cats. A proper treatment which is naturally placed in the context of stable theories in
continuous logic seems in place. For that we will need to prove some results regarding
local stability which are missing from [BU].

A.1. Definability and forking of local types. We will consider throughout a formula
ϕ(x̄, ȳ) whose variables are split in two groups. Most of the time we will assume ϕ is
stable (i.e., does not have the order property; alternatively, use Fact A.1 below as the
definition).

Let us call a ϕ-predicate scheme (or simply a ϕ-scheme) a formal expression ψ(x̄, ȳ<ω)
which is a forced limit of continuous combinations of ϕ(x̄, ȳi) (possibly restricting to
{¬,−. , 1

2
}), or equivalently, a single infinitary continuous combination θ

(

ϕ(x̄, ȳi) : i < ω
)

.
If z is a variable in the (imaginary) sort of canonical parameters for instances of ψ(x̄, ȳ<ω)
we have a bijection between instances of ψ(x̄, ȳ<ω) and instances of Pψ(x̄, z), and for all
(or most) intents and purposes they are quite interchangeable. By a convenient abuse of
notation we may write ψ(x̄, z) instead of Pψ(x̄, z), allowing us to pretend that ψ is a finite
formula. Being a ϕ-scheme is transitive: if ψ(x̄, z) is a ϕ-scheme then every ψ-scheme is
a ϕ-scheme.

An instance ψ(x̄, b̄<ω) of a ϕ-scheme is what we called in [BU] a ϕ-predicate. It may
also be written as ψ(x̄, c) where c is its canonical parameter. We say that it is definable
over a set A if it is invariant over A, i.e., if c ∈ dcleq(A). The ϕ-type of a tuple ā over a
set A is given by the values of all ϕ-predicates which are definable over A; in case A is a
model, it suffices to consider only instances of ϕ with parameters in M .

Let us introduce some convenient notation. If ϕ(x̄, ȳ) is any formula with two groups
of variables, ϕ̃(ȳ, x̄) denotes the same formula with the groups of variables interchanged.
More generally, let us define

ϕ̃n(ȳ, x̄<2n−1) = medn
(

ϕ(x̄i, ȳ) : i < 2n− 1
)

,

where medn : [0, 1]2n−1 → [0, 1] is the median value combination:

medn(x<2n−1) =
∧

w∈[2n−1]n

∨

i∈w

xi =
∨

w∈[2n−1]n

∧

i∈w

xi.

Thus in particular ϕ̃1 = ϕ̃, and each ϕ̃n is a ϕ̃-scheme.

Fact A.1. Let ϕ(x̄, ȳ) be a stable formula. Then for every ε > 0 there is N(ϕ, ε) < ω
such that if M is any model and p(x̄) ∈ Sϕ(M) any complete ϕ-type, then p is defined
up to ε by a formula of the form dεpϕ(ȳ) = ϕ̃N(ϕ,ε)(ȳ, c̄<2N(ϕ,ε)−1) where c̄<2N(ϕ,ε)−1 ∈ M ,

by which we mean that for all b̄ ∈ M : |ϕ(x̄, b̄)p − dεpϕ(b̄)| < ε. Thus p is defined by

dpϕ(ȳ) = F limn→∞ d2−n

p ϕ(ȳ) which is a ϕ̃-predicate (so for all b̄ ∈M : ϕ(x̄, b̄)p = dpϕ(b̄)).
Moreover, let A ⊆M and assume that M is |A|+-saturated, and let q ∈ Sn(M) extend

p. Then we can take each c̄i to realise q↾Ac̄<i
.

Proof. The first assertion is [BU, Lemma 7.4]. The moreover part, while not explicitly
stated there, is immediate from the proof. �A.1
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Let us also recall:

Fact A.2. [BU, Lemma 6.8] Let ϕ(x̄, ȳ) be any formula, A a set, M ⊇ A an (|A| +
ℵ0)

+-saturated and strongly homogeneous model. Then Aut(M/A) acts transitively on
Sϕ(acleq(A)).

We recall that p ∈ Sϕ(M) does not fork over a subset A ⊆ M if its definition is over
acleq(A). We proved in [BU, Proposition 7.15] that every ϕ-type over a set A admits a
non forking extension to every model (and therefore every set) containing A. The exact
same proof can be used to show:

Fact A.3. Let ϕ(x̄, ȳ) be a stable formula, A a set, M ⊇ A an (|A|+ℵ0)
+-saturated and

strongly homogeneous model, and assume q(x̄) a consistent partial type over M which is
invariant under Aut(M/A). Then there exists p ∈ Sϕ(M) compatible with q which does
not fork over A.

Proof. Let X = {p ∈ Sϕ(M) : p∪q is consistent}. Then X is non empty and A-invariant.
By [BU, Lemma 7.14], there is Y ⊆ X which is A-good, i.e., which is A-invariant and
metrically compact. By [BU, Lemma 7.13], any p ∈ Y would do. �A.3

Similarly, we will slightly improve [BU, Proposition 7.17]:

Fact A.4. Let ϕ(x̄, ȳ) be a stable formula, A a set, M ⊇ A a model. If p ∈ Sϕ(M) is
definable over A then p↾A is stationary (i.e., p is its unique non forking extension to M).

Proof. In case A = acleq(A) this is just [BU, Proposition 7.17]. In the general case we
may assume that M is strongly (|A| + ℵ0)

+-homogeneous. Let p′ ∈ Sϕ(M) be another
non forking extension of p↾A, and let q = p↾acleq(A), q

′ = p′↾acleq(A). By Fact A.2 there is
an automorphism f ∈ Aut(M/A) sending q to q′. As p is definable over A it is fixed by
f , so q′ = q. Thus p and p′ are both non forking extensions of q, and we conclude that
p = p′ using the first case. �A.4

Corollary A.5. Let ϕ(x̄, ȳ) be a stable formula, A a set, q(x̄) ∈ Sn(A) a complete type
over A, and let p0 = q↾ϕ ∈ Sϕ(A). Then q is compatible with every non forking extension
of p0.

Proof. Let p ∈ Sϕ(M̄) be a non forking extension of p0. By Fact A.3 there exists
p′ ∈ Sϕ(M̄) non forking over A such that p′ ∪ q is consistent. By Fact A.2 there is
an automorphism f ∈ Aut(M̄/A) sending p′↾acleq(A) to p↾acleq(A), and by the uniqueness
of the non forking extension f sends p′ to p. It follows that p∪q is consistent as well. �A.5

Proposition A.6. Let ϕ(x̄, ȳ) be a stable formula, M a model, A ⊆M . For each b̄ ∈M
let ψb̄(x̄) be the definition of tpϕ̃(b̄/ acleq(A)) (i.e., of its unique non forking extension to
M). Then:

(i) Each ψb̄(x̄) is a ϕ-predicate over acleq(A).
(ii) For every p ∈ Sϕ(M) which does not fork over A: ϕ(x̄, b̄)p = ψb̄(x̄)

p.



