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Abstract. We address the statistical issue of determining the
maximal spaces (maxisets) where model selection procedures at-
tain a given rate of convergence. By considering first general dic-
tionaries, then orthonormal bases, we characterize these maxisets
in terms of approximation spaces. These results are illustrated by
classical choices of wavelet model collections. For each of them,
the maxisets are described in terms of functional spaces. We take
a special care of the issue of calculability and measure the induced
loss of performance in terms of maxisets.
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1. Introduction

The topic of this paper lies on the frontier between statistics and
approximation theory. Our goal is to characterize the functions well
estimated by a special class of estimation procedures: the model selec-
tion rules. Our purpose is not to build new model selection estimators
but to determine thoroughly the functions for which well known model
selection procedures achieve good performances. Of course, approxi-
mation theory plays a crucial role in our setting but surprisingly its role
is even more important than the one of statistical tools. This statement
will be emphasized by the use of the maxiset approach, which illustrates
the well known fact that “well estimating is well approximating”.
More precisely we consider the classical Gaussian white noise model

dYn,t = s(t)dt+
1√
n
dWt, t ∈ D,

where D ⊂ R, s is the unknown function, W is the Brownian motion in
R and n ∈ N∗ = {1, 2, . . . , }. This model means that for any u ∈ L2(D),

Yn(u) =

∫

D
u(t)dYn,t =

∫

D
u(t)s(t)dt+

1√
n
Wu

1
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is observable where Wu =
∫
D u(t)dWt is a centered Gaussian process

such that for all functions u and u′,

E[WuWu′ ] =

∫

D
u(t)u′(t)dt.

We take a noise level of the form 1/
√
n to refer to the asymptotic

equivalence between the Gaussian white noise model and the classical
regression model with n equispaced observations (see [26]).
Two questions naturally arise: how to construct an estimator ŝ of s
based on the observation dYn,t and how to measure its performance?
Many estimators have been proposed in this setting (wavelet thresh-
olding, kernel rules, Bayesian procedures...). In this paper, we only
focus on model selection techniques described accurately in the next
paragraph.

1.1. Model selection procedures. The model selection methodol-
ogy consists in constructing an estimator by minimizing an empirical
contrast γn over a given set, called a model. The pioneer work in
model selection goes back in the 1970’s with Mallows [20] and Akaike
[1]. Birgé and Massart develop the whole modern theory of model selec-
tion in [9, 10, 11] or [7] for instance. Estimation of a regression function
with model selection estimators is considered by Baraud in [5, 6], while
inverse problems are tackled by Loubes and Ludeña [18, 19]. Finally
model selection techniques provide nowadays valuable tools in statisti-
cal learning (see Boucheron et al. [12]).
In nonparametric estimation, performances of estimators are usually
measured by using the quadratic norm, which gives rise to the following
empirical quadratic contrast

γn(u) = −2Yn(u) + ‖u‖2

for any function u, where ‖·‖ denotes the norm associated to L2(D). We
assume that we are given a dictionary of functions of L2(D), denoted by
Φ = (ϕi)i∈I where I is a countable set and we consider Mn, a collection
of models spanned by some functions of Φ. For anym ∈ Mn, we denote
by Im the subset of I such that

m = span{ϕi : i ∈ Im}

and Dm ≤ |Im| the dimension of m. Let ŝm be the function that
minimizes the quadratic empirical criterion γn(u) with respect to u ∈
m. A straightforward computation shows that the estimator ŝm is the
projection of the data onto the space m. So, if {em

1 , . . . , e
m
Dm

} is an
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orthonormal basis (not necessarily related to Φ) of m and

β̂m
i = Yn(e

m
i ) =

∫

D
em

i (t)dYn,t

then
ŝm =

∑

i∈Im

β̂m
i e

m
i , and γn(ŝm) = −

∑

i∈Im

(β̂m
i )2.

Now, the issue is the selection of the best model m̂ from the data which
gives rise to the model selection estimator ŝm̂. For this purpose, a pe-
nalized rule is considered, which aims at selecting an estimator, close
enough to the data, but still lying in a small space to avoid overfit-
ting issues. Let penn(m) be a penalty function which increases when
Dm increases. The model m̂ is selected using the following penalized
criterion

(1.1) m̂ = arg min
m∈Mn

{γn(ŝm) + penn(m)} .