DEFINABILITY OF GROUPS IN ℵ0-STABLE METRIC STRUCTURES 25

(iii) Let r(x̄) =
{

|ϕ(x̄, b̄) − ψb̄(x̄)| = 0: b̄ ∈ M
}

. Then the partial type r(x̄) defines
the set of ϕ-types which do not fork over A:

ā � r ⇐⇒ tpϕ(ā/M) does not fork over A.

(iv) For every B ⊇ A, the set {p ∈ Sϕ(B) : p does not fork over A} is closed.

Proof. The first item is by Fact A.1 and the definition of non forking.
For the second, fix b̄ ∈ M , let q0 = tpϕ̃(b̄/ acleq(A)) and let q = q0↾

M , so ψb̄ defines q.
Assume p ∈ Sϕ(M) does not divide over M , so dpϕ(ȳ) is a ϕ̃-predicate over acleq(A) as
well. By [BU, Proposition 7.14]: dpϕ(ȳ)q = dqϕ̃(x̄)p = ψb̄(x̄)

p. We obtain:

ϕ(x̄, b̄)p = dpϕ(b̄) = dpϕ(ȳ)q0 = dpϕ(ȳ)q = ψb̄(x̄)
p.

We know that ψb̄(x̄) and ϕ(x̄, b̄) are ϕ-predicates over M (indeed, the former is over
acleq(A)), so so is |ϕ(x̄, b̄) − ψb̄(x̄)|. Thus the satisfaction of r(x̄) by ā depends solely on
p = tpϕ(ā/M). If p does not fork over A (i.e., over acleq(A)) then p ⊢ r. Conversely, if
p ⊢ r then it coincides with the unique non forking extension of p↾acleq(A).

Finally, we may assume that B ⊆ M . The set [r] ⊆ Sϕ(M) is closed, and so is its
projection to Sϕ(B). This projection is precisely the set of types which do not fork over
A. �A.6

Notice that the proof of Proposition A.6 contains an implicit proof of the uniqueness
of the non forking extension of a type over an algebraically closed set.

Definition A.7. Let ϕ(x̄, ȳ) be stable. We say that a condition of the form ϕ(x̄, b̄) ≤ r
does not fork over a set A if there is a complete ϕ-type p(x̄) ∈ Sϕ(Ab̄) such that ϕ(x̄, b̄)p ≤
r and p does not fork over A.

Thus ϕ(x̄, b̄) ≤ r does not fork over A if and only if for all (some) model M ⊇ Ab̄ there
is p ∈ Sϕ(M) which is definable over acleq(A). Clearly, ϕ(x̄, b̄) ≤ r does not fork over A
if and only if it does not fork over acleq(A).

Lemma A.8. Let ϕ(x̄, ȳ) be stable, ψ(x̄, c) a ϕ-predicate (whose canonical parameter is
c). Then a condition ψ(x̄, c) ≤ r does not for over a set A if and only if there exists a
model M ⊇ A, c and a ϕ-type p ∈ Sϕ(M) non forking over A such that ψ(x̄, c)p ≤ r.

Proof. First of all notice that if ϕ is stable then every ϕ-scheme is, i.e., ψ(x̄, z) is, so
the condition makes sense. Also, we may assume that A = acleq(A). Fix a strongly
|A|+-homogeneous model M ⊇ A, c.

Assume first that p ∈ Sψ(M) witnesses that ψ(x̄, c) ≤ r does not fork over A. Then p
is A-invariant, and by Fact A.3 there is p̂ ∈ Sϕ(M) compatible with p and non forking
over A. Then ψ(x̄, c)p̂ = ψ(x̄, c)p ≤ r as required.

Conversely, assume p ∈ Sϕ(M) does not fork over A and ψ(x̄, c)p ≤ r. As ψ(x̄, z)
is a ϕ-scheme, the ϕ-type p determines a ψ-type p↾ψ ∈ Sψ(M). Since p is A-invariant
so is p↾ψ. This means that the definition of p↾ψ is over A, so it does not fork over A
either. �A.8
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Definition A.9. Let ϕ(x̄, ȳ) be a stable formula, A, b̄ ⊆ M . We define non forking
degree of ϕ(x̄, b̄) over A to be

nf(ϕ(x̄, b̄)/A) = inf{r : ϕ(x̄/b̄) ≤ r does not fork over A}.

As the set of non forking types is closed we see that ϕ(x̄, b̄) ≤ nf(ϕ(x̄, b̄)/A) does not
fork over A. In addition, by the existence of non-forking types we have nf(ϕ(x̄, b̄)/A) +
nf(¬ϕ(x̄, b̄)/A) ≤ 1.

Proposition A.10. Let A ⊆ B be two sets, ϕ(x̄, ȳ) a stable formula, and p ∈ Sϕ(B).
Then the following are equivalent:

(i) The ϕ-type p does not fork over A.
(ii) For every ϕ-predicate ψ(x̄, c) over B: ψ(x̄, c)p ≥ nf(ψ(x̄, c)/A).
(iii) For every ϕ-predicate ψ(x̄, c) over B, if ψ(x̄, c)p = 0 then for all ε > 0 the

condition ψ(x̄, c) ≤ ε does not fork over A.

Proof. (i) =⇒ (ii). By Lemma A.8: ψ(x̄, c) ≤ ψ(x̄, c)p does not fork over A.
(ii) =⇒ (iii). By definition of the non forking degree.
(iii) =⇒ (i). Let X ⊆ Sϕ(B) be the set of types which do not fork over A, which is

closed by Proposition A.6. By assumption and Lemma A.8 every neighbourhood of p
intersects Y , whereby p ∈ Y . �A.10

A.2. Approximately realised types, indiscernible sequences and dividing.

Definition A.11. Let M be a model, A ⊇M a set containing M .

(i) Let p be a partial type over A. We say that p is approximately realised in M if
every logical neighbourhood of p is realised in M .

(ii) Let p be a complete type over A. We say that p is non splitting over M if for
every two tuples b̄, c̄ ∈ A, if b̄ ≡M c̄ then ϕ(x̄, b̄)p = ϕ(x̄, c̄)p for every formula ϕ
with the right number of variables.

Remark A.12. (i) The classical logic analogue of an approximately realised type is a
finitely realised one, but this terminology would be misleading in the continuous
setting.

(ii) A complete approximately M-realised type is sometimes called a co-heir of its
restriction to M .

(iii) A complete type over a model M is always approximately realised there.

Fact A.13. Let M ⊆ N be two models. Then every approximately M-realised partial
type p over N extends to a complete one.

Proof. Let A = {tp(b̄/N) : b̄ ∈ Mn} ⊆ Sn(N), and let [p] ⊆ Sn(N) be the closed set
defined by p. Then p is approximately realised in M if and only if [p] ∩ Ā 6= ∅, in which
case any q in the intersection would do. �A.13

Fact A.14. Assume A ⊇ M and p ∈ Sn(A) is approximately realised in M . Then it is
non splitting over M .
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Proof. Say b̄, c̄ ∈ A, b̄ ≡M c̄, and let ϕ(x̄, ȳ) and ε > 0 be given. By assumption there is
ā ∈M such that

|ϕ(ā, b̄) − ϕ(x̄, b̄)p| < ε/2, |ϕ(ā, c̄) − ϕ(x̄, c̄)p| < ε/2.

As we assumed that b̄ ≡M c̄ we get ϕ(ā, b̄) = ϕ(ā, c̄) and thus |ϕ(x̄, b̄)p − ϕ(x̄, c̄)p| < ε,
for every ε > 0. We conclude that ϕ(x̄, b̄)p = ϕ(x̄, c̄)p, as required. �A.14

Fact A.15. Let M ⊆ N be two models. Assume that N is |M |+-saturated, and that
p ∈ Sn(N) is non splitting over M . Let (āi : i < ω) ⊆ N be a sequence constructed
inductively, choosing each āi to realise p↾Mā<i

.
Then the sequence (āi : i < ω) is M-indiscernible, and its type over M depends only

on p.

Proof. Standard. �A.15

Lemma A.16. Let M ⊆ N be two models, p(x̄) ∈ Sn(N) approximately realised in M ,
and assume ϕ(x̄, ȳ) is stable. Then pϕ = p↾ϕ is non forking over M .

Proof. If N ′ ⊇ N is a larger model and p′ ∈ Sn(N
′) extends p, it will suffice to show

that p′↾ϕ does not fork over M . Moreover, we may always choose such p′ which is
approximately realised in M . We may therefore assume that N is |M |+-saturated and
strongly homogeneous.

Now let ψ(ȳ, c) be the ϕ-definition of p, and let f ∈ Aut(N/M). As p does not split
over M we have f(p) = p, whereby ψ(ȳ, c) = ψ(ȳ, f(c)). This shows that ψ(x̄, c̄) is over
M , as required. �A.16

Proposition A.17. Let ϕ(x̄, ȳ) be a stable formula, M ⊆ N models, p(x̄) ∈ Sϕ(N) a
complete ϕ-type, and q(x̄) ∈ Sn(M) a complete type over M such that p↾M = q↾ϕ ∈
Sϕ(M). Then the following are equivalent:

(i) p ∪ q is approximately realised in M .
(ii) p is approximately realised in M .
(iii) p does not fork over M .

Proof. (i) =⇒ (ii). Immediate.
(ii) =⇒ (iii). Find p′(x̄) ∈ Sn(N) extending p which is approximately realised in M

and use Lemma A.16.
(iii) =⇒ (i). Find q′(x̄) ∈ Sn(N) extending q which is approximately realised in M .

Then q′↾ϕ is non forking over M by Lemma A.16, so it must be the unique non forking
extension of p↾M = q↾ϕ. It follows that p = q′↾ϕ, so q′ � q ∪ p. As q′ is approximately
realised in M , a fortiori so is q ∪ p. �A.17

Lemma A.18. Let M be a model, ϕ(x̄, ȳ) a stable formula, p ∈ Sϕ(M) a complete ϕ-type.
Let q ∈ Sn(M) extend p to a complete type, and let q ⊆ q1 ∈ Sn(N) be approximately

realised in M , i.e., a co-heir of q, where N ⊇M is an |M |+-saturated extension.
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Construct (c̄i : i < ω) ⊆ N letting each c̄i realise q1↾M,c̄<i
. Then the sequence

(

ϕ̃n(ȳ, c̄<2n−1) : n < ω
)

converges uniformly to the definition of p at a rate which only
depends on ϕ.

Proof. Let ψ(ȳ) denote the definition of p. Then it also defines p1 = q1↾ϕ ∈ Sϕ(N), as
the latter is approximately realised in M and is thus a non forking extension of p.

Fix ε > 0, and let N0 = N(ϕ, ε). By Fact A.1 there is a sequence (c̄′i : i < 2N0−1) ⊆ N
such that |ψ(ȳ) − ϕ̃N0(ȳ, c̄′<2N0−1)| ≤ ε, and such that furthermore c̄′i � q1↾M,c̄′<i

. By

Fact A.15 we have c̄<2N0−1 ≡M c̄′<2N0−1, and since in addition ψ is over M : |ψ(ȳ) −
ϕ̃N0(ȳ, c̄<2N0−1)| ≤ ε.

Moreover, for any n ≥ N0 and any b̄ (say inN) the median value of
(

ϕ(c̄i, b̄) : i < 2n−1
)

equals the median value of
(

ϕ(c̄ij , b̄) : j < 2N0 − 1
)

for some j0 < . . . < j2N0−2 < 2n− 1,

whereby ϕ̃n(b̄, c̄<2n−1) = ϕ̃N0(b̄, c̄i<2N0−1
). As before c̄i<2N0−1

≡M c′2N0−1 and |ψ(ȳ) −

ϕ̃N0(ȳ, c̄i<2N0−1
)| ≤ ε, whereby |ψ(b̄)− ϕ̃n(b̄, c̄<2n−1)| ≤ ε. Thus |ψ(ȳ)− ϕ̃n(ȳ, c̄<2n−1)| ≤ ε

for all n ≥ N0, where N0 depends only on ε and ϕ. �A.18

We now seek an analogue of [Pil96, Lemma 1.2.16]. The notion of a positive Boolean
combination will be replaced here with that of a faithful combination:

Definition A.19. A faithful continuous connective in α variables is a continuous function
θ : [0, 1]α → [0, 1] satisfying inf ā ≤ θ(ā) ≤ sup ā.

If θ : [0, 1]α → [0, 1] is a faithful continuous connective and (ϕi : i < α) a sequence
of definable predicates, then the definable predicate θ(ϕi : i < α) is called a faithful
combination of (ϕi : i < α).