The choice of the model collection and the associated penalty are then
the key issues handled by model selection theory. We point out that the
choices of both the model collection and the penalty function should
depend on the noise level. This is emphasized by the subscript n for
Mn and penn(m).
The asymptotic behavior of model selection estimators has been stud-
ied by many authors. We refer to Massart [21] for general references
and recall hereafter the main oracle type inequality. Such an oracle
inequality provides a non asymptotic control on the estimation error
with respect to a bias term ‖s − sm‖, where sm stands for the best
approximation (in the L2 sense) of the function s by a function of m.
In other words sm is the orthogonal projection of s onto m, defined by

sm =
∑

i∈Im

βm
i e

m
i , βm

i =

∫

D
em

i (t)s(t)dt.

Theorem 1 (Theorem 4.2 of [21]). Let n ∈ N⋆ be fixed and let (xm)m∈Mn

be some family of positive numbers such that

(1.2)
∑

m∈Mn

exp(−xm) = Σn <∞.

Let κ > 1 and assume that

(1.3) penn(m) ≥ κ

n

(√
Dm +

√
2xm

)2

.

Then, almost surely, there exists some minimizer m̂ of the penalized
least-squares criterion

γn(ŝm) + penn(m)
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over m ∈ Mn. Moreover, the corresponding penalized least-squares
estimator ŝm̂ is unique and the following inequality is valid:

(1.4) E
[
‖ŝm̂ − s‖2

]
≤ C

[
inf

m∈Mn

{
‖sm − s‖2 + penn(m)

}
+

1 + Σn

n

]
,

where C depends only on κ.

Equation (1.4) is the key result to establish optimality of penalized
estimators under oracle or minimax points of view. In this paper, we
focus on an alternative to these approaches: the maxiset point of view.

1.2. The maxiset point of view. Before describing the maxiset ap-
proach, let us briefly recall that for a given procedure s∗ = (s∗n)n, the
minimax study of s∗ consists in comparing the rate of convergence of
s∗ achieved on a given functional space F with the best possible rate
achieved by any estimator. More precisely, let F(R) be the ball of ra-
dius R associated with F , the procedure s∗ = (s∗n)n achieves the rate
ρ∗ = (ρ∗n)n on F(R) if

sup
n

{
(ρ∗n)−2 sup

s∈F(R)

E
[
‖s∗n − s‖2

]
}
<∞.

To check that a procedure is optimal from the minimax point of view
(said to be minimax), it must be proved that its rate of convergence
achieves the best rate among any procedure on each ball of the class.
This minimax approach is extensively used and many methods cited
above are proved to be minimax in different statistical frameworks.
However, the choice of the function class is subjective and, in the min-
imax framework, statisticians have no idea whether there are other
functions well estimated at the rate ρ∗ by their procedure. A different
point of view is to consider the procedure s∗ as given and search all
the functions s that are well estimated at a given rate ρ∗: this is the
maxiset approach, which has been proposed by Kerkyacharian and Pi-
card [17]. The maximal space, or maxiset, of the procedure s∗ for this
rate ρ∗ is defined as the set of all these functions. Obviously, the larger
the maxiset, the better the procedure. We set the following definition.

Definition 1. Let ρ∗ = (ρ∗n)n be a decreasing sequence of positive real
numbers and let s∗ = (s∗n)n be an estimation procedure. The maxiset of
s∗ associated with the rate ρ∗ is

MS(s∗, ρ∗) =

{
s ∈ L2(D) : sup

n

{
(ρ∗n)−2E

[
‖s∗n − s‖2

]}
<∞

}
,



MAXISETS FOR MODEL SELECTION 5

the ball of radius R > 0 of the maxiset is defined by

MS(s∗, ρ∗)(R) =

{
s ∈ L2(D) : sup

n

{
(ρ∗n)−2E

[
‖s∗n − s‖2

]}
≤ R2

}
.