Since a continuous function to [0, 1] can only take into account countably many argu-
ments, we may always assume that α ≤ ω. Notice that any connective constructed with
∨ and ∧ is faithful (so in particular the median value function medn : [0, 1]2n−1 → [0, 1]
is), as is the forced limit function F lim: [0, 1]ω → [0, 1]. In fact these connectives are
also positive (i.e., increasing in every argument) but this will not be needed here.

Lemma A.20. Let ϕ(x̄, ȳ) be a stable formula, r ∈ [0, 1] and ϕ(x̄, b̄) an instance of ϕ.
Let A be some set of parameters (so A, b̄ ⊆ M̄). Then the following are equivalent:

(i) The condition ϕ(x̄, b̄) ≤ r does not fork over A.
(ii) There is an A-definable predicate ψ(x̄) which is a faithful combination of A-

conjugates of ϕ(x̄, b̄) such that ψ(x̄) ≤ r is consistent.
(iii) Every set of acleq(A)-conjugates of the condition ϕ(x̄, b̄) ≤ r is consistent.
(iv) If (b̄i : i < ω) is an A-indiscernible sequence, b̄0 = b̄, then {ϕ(x̄, b̄i) ≤ r : i < ω}

is consistent (i.e., the condition ϕ(x̄, b̄) ≤ r does not divide over A).

Proof. Fix M ⊇ A, b̄ which is |A|+-saturated. Let q0 = tp(b̄/ acleq(A)). By Corollary A.5
there is q ∈ Sm(M) extending q0 such that q↾ϕ does not fork over A, and notice that this
determines q↾ϕ uniquely. We let χ(x̄, c) = dqϕ̃(x̄) be its ϕ̃-definition: it is a ϕ-predicate
and c ∈ acleq(A).
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(i) =⇒ (ii). Let p ∈ Sϕ(M) witness that ϕ(x̄, b̄) ≤ r does not fork over A. By Propo-
sition A.6: χ(x̄, c)p = ϕ(x̄, b̄)p ≤ r.

Let C = {c′ : c′ ≡A c} be the set of A-conjugates of c. Since c is algebraic over A, C is
(metrically) compact. By Lemma 1.11 ψ(x̄) = infz∈C χ(x̄, z) is a continuous combination
of instances χ(x̄, c′) with c′ ∈ C, i.e., of A-conjugates of χ(x̄, c), and it is clearly a faithful
combination. It follows that ψ(x̄) is a faithful combination of A-conjugates of ϕ(x̄, b̄). It
is clearly definable over A. Finally, ψ(x̄)p ≤ χ(x̄, c)p ≤ r.

(ii) =⇒ (iii). Let ψ(x̄) = θ(ϕ(x̄, b̄i) : i < ω) be as in the assumption (so b̄i ≡A b̄ and θ
is a faithful continuous connective). We need to show that if b̄′j ≡acleq(A) b̄ for j < λ then

{ϕ(x̄, b̄′j) ≤ r : j < λ} is consistent.

By assumption there is p0 ∈ Sϕ(A) such that ψ(x̄)p0 ≤ r. Let p ∈ Sϕ(M̄) be a non
forking extension of p0. As θ is faithful we have inf{ϕ(x̄, b̄i)

p : i < ω} ≤ r. Thus for any
ε > 0 there is i < ω such that ϕ(x̄, b̄i)

p < r+ε. Let f ∈ Aut(M/A) be such that f(b̄i) = b̄,
and let p′ = f(p). Then p′ is also a non forking extension of p0, and ϕ(x̄, b̄)p

′

< r + ε.
Since p′ is definable over acleq(A) we have ϕ(x̄, b̄′j)

p′ = ϕ(x̄, b̄)p
′

< r + ε for all j < λ,

showing that the set of conditions {ϕ(x̄, b̄′j) ≤ r + ε : j < λ} is consistent for all ε > 0.
We conclude using compactness.

(iii) =⇒ (iv). If (b̄i : i < ω) is an A-indiscernible sequence and b̄0 = b̄ then each b̄i is
an acleq(A)-conjugate of b̄.

(iv) =⇒ (i). Use Lemma A.18 to construct an M-indiscernible sequence (b̄i : i < ω)
such that each b̄i realises q and dqϕ̃(x̄) is a faithful combination of {ϕ(x̄, b̄i) : i < ω}. By
assumption there exists ā such that ϕ(ā, b̄i) ≤ r for all i < ω, whereby dqϕ̃(x̄) ≤ r.

Let p0 = tpϕ(ā/ acleq(A)) and let p ∈ Sϕ(M) be a non forking extension. Then p

ϕ(x̄, b̄)p = dqϕ̃(x̄)p ≤ r. �A.20

Let us conclude this discussion on a somewhat different tone, showing that in contin-
uous ℵ0-stable theories independence is (as expected) characterised via Morley ranks.

Lemma A.21. Assume T is ℵ0-stable, A ⊆ B, q ∈ Sn(B), p = q↾A ∈ Sn(A). Then the
following are equivalent:

(i) The type q is a non forking extension of p.
(ii) For all ε > 0: RMε(p) = RMε(q).
(iii) For all ε > ε′ > 0: RMε(p) ≤ RMε′(q).
(iv) For arbitrarily small ε > 0: RMε(p) = RMε(q).

Proof. There is no harm in assuming that B = M̄ .

Let ε > 0. For an ordinal α recall that Sn(M̄)
(α)
ε denotes the αth ε-Cantor-Bendixson

derivative of Sn(M̄) (i.e., (ε, f)-Cantor-Bendixson derivative in the terminology of [Ben].

Let αε = RMε(p), i.e., the maximal α such that Sn(M̄)
(α)
ε ∩ [p] 6= ∅. So let Xε =

Sn(M̄)
(αε)
ε ∩ [p], the set of extensions of p of maximal RMε rank. It is compact, and since

αε is maximal it admits a cover by relatively open ε-finite subsets of Sn(M̄)
(αε)
ε . This

cover admits a finite sub-cover so Xε is ε-finite itself.
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(i) =⇒ (ii). Observe that each Xε is invariant under the action of automorphisms
of M̄ which fix A, and thus contains a non forking extension of p. As all non forking
extensions of p are conjugate over A they all belong to Xε, i.e., they all satisfy RMε(q) =
αε = RMε(p).

(ii) =⇒ (iii). As ε > ε′ =⇒ RMε(p) ≤ RMε′(p) = RMε′(q).
(iii) =⇒ (iv). By Lemma 2.7 there are arbitrarily small pairs ε > ε′ > 0 such that

RMε(q) = RMε′(q), whereby RMε(p) ≤ RMε(q). As the inverse inequality is immediate
we have equality for arbitrarily small ε > 0.