Of course, there exist connections between maxiset and minimax points
of view: s∗ achieves the rate ρ∗ on F if and only if

F ⊂MS(s∗, ρ∗).

In the white noise setting, the maxiset theory has been investigated for
a wide range of estimation procedures, including kernel, thresholding
and Lepski procedures, Bayesian or linear rules. We refer to [3], [4],
[8], [14], [17], [23], and [24] for general results. Maxisets have also been
investigated for other statistical models, see [2] and [25].

1.3. Overview of the paper. The goal of this paper is to investigate
maxisets of model selection procedures. Following the classical model
selection literature, we only use penalties proportional to the dimension
Dm of m:

(1.5) penn(m) =
λn

n
Dm,

with λn to be specified. Our main result characterizes these maxisets in
terms of approximation spaces. More precisely, we establish an equiva-
lence between the statistical performance of ŝm̂ and the approximation
properties of the model collections Mn. With

(1.6) ρn,α =

(
λn

n

) α
1+2α

for any α > 0, Theorem 2, combined with Theorem 1 proves that, for
a given function s, the quadratic risk E[‖s − ŝm̂‖2] decays at the rate
ρ2

n,α if and only if the deterministic quantity

(1.7) Q(s, n) = inf
m∈Mn

{
‖sm − s‖2 +

λn

n
Dm

}

decays at the rate ρ2
n,α as well. This result holds with mild assumptions

on λn and under an embedding assumption on the model collections
(Mn ⊂ Mn+1). Once we impose additional structure on the model
collections, the deterministic condition can be rephrased as a linear
approximation property and a non linear one as stated in Theorem 3.
We illustrate these results for three different model collections based on
wavelet bases. The first one deals with sieves in which all the models are
embedded, the second one with the collection of all subspaces spanned
by vectors of a given basis. For these examples, we handle the issue of
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calculability and give explicit characterizations of the maxisets. In the
third example, we provide an intermediate choice of model collections
and use the fact that the embedding condition on the model collections
can be relaxed. Finally performances of these estimators are compared
and discussed.
The paper is organized as follows. Section 2 describes the main gen-
eral results established in this paper. More precisely, we specify results
valid for general dictionaries in Section 2.1. In Section 2.2, we focus on
the case where Φ is an orthonormal family. Section 3 is devoted to the
illustrations of these results for some model selection estimators asso-
ciated with wavelet methods. In particular, a comparison of maxiset
performances are provided and discussed. Section 4 gives the proofs of
our results.

2. Main results

As explained in the introduction, our goal is to investigate maxisets
associated with model selection estimators ŝm̂ where the penalty func-
tion is defined in (1.5) and with the rate ρα = (ρn,α)n where ρn,α is
specified in (1.6). Observe that ρn,α depends on the choice of λn. It
can be for instance polynomial, or can take the classical form

ρn,α =

(
logn

n

) α
1+2α

.

So we wish to determine

MS(ŝm̂, ρα) =

{
s ∈ L2(D) : sup

n

{
ρ−2

n,αE
[
‖ŝm̂ − s‖2

]}
<∞

}
.

In the sequel, we use the following notation: if F is a given space

MS(ŝm̂, ρα) :=: F
means that for any R > 0, there exists R′ > 0 such that

(2.1) MS(ŝm̂, ρα)(R) ⊂ F(R′)

and for any R′ > 0, there exists R > 0 such that

(2.2) F(R′) ⊂MS(ŝm̂, ρα)(R).

2.1. The case of general dictionaries. In this section, we make
no assumption on Φ. Theorem 1 is a non asymptotic result while
maxisets results deal with rates of convergence (with asymptotics in
n). Therefore obtaining maxiset results for model selection estimators
requires a structure on the sequence of model collections. We first
focus on the case of nested model collections (Mn ⊂ Mn+1). Note
that this does not imply a strong structure on the model collection
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for a given n. In particular, this does not imply that the models are
nested. Identifying the maxiset MS(ŝm̂, ρα) is a two-step procedure.
We need to establish inclusion (2.1) and inclusion (2.2). Recall that we
have introduced previously

Q(s, n) = inf
m∈Mn

{
‖sm − s‖2 +

λn

n
Dm

}
.