(iv) =⇒ (i). Let E = {ε > 0: RMε(p) = RMε(q)}, so inf E = 0. Let X =
⋂

ε∈E Xε ⊆
[p] ⊆ Sn(M̄). On the one hand X is compact and therefore metrically complete (see
[Ben]). On the other hand it is ε-finite for every ε, i.e., totally bounded. Thus X
is metrically compact. It follows that for every ϕ(x̄, ȳ), the image of X in Sϕ(M̄) is
metrically compact (since ϕ is uniformly continuous), so each q ∈ X is definable over
acleq(A). Thus every q ∈ X is a non forking extension of p. �A.21

Notice in passing that we showed that in a continuous ℵ0-stable theory every type
has “compact multiplicity”, in analogy with the finite multiplicity of types in a classical
ℵ0-stable theory.

A.3. Canonical bases. Recall that the canonical base of a stationary type p ∈ Sn(A)
in a stable theory is Cb(p) = {Cb(p↾ϕ) : ϕ(x̄, . . .) ∈ L}, namely the set of all canonical
parameters of ϕ-definitions of p.

Proposition A.22. Assume T is stable, and let p(x̄) ∈ Sn(A) be stationary. Then:

(i) Cb(p) ⊆ dcl(A).
(ii) p does not fork over Cb(p).
(iii) p↾Cb(p) is stationary.
(iv) Cb(p) is minimal for the three previous properties, meaning that if B ⊆ dcl(A)

and p↾B is a stationary non forking restriction then Cb(p) ⊆ dcl(B).

Proof. The first two items are immediate, while the third is by Fact A.4. Under the
assumptions of the fourth we have Cb(p) = Cb(p↾B) ⊆ dcl(B). �A.22

The four properties listed in Proposition A.22 determine the canonical base up to
inter-definability. Indeed, if B has all four then Cb(p) ⊆ dcl(B) but also B ⊆ dcl(Cb(p))
whence dcl(B) = dcl(Cb(p)). In this case we say that B is a canonical base for p.

Proposition A.23. Assume T is stable, and let p(x̄) ∈ Sn(A) be stationary. Let q ∈
Sn(M̄) be the unique non forking extension of p to the monster model. Then a (small) set
B ⊆ M̄ is a canonical base for p if and only if, for every f ∈ Aut(M̄): f↾B = idB ⇐⇒
f(q) = q.

Proof. Let C = Cb(p) = Cb(q). On the one hand q determines each member of C, while
on the other q is the unique non forking extension of q↾C . Thus an automorphism fixes q
if and only if it fixes each member of C. Finally, a small set B is another canonical base
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for p if and only if dcl(B) = dcl(C) which is further equivalent to B and C being fixed
by the same automorphisms. �A.23

We propose an alternative characterisation of canonical bases using Morley sequences.
Recall that a Morley sequence in p is a sequence (ā : i < ω) of realisations of p which
is independent over A, i.e., such that āi |⌣A

ā<i for all i < ω. It follows by standard

independence calculus that ā∈I |⌣A
ā∈J for every two disjoint index sets I, J ⊆ ω. Since

p is stationary it follows that this is an A-indiscernible sequence, and moreover, an A-
indiscernible set.

Theorem A.24. Assume T is stable, and let p(x̄) ∈ Sn(A) be stationary. Let (āi : i < ω)
be a Morley sequence in p. Then:

(i) Cb(p) ⊆ dcl(A) ∩ dcl(ā<ω).
(ii) p does not fork over Cb(p).
(iii) p↾Cb(p) is stationary.

Conversely, if B ⊆ dcl(A) ∩ dcl(ā<ω) and p↾B is a stationary non forking restriction of
p then B is also a canonical base for p.

Proof. For the main assertion we only need to show that Cb(p) ⊆ dcl(ā<ω). Since p is
stationary, all Morley sequences in p have the same type over A, so it will be enough
show that there exists a Morley sequence (ā′i : i < ω) in p such that Cb(p) ⊆ dcl(ā′<ω).

Choose models N ⊇ M ⊇ A where N is |M |+-saturated. Let p2 = p↾N and p2 =
p1↾M = p↾N be the unique non forking extensions to N and M , respectively. Then p1 is
approximately realised in M . Construct a sequence (ā′i : i < ω) such that ā′i � p1↾N,ā′<i

.

Then (ā′i : i < ω) is a Morley sequence in p2 by construction, and by transitivity of
independence it is a Morley sequence in p. On the other hand, by Lemma A.18 we have
Cb(p) = Cb(p2) ⊆ dcl(ā′<ω).

For the converse, let B be as assumed there. Then we already know that Cb(p) ⊆
dcl(B), and we are left with showing the converse inclusion.

For any two Morley sequences in p there is an automorphism sending one to the other
while fixing A, and thus B, pointwise. Since B is in the definable closure of each sequence,
it follows that every automorphism sending one to the other (fixing A or not) fixes B.
In particular, if we have two independent such sequences (i.e., independent as sets over
A) then every automorphism sending one to the other fixes B. However, such a pair
of independent Morley sequences in p is also a pair of Morley sequences in q = p↾Cb(p),
which are independent as such, i.e., over Cb(p). Since all pairs of independent Morley
sequence in q have the same type, any automorphism sending one Morley sequence in q to
another, independent over Cb(p) from the first, must fix B, as long as at least one of the
two is in fact a Morley sequence in p. Now let b̄<ω and c̄<ω be any two Morley sequences

in q and let ā<ω be a Morley sequence in p↾A,b̄<ω,c̄<ω . Then ā<ω is a Morley sequence
in p and ā<ω |⌣Cb(p)

A, b̄<ω, c̄<ω. Since in addition there does exist an automorphism

sending b̄<ω 7→ ā<ω, we conclude by composition that every automorphism sending b̄<ω
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to c̄<ω must fix B. In other words, every automorphism sending one Morley sequence in
q to another must fix B and in particular every automorphism fixing Cb(p) must fix B,
whence B ⊆ dcl(Cb(p)). �A.24

Corollary A.25. With the assumptions of Theorem A.24:

(i) ā0 |⌣A
{āi : 0 < i < ω}.

(ii) ā0 |⌣{āi : 0<i<ω}
A.

Proof. The first is immediate and implies ā0 |⌣Cb(p)
A, {āi : 0 < i < ω}. By Theorem A.24

we have Cb(p) ⊆ dcl({āi : 0 < i < ω}) and the second follows. �A.25

A.4. Stable type-definable groups and their actions. Let 〈G, S〉 be a homogeneous
space, type-definable in models of a stable theory T . This is to say that G is a type-
definable group and S a type-definable set, equipped with a type-definable (and therefore
definable) transitive group action G× S → S. For convenience let us assume that both
are defined without parameters. We will identify G and S with their sets of realisations
in a monster model M̄ . We will be particularly interested in the case where S = G where
G acts on itself either on the left (g, h) 7→ gh or on the right (g, h) 7→ hg−1.