Roughly speaking, Theorem 1 established by Massart proves that any
function s satisfying

sup
n

{
ρ−2

n,αQ(s, n)
}
≤ (R′)2

belongs to the maxiset MS(ŝm̂, ρα) and thus provides inclusion (2.2).
The following theorem establishes inclusion (2.1) and highlights that
Q(s, n) plays a capital role.

Theorem 2. Let 0 < α0 <∞ be fixed. Let us assume that the sequence
of model collections satisfies for any n

(2.3) Mn ⊂ Mn+1,

and that the sequence of positive numbers (λn)n is non-decreasing and
satisfies

(2.4) lim
n→+∞

n−1λn = 0,

and there exist n0 ∈ N∗ and two constants 0 < δ ≤ 1
2

and 0 < p < 1
such that for n ≥ n0,

(2.5) λ2n ≤ 2(1 − δ)λn,

∑

m∈Mn

e−
(
√

λn−1)2Dm
2 ≤

√
1 − p(2.6)

and

(2.7) λn0 ≥ Υ(δ, p, α0),

where Υ(δ, p, α0) is a positive constant only depending on α0, p and δ
defined in Equation (4.3) of Section 4. Then, the penalized rule ŝm̂ is
such that for any α ∈ (0, α0], for any R > 0, there exists R′ > 0 such
that for s ∈ L2(D),

sup
n

{
ρ−2

n,αE
[
‖ŝm̂ − s‖2

]}
≤ R2 ⇒ sup

n

{
ρ−2

n,αQ(s, n)
}
≤ (R′)2.
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Technical Assumptions (2.4), (2.5), (2.6) and (2.7) are very mild and
could be partly relaxed while preserving the results. Assumption (2.4)
is necessary to deal with rates converging to 0. Note that the clas-
sical cases λn = λ0 or λn = λ0 log(n) satisfy (2.4) and (2.5). Fur-
thermore, Assumption (2.7) is always satisfied when λn = λ0 log(n) or
when λn = λ0 with λ0 large enough. Assumption (2.6) is very close
to Assumptions (1.2)-(1.3). In particular, if there exist two constants
κ > 1 and 0 < p < 1 such that for any n,

∑

m∈Mn

e−
(
√

κ−1λn−1)2Dm
2 ≤

√
1 − p(2.8)

then, since

penn(m) =
λn

n
Dm,

Conditions (1.2), (1.3) and (2.6) are all satisfied. The assumption α ∈
(0, α0] can be relaxed for particular model collections, which will be
highlighted in Proposition 2 of Section 3.1. Finally, Assumption (2.3)
can be removed for some special choice of model collection Mn at the
price of a slight overpenalization as it shall be shown in Proposition 1
and Section 3.3.
Combining Theorems 1 and 2 gives a first characterization of the maxiset
of the model selection procedure ŝm̂:

Corollary 1. Let α0 < ∞ be fixed. Assume that Assumptions (2.3),
(2.4), (2.5) (2.7) and (2.8) are satisfied. Then for any α ∈ (0, α0],

MS(ŝm̂, ρα) :=:

{
s ∈ L2(D) : sup

n

{
ρ−2

n,αQ(s, n)
}
<∞

}
.

The maxiset of ŝm̂ is characterized by a deterministic approximation
property of s with respect to the models Mn. It can be related to some
classical approximation properties of s in terms of approximation rates
if the functions of Φ are orthonormal.

2.2. The case of orthonormal bases. From now on, Φ = {ϕi}i∈I is
assumed to be an orthonormal basis (for the L2 scalar product). We
also assume that the model collections Mn are constructed through
restrictions of a single model collection M. Namely, given a collection
of models M we introduce a sequence Jn of increasing subsets of the
indices set I and we define the intermediate collection M′

n as

(2.9) M′
n = {m′ = span{ϕi : i ∈ Im ∩ Jn} : m ∈ M}.
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The model collections M′
n do not necessarily satisfy the embedding

condition (2.3). Thus, we define

Mn =
⋃

k≤n

M′
k

so Mn ⊂ Mn+1. The assumptions on Φ and on the model collections
allow to give an explicit characterization of the maxisets. We denote

M̃ = ∪nMn = ∪nM′
n. Remark that without any further assumption

M̃ can be a larger model collection than M. Now, let us denote by
V = (Vn)n the sequence of approximation spaces defined by

Vn = span{ϕi : i ∈ Jn}
and consider the corresponding approximation space

Lα
V =

{
s ∈ L2(D) : sup

n

{
ρ−1

n,α‖PVns− s‖
}
<∞

}
,

where PVns is the projection of s onto Vn. Define also another kind of
approximation sets:

Aα
fM

=

{
s ∈ L2(D) : sup

M>0

{
Mα inf

{m∈ fM: Dm≤M}
‖sm − s‖

}
<∞

}
.

The corresponding balls of radius R > 0 are defined, as usual, by
replacing ∞ by R in the previous definitions. We have the following
result.

Theorem 3. Let α0 < ∞ be fixed. Assume that (2.4), (2.5), (2.7)
and (2.8) are satisfied. Then, the penalized rule ŝm̂ satisfies the follow-
ing result: for any α ∈ (0, α0],

MS(ŝm̂, ρα) :=: Aα
fM
∩ Lα

V .

The result pointed out in Theorem 3 links the performance of the
estimator to an approximation property for the estimated function.
This approximation property is decomposed into a linear approxima-
tion measured by Lα

V and a non linear approximation measured by Aα
fM
.

The linear condition is due to the use of the reduced model collection
Mn instead of M, which is often necessary to ensure either the cal-
culability of the estimator or Condition (2.8). It plays the role of a
minimum regularity property that is easily satisfied.
Observe that if we have one model collection, that is for any k and k′,

Mk = Mk′ = M, Jn = I for any n and thus M̃ = M. Then

Lα
V = span {ϕi : i ∈ I}
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and Theorem 3 gives

MS(ŝm̂, ρα) :=: Aα
M.

The spaces Aα
fM

and Lα
V highly depend on the models and the approxi-

mation space. At first glance, the best choice seems to be Vn = L2(D)
and

M = {m : Im ⊂ I}
since the infimum in the definition of Aα

fM
becomes smaller when the

collection is enriched. There is however a price to pay when enlarging
the model collection: the penalty has to be larger to satisfy (2.8),
which deteriorates the convergence rate. A second issue comes from
the tractability of the minimization (1.1) itself which will further limit
the size of the model collection.
To avoid considering the union of M′

k, that can dramatically increase
the number of models considered for a fixed n, leading to large penal-
ties, we can relax the assumption that the penalty is proportional to the
dimension. Namely, for any n, for any m ∈ M′

n, there exists m̃ ∈ M
such that

m = span {ϕi : i ∈ Im̃ ∩ Jn} .
Then for any model m ∈ M′

n, we replace the dimension Dm by the
larger dimension Dm̃ and we set

p̃enn(m) =
λn

n
Dm̃.

The minimization of the corresponding penalized criterion over all
model in M′

n leads to a result similar to Theorem 3. Mimicking its
proof, we can state the following proposition that will be used in Sec-
tion 3.3:

Proposition 1. Let α0 < ∞ be fixed. Assume (2.4), (2.5) (2.7)
and (2.8) are satisfied. Then, the penalized estimator ŝm̃ where

m̃ = arg min
m∈M′

n

{γn(ŝm) + p̃enn(m)}

satisfies the following result: for any α ∈ (0, α0],

MS(s̃m̃, ρα) :=: Aα
M ∩ Lα

V .

Remark that Mn, Lα
V and Aα

fM
can be defined in a similar fashion for

any arbitrary dictionary Φ. However, one can only obtain the inclusion
MS(ŝm̂, ρα) ⊂ Aα

fM
∩ Lα

V in the general case.
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3. Comparisons of model selection estimators

The aim of this section is twofold. Firstly, we propose to illustrate our
previous maxiset results to different model selection estimators built
with wavelet methods by identifying precisely the spaces Aα

fM
and Lα

V .