Definition A.26. (i) A subset X ⊆ S is generic if finitely many G-translates of X
cover S.

(ii) A partial type p(x) is generic as a partial type in S if every logical neighbourhood
of p defines in S a generic set. A condition ϕ(x, b̄) ≤ r is generic in S if it is as
a partial type.

(iii) A subset X ⊆ G is left-generic if it is generic under the action of G on itself
on the left. We define (partial) types and conditions in the sort of G to be
left-generic accordingly. Similarly for right-generic.

Observe that a generic partial type (or condition) does not necessarily define a generic
subset of S: we only know that its logical neighbourhoods do.

Lemma A.27. Let p(x) be a partial type with parameters in A. Then the following are
equivalent:

(i) The partial type p is generic in S.
(ii) Every zero set over A which is a logical neighbourhood of p defines in S a generic

set.
(iii) Every zero set over A containing p is generic (as a partial type) in S.

Proof. By Lemma 1.3 every logical neighbourhood of p is a logical neighbourhood of a
zero set over A containing p.which is itself a neighbourhood of p. This shows that the
last item implies the first. The rest is immediate. �A.27

Let us denote by SS(A) the set of all complete types over A implying x ∈ S. Then
SS(A) is compact, and the set of all generic complete types over A is closed. Closed
subsets of SS(A) are in bijection with partial types over A implying x ∈ S, i.e., with
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type-definable subsets of S using parameters in A. If X, Y ⊆ S are two such sets, say
that Y is a logical neighbourhood of X relative to S, in symbols Y >S X, if [X] ⊆ [Y ]◦

where the interior is calculated in SS(A). This is equivalent to saying that there exists
a true logical neighbourhood Y ′ > X such that Y = Y ′ ∩ S. Thus a type-definable set
X ⊆ S is generic in S if and only if every relative logical neighbourhood of X in S defines
a generic set.

Given any set of parameters A and g ∈ G ∩ A, the mapping s 7→ gs is A-definable
inducing a homeomorphism SS(A) → SS(A), sending p 7→ gp. It sends the closed set
defining a type-definable set X ⊆ S to that defining gX, and sends relative logical
neighbourhoods of X (over A) to relative logical neighbourhoods of gX. Thus (the
partial type defining) X is generic in S if and only if (the partial type defining) gX is.
In particular, the action of G on SS(M̄) acts on the space of generic types. Similarly, the
mapping g 7→ g−1 induces an automorphism of SG(A), and a type p is left-generic if and
only if p−1 is right-generic.

Similarly, if s ∈ S ∩ A then we have a surjective continuous mapping ρs : SG(A) →
SS(A) sending p 7→ ps and X 7→ Xs. If X ⊆ G is type-definable and Y is a relative
logical neighbourhood of Xs in S then ρ−1

s (Y ) is a relative logical neighbourhood of X.
Thus, if X is left-generic (as a partial type) in G, so is Xs in S. In particular, p 7→ ps
sends generic types to generic types.

Our aim is to show the existence of generic types under the assumption that the
theory is stable. We follow a path similar to that followed in [Pil96]. Toward this

end we will construct an auxiliary multi-sorted structure M̂ = 〈G, S, . . .〉 in a language

L̂. If the metric on G is not invariant we may modify it a little, defining dM̂G (g, g′) =

sup{dM̄(hg, hg′) : h ∈ G}. This is indeed a metric and dM̂G ≥ dM̄ , so GM̂ is complete.

Similarly we define dM̂S (s, s′) = sup{dM̄(hs, hs′) : h ∈ G}. In addition, for every L-
formula ϕ(x, ȳ) where x is in the sort of S there will be an additional sort Sϕ, consisting
of all canonical parameters of instances of ϕ. The canonical parameter of ϕ(x, b̄) will be
denote [̄b]ϕ, or [̄b] if there is no ambiguity. We put on it the standard metric, namely
dϕ([̄b]ϕ, [̄b

′]ϕ) = sup{|ϕ(a, b̄)−ϕ(a, b̄′)| : a ∈M}. The only other symbols in the language
are a predicate symbol ϕ̂(xS , yG, zϕ) for each formula ϕ as above. We interpret it by
ϕ̂(s, g, [̄b]) = ϕ(g−1s, b̄). This is uniformly continuous in all variables, since ϕ is. These

definitions make M̂ a continuous structure.
If 〈G, S〉 is definable then M̂ is interpretable in M̄ and T̂ = ThL̂(M̂) is stable (assuming

T is). In the general case, all we know is that M̂ is saturated for quantifier-free types
in which only ϕ̂ appear. It follows from stability in T that each formula ϕ̂(x, y, z), with
any partition of the variables, is stable.

For h ∈ G define a mapping θh : M̂ → M̂ by sending g ∈ G to hg, s ∈ Ŝ to ha, and
fixing all the auxiliary sorts. This is easily verified to be an automorphism of M̂ . As the
action is assumed to be transitive, if A ⊆

⋃

ϕ Sϕ then all elements of S have the same

type over A in M̂ , and similarly all elements of G.
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Lemma A.28. A condition of the form ϕ(x, b̄) = 0 is generic in S if and only if
ϕ̂(x, e, [̄b]) does not fork over ∅.

Proof. Recall that the L̂-formula ϕ̂(xS, yGzϕ) with this (or any other) partition of the

variables is stable in T̂ .
For left to right we assume that for every ε > 0 the set Xε = {s ∈ S : ϕ(s, b̄) ≤ ε} is

generic. Find gi ∈ G such that S =
⋃

i<n giXε, and find s ∈ S such that tpϕ̂(s/[̄b]g<n)

does not fork over ∅ (in symbols s |ϕ̂⌣ [̄b]g<n). As s ∈
⋃

i<n giXε we may assume that

s ∈ g0Xε, so ϕ̂(s, g0, [̄b]) = ϕ(g−1
0 s, b̄) ≤ ε. Thus ϕ̂(x, g0, [̄b]) ≤ ε does not fork over ∅.

Applying θg−1

0
we see that ϕ̂(x, e, [̄b]) ≤ ε does not fork over ∅ either. It follows that

ϕ̂(x, e, [̄b]) = 0 does not fork over ∅.
For right to left our assumption implies that ϕ̂(x, e, [̄b]) = 0 does not fork over [̄b] (as

it does not fork over ∅). By Lemma A.20 there are gi ∈ G and a faithful combina-
tion ψ(x, [̄b]) = θ

(

ϕ̂(x, gi, [̄b])
)

which is definable over [̄b] and such that ψ(x, [̄b]) = 0 is

consistent. As M̂ is saturated for quantifier-free types involving only ϕ̂, there is s ∈ S
such that ψ(s, [̄b]) = 0. Since all elements of S have the same type over [̄b] in M̂ , we
see that ψ(s, [̄b]) = 0 for all s ∈ S. Assume (toward a contradiction) that there exists
ε > 0 such that ϕ(x, b̄) ≤ ε is not generic. By compactness we can find s ∈ S such that
ϕ(gis, b̄) ≥ ε for all i < ω, i.e., ϕ̂(s, gi, [̄b]) ≥ ε. Since the combination above was faithful
we get ψ(s, [̄b]) ≥ ε > 0, a contradiction. �A.28

Lemma A.29. Let p0(x) be a partial type over A. Then p0 is generic if and only if it
extends to a complete generic type over A, i.e., if and only if [p] in SS(A) contains a
generic type. In particular, generic types exist over every set.

Proof. Right to left is clear, so let us prove left to right. Assume therefore that [p0]
contains no generic type. As the set of generic types is closed, p0 admits a logical
neighbourhood which contains no generic types, and we may assume it to be the zero set
of a single condition ϕ(x, b̄) = 0. As p0 is generic in S so is ϕ(x, b̄) = 0. By Lemma A.28

ϕ̂(x, e, [̄b]) = 0 does not fork over ∅ in M̂ . Let Â consist of all canonical parameters of

the form [c̄]ψ for c̄ ∈ A. Let Ψ consist of all L̂-formulae of the form ψ̂(xS, yGzψ). Since all

formulae in Ψ are stable there is p̂ ∈ SΨ(Â, e) which does not fork over ∅, and such that

ϕ̂(x, e, [̄b])p̂ = 0. Since M̂ is saturated for formulae of this form, p̂ admits a realisation

s0 ∈ S. Let p(x) be given by the conditions ψ(x, c̄) = ψ̂(x, e, [c̄])p̂ for all ψ and c̄ ∈ A.
Then s0 � p, so p is a consistent complete type over A. It follows that p(x) ⊢ x ∈ S.
In addition, p is generic, as can be seen using the fact that p̂ does not fork over ∅ and
Lemma A.28. Thus we have found a generic type satisfying ϕ(x, b̄) = 0 after all. �A.29

Lemma A.30. Assume A ⊆ B. Then a type p ∈ SS(B) is generic if and only if it does
not fork over A and p↾A is generic. In particular, a generic type does not fork over ∅.

Proof. Let us show the last assertion first. Indeed, let p ∈ SS(A) be generic. If it
forks over ∅ then there is some condition ϕ(x, b̄) = 0 in p which forks, and therefore
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divides, over ∅. Thus there is an indiscernible sequence (b̄i : i < ω) with b̄0 = b̄ such
that {ϕ(x, b̄) = 0: i < ω} is inconsistent. Since e ∈ dcl(∅) the sequence (e, b̄i : i < ω)
is indiscernible as well, and thus the sequence (e, [̄bi] : i < ω) is indiscernible in M̄ . By
Lemma A.28 the condition ϕ̂(x, e, [̄b]) = 0 does not fork over ∅, so {ϕ̂(x, e, [̄bi]) : i < ω} is

consistent. Since M̂ is saturated for such formulae, there is s ∈ S such that ϕ̂(s, e, [̄bi]) =
0, i.e., ϕ(s, b̄i) = 0, for all i < ω, a contradiction.

This shows that if p ∈ SS(B) is generic then it does not fork over any subset A ⊆ B,
and clearly p↾A is generic. For the converse, assume that p ∈ SS(B) does not fork over
A and p0 = p↾A is generic. Replacing p with a non forking extension we may assume
that B = M is a very homogeneous and saturated model. By Lemma A.29 there is
p′ ∈ SS(M) extending p0 which is generic, and by what we have just shown it is also non
forking over A. As p↾A = p′↾A there is f ∈ Aut(M/A) sending p′↾acleq(A) to p↾acleq(A). By
uniqueness of the non forking extension it sends p′ to p. Thus p is generic. �A.30

We can now give a proper proof to Fact 3.2.

Theorem A.31. Let G be a type-definable group in a stable theory T , possibly acting
type-definably and transitively on a type-definable set S. Assume all definitions are with-
out parameters. Say that s ∈ S is dividing-generic over a set A if whenever s |⌣A

g:

gs |⌣A, g.

(i) An element s ∈ S is dividing-generic over a set A if and only if it is generic over
A.

(ii) An element g ∈ G is left-generic over A if and only if g−1 is.
(iii) An element g ∈ G is left-generic if and only if it is right-generic (over A). From

now on we will only speak of generic elements and types in G.
(iv) An element g ∈ G is generic over A if and only if it is generic over ∅ and g |⌣A.
(v) If g ∈ G, s ∈ S, g |⌣A

s, and at least one of g and s is generic over A, then gs
is generic over A.

Proof. We will use Lemma A.30 and the discussion following Lemma A.27 repeatedly.
Let us first prove the first and last items. If s ∈ S is generic over A and s |⌣A

g then
s is generic over A, g, whereby gs is generic over A, g. It follows that gs is generic over
A and that gs |⌣A, g, so s is dividing-generic.

Similarly, if g ∈ G left-generic over A and g |⌣A
s then gs is generic over A, s and thus

over A, and gs |⌣A, s. Assume that s is dividing-generic and choose such g. We get

g−1 |⌣A
gs, and by the previous argument s = g−1gs is generic over A, g and thus over

A.
Assume g ∈ G is left-generic over A. Choose h ∈ G left-generic over A such that

g |⌣A
h. As g is left-generic, gh is left-generic over A and h |⌣A

gh, whereby h |⌣A
h−1g−1.

As h is left-generic over A g−1 = hh−1g−1 is. It follows that g is right-generic as well.
Similarly if g is right-generic then g−1 is left-generic whereby g is.

The fourth item is just Lemma A.30. �A.31
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A.5. Characterising genericity via global ranks. We have seen that a type of a
member of S is generic if and only if the corresponding type in M̂ is a non-dividing
extension of the unique type over ∅, i.e., if its ϕ̂-type has the same Cantor-Bendixson
ranks as all of S for every ϕ(x, . . .). Thus the various ε-ϕ̂-Cantor-Bendixson ranks play
the role of stratified local ranks characterising genericity. In a superstable (and even more
so in an ℵ0-stable) theory one would expect a similar characterisation via global Lascar
and/or Morley ranks. We will do so in and intentionally brief and sketchy manner.