Secondly, comparisons between the performances of these estimators
are provided and discussed.
We briefly recall the construction of periodic wavelets bases of the
interval [0, 1]. Let φ and ψ be two compactly supported functions of
L2(R) and denote for all j ∈ N, all k ∈ Z and all x ∈ R, φjk(x) =

2
j/2
φ(2

j
x − k) and ψjk(x) = 2

j/2
ψ(2

j
x − k). Those functions can be

periodized in such a way that

Ψ = {φ00, ψjk : j ≥ 0, k ∈ {0, . . . , 2j − 1}}

constitutes an orthonormal basis of L2([0, 1]). Some popular examples
of such bases are given in [15]. The function φ is called the scaling
function and ψ the corresponding wavelet. Any periodic function s ∈
L2([0, 1]) can be represented as:

s = α00φ00 +
∞∑

j=0

2j−1∑

k=0

βjkψjk

where

α00 =

∫

[0,1]

s(t)φ00(t)dt

and for any j ∈ N and for any k ∈ {0, . . . , 2j − 1}

βjk =

∫

[0,1]

s(t)ψjk(t)dt.

Finally, we recall the characterization of Besov spaces using wavelets.
Such spaces will play an important role in the following. In this section
we assume that the multiresolution analysis associated with the basis
Ψ is r-regular with r ≥ 1 as defined in [22]. In this case, for any
0 < α < r and any 1 ≤ p, q ≤ ∞, the periodic function s belongs to
the Besov space Bα

p,q if and only if |α00| <∞ and

∞∑

j=0

2jq(α+ 1
2
− 1

p
)‖βj.‖q

ℓp
<∞ if q <∞,

sup
j∈N

2j(α+ 1
2
− 1

p
)‖βj.‖ℓp <∞ if q = ∞
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where (βj.) = (βjk)k. This characterization allows to recall the following
embeddings:

Bα
p,q ( Bα′

p′,q′ as soon as α− 1

p
≥ α′ − 1

p′
, p < p′ and q ≤ q′

and

Bα
p,∞ ( Bα

2,∞ as soon as p > 2.

3.1. Collection of Sieves. We consider first a single model collection
corresponding to a class of nested models

M(s) = {m = span{φ00, ψjk : j < Nm, 0 ≤ k < 2j} : Nm ∈ N}.

For such a model collection, Theorem 3 could be applied with Vn = L2.
One can even remove Assumption (2.7) which imposes a minimum
value on λn0 that depends on the rate ρα:

Proposition 2. Let 0 < α < r and let ŝ
(s)
m̂ be the model selection

estimator associated with the model collection M(s). Then, under As-
sumptions (2.4), (2.5) and (2.8),

MS(ŝ
(s)
m̂ , ρα) :=: Bα

2,∞.

Remark that it suffices to choose λn ≥ λ0 with λ0, independent of α,
large enough to ensure Condition (2.8).

It is important to notice that the estimator ŝ
(s)
m̂ cannot be computed in

practice because to determine the best model m̂ one needs to consider
an infinite number of models, which cannot be done without comput-
ing an infinite number of wavelet coefficients. To overcome this is-
sue, we specify a maximum resolution level j0(n) for estimation where
n 7→ j0(n) is non-decreasing. This modification is also in the scope of
Theorem 3: it corresponds to

Vn = span{φ00, ψjk : 0 ≤ j < j0(n), 0 ≤ k < 2j}

and the model collection M(s)
n defined as follows:

M(s)
n = M′ (s)

n = {m ∈ M(s) : Nm < j0(n)}.

For the specific choice

(3.1) 2j0(n) ≤ nλ−1
n < 2j0(n)+1,
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we obtain:

Lα
V = {s = α00φ00 +

∞∑

j=0

2j−1∑

k=0

βjkψjk ∈ L2 : sup
n∈N∗

2
2j0(n)α
1+2α ‖s− PVns‖2 <∞}

= {s = α00φ00 +
∞∑

j=0

2j−1∑

k=0

βjkψjk ∈ L2 : sup
n∈N∗

2
2j0(n)α
1+2α

∑

j≥j0(n)

∑

k

β2
jk <∞}

= B
α

1+2α

2,∞ .