Morley ranks were defined above: RMε(X) is the ε-Cantor-Bendixson rank of [X] ⊆
Sn(M̄), where M̄ is the monster model. The role of the Lascar ranks will be played by
the ranks SUε(ā/B) defined in [Ben06] (denoted there by SU(āε/B)):

Definition A.32. (i) We say that an indiscernible sequence (c̄i : i < ω) could be in
tp(c̄/āεB) if there is a B-indiscernible sequence (ā′ic̄

′
i : i < ω) such that ā′0c̄

′
0 = āc̄,

c̄′<ω ≡ c̄<ω (not necessarily over B!) and d(ā′0, ā
′
1) ≤ ε.

(ii) We say that ā |⌣B
c̄ if every indiscernible sequence in tp(c̄/B) could be in

tp(c̄/āεB).
(iii) We define SUε(ā/B) as may be expected: SUε(ā/B) ≥ α+ 1 if and only if there

is c̄ such that āε 6 |⌣B
c̄ and SUε(ā/Bc̄) ≥ α.

It was shown in [Ben06] that T is supersimple if and only if SUε(ā/B) is ordinal
for every finite tuple ā and ε > 0 (and T is superstable if and only if it is stable and
supersimple). Moreover, in a supersimple theory T SUε ranks characterise independence:
ā |⌣B

C if and only if SUε(ā/B) = SUε(ā/C) for all ε > 0.
Both notions of rank depend inevitably on a metric parameter ε. We may therefore

only hope to characterise genericity in case the metric is invariant under the group action,
i.e., if the action of each g ∈ G on S is an isometry. In the case of an ℵ0-stable theory
this assumption is hardly restrictive. Indeed, G is definable by Theorem 5.1, and as the
action is transitive so is S. On S we may define d′(s, s′) = supg∈G d(gs, gs

′) and as S is
definable we may extend this to a global metric on the sort of S.

We have seen that if g is generic over A, t then gt is generic over A. We now prove a
converse:

Fact A.33. Assume 〈G, S〉 is a type-definable transitive group action with in a stable
theory T , s ∈ S generic over a set A, t ∈ S satisfying t |⌣A

s. Then there is g ∈ G,

g |⌣A
t such that gs = t. Moreover, g can be chosen generic over A (i.e., over At).

Proof. We may assume A = ∅. First choose g ∈ G generic, g |⌣ s, t. Then s |⌣t
g and as

s is generic: gs |⌣ g, t. By standard independence calculus: g |⌣ gs, t. Since the action is
transitive we can find h ∈ G such that hgs = t, and we may take it so that g |⌣ gs, t, h.
Now g |⌣t

h and g is generic over t, so g′ = hg is generic over t as required. �A.33

(The same holds in a simple theory replacing everywhere generic with dividing-generic.)
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Theorem A.34. Assume 〈G, S〉 is a type-definable transitive group action with an in-
variant metric in a superstable continuous theory T , p ∈ SS(A). Then p is generic if and
only if SUε(p) = SUε(S) = sup{SUε(q) : q ∈ SS(∅)} for all ε > 0. The same holds in
a supersimple theory replacing “generic” with “dividing-generic”. In particular, types of
maximal SUε-rank exist.

Proof. It will be enough to prove the supersimple case, using the fact that dividing-generic
types exist. We will also use the fact that if p ∈ Sn(A), q ∈ Sm(A) and f : p(M̄) → q(M̄)
is A-definable and isometric then SUε(p) = SUε(q) for all ε > 0, which we leave as an
exercise to the reader.

Assume first that s ∈ S is dividing-generic over A, q ∈ SS(∅). Let t � q, t |⌣A, s.
Then there is g |⌣A

t such that gs = t. We get SUε(s/A) ≥ SUε(s/A, g) = SUε(t/A, g) =

SUε(t) = SUε(q). In particular SUε(s/A) ≥ SUε(s) ≥ SUε(s/A), i.e., SUε(s/A) = SUε(s).
Conversely, let s ∈ S and assume that SUε(s/A) ≥ SUε(q) for all q ∈ SS(∅) and all
ε > 0. Let g ∈ G, g |⌣A

s. Then SUε(gs/A, g) = SUε(s/A, g) = SUε(s/A) ≥ SUε(gs) ≥

SUε(gs/A, g). Thus equality holds all the way for all ε > 0, whereby gs |⌣A, g, so s is
dividing-generic. �A.34

In the ℵ0-stable case we run into complications since Morley ranks take into account
topological neighbourhoods of the types in question which may extend outside the group,
unless of course the group is the entire ambient structure. In the latter case there is no
problem. In the former, the group action can be extended to an approximate multi-valued
operation which is approximately isometric as in the proof of the main theorem.

One can show:

Lemma A.35. Assume f : M → M is an isometric bijection definable with parameters
in A ⊆M . Then for all ε > 0 and a ∈M : RMε(a/A) = RMε(f(a)/A). (The same holds
if f is an isometric bijection between distinct sorts of M .)

If f : X → f(X) is a mere partial isometry (where X and f(X) are type-definable)
definable over A then for all ε > ε′ > 0 we have RMε(a/A) ≤ RMε′(f(a)/A) and vice
versa.

Proof. The first assertion is immediate. The second is proved using similar tools to those
used to prove Lemma 2.10. �A.35

In case X is definable, rather than type-definable, so is its image f(X). One may
view 〈X, f(X), . . .〉 with the entire induced structure as a new structure: there is no new
structure since X and f(X) are definable (so restricted quantifiers are understood by
M) and no loss of structure by separation of variables. In particular the new structure is
ℵ0-stable and the first case of Lemma A.35 applies. If we knew that the passage to the
structure 〈X, f(X), . . .〉 preserves Morley ranks (as it would in classical logic) we would
obtain the equality RMε(a/A) = RMε(f(a)/A) in M .

Question A.36. In classical logic types in the structure 〈X, f(X), . . .〉 have the same
Morley ranks as the corresponding types in M . Is it true in continuous logic?
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Nonetheless one can use Lemma A.35 to prove:

Theorem A.37. Assume 〈G, S〉 is a type-definable transitive group action with an in-
variant metric in an ℵ0-stable continuous theory T , p ∈ SS(A). Then p is generic if and
only if RMε′(p) ≥ RMε(S) for all ε > ε′ > 0. If S occupies an entire sort then this is
further equivalent to RMε(p) = RMε(S) for all ε > 0.

Proof. One follows the same lines as in the superstable/supersimple case, using
Lemma A.21 and Lemma A.35. Again we leave the details to the reader. �A.37

If the answer to Question A.36 is positive then the assumption that S occupies an
entire sort is superfluous (as in any case S is definable).
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