Since B
α

1+2α

2,∞ ∩ Bα
2,∞ reduces to Bα

2,∞, arguments of the proofs of Theo-
rem 3 and Proposition 2 give:

Proposition 3. Let 0 < α < r and let ŝ
(st)
m̂ be the model selection

estimator associated with the model collection M(s)
n . Then, under As-

sumptions (2.4), (2.5) and (2.8)

MS(ŝ
(st)
m̂ , ρα) :=: Bα

2,∞.

This tractable procedure is thus as efficient as the original one. We ob-
tain the maxiset behavior of the non adaptive linear wavelet procedure
pointed out in [23] but here the procedure is completely data-driven.

3.2. The largest model collections. In this paragraph we enlarge
the model collections in order to obtain much larger maxisets. We start
with the following model collection

M(l) = {m = span{φ00, ψjk : (j, k) ∈ Im} : Im ∈ P(I)}
where

I =
⋃

j≥0

{(j, k) : k ∈ {0, 1, . . . , 2j − 1}}

and P(I) is the set of all subsets of I. This model collection is so
rich that whatever the sequence (λn)n, Condition (2.8) (or even Condi-
tion (1.2)) is not satisfied. To reduce the cardinality of the collection,
we restrict the maximum resolution level to the resolution level j0(n)

defined in (3.1) and consider the collections M(l)
n defined from M(l) by

M(l)
n = M′ (l)

n =
{
m ∈ M(l) : Im ∈ P(Ij0)

}

where
Ij0 =

⋃

0≤j<j0(n)

{(j, k) : k ∈ {0, 1, . . . , 2j − 1}}.

Remark that this corresponds to the same choice of Vn as in the pre-
vious paragraph and the corresponding estimator fits perfectly within
the framework of Theorem 3.
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The classical logarithmic penalty

penn(m) =
λ0 log(n)Dm

n
,

which corresponds to λn = λ0 log(n), is sufficient to ensure Condition
(2.8) as soon as λ0 is a constant large enough (the choice λn = λ0 is
not sufficient). The identification of the corresponding maxiset focuses
on the characterization of the space Aα

M(l) since, as previously, Lα
V =

B
α

1+2α

2,∞ . We rely on sparsity properties of Aα
M(l). In our context, sparsity

means that there is a small proportion of large coefficients of a signal.
Let introduce for, for n ∈ N∗, the notation

|β|(n) = inf
{
u : card

{
(j, k) ∈ N × {0, 1, . . . , 2j − 1} : |βjk| > u

}
< n

}

to represent the non-increasing rearrangement of the wavelet coefficient
of a periodic signal s:

|β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(n) ≥ · · · .

As the best model m ∈ M(l) of prescribed dimension M is obtained by
choosing the subset of index corresponding to the M largest wavelet
coefficients, a simple identification of the space Aα

M(l) is

Aα
M(l) =



s = α00φ00 +

∞∑

j=0

2j−1∑

k=0

βjkψjk ∈ L2 : sup
M∈N∗

M2α

∞∑

i=M+1

|β|2(i) <∞



 .

Theorem 2.1 of [17] provides a characterization of this space as a weak
Besov space:

Aα
M(l) = W 2

1+2α

with for any q ∈]0, 2[,

Wq =



s = α00φ00 +

∞∑

j=0

2j−1∑

k=0

βjkψjk ∈ L2 : sup
n∈N∗

n1/q|β|(n) <∞



 .

Following their definitions, the larger α, the smaller q = 2/(1 + 2α)
and the sparser the sequence (βjk)j,k. Lemma 2.2 of [17] shows that
the spaces Wq (0 < q < 2) have other characterizations in terms of
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wavelet coefficients:

Wq =



s = α00φ00 +

∞∑

j=0

2j−1∑

k=0

βjkψjk ∈ L2 : sup
u>0

uq−2
∑

j

∑

k

β2
jk1|βjk|≤u <∞





=



s = α00φ00 +

∞∑

j=0

2j−1∑

k=0

βjkψjk ∈ L2 : sup
u>0

uq
∑

j

∑

k

1|βjk|>u <∞



 .

We obtain thus the following proposition.

Proposition 4. Let α0 < r be fixed, let 0 < α ≤ α0 and let ŝ
(l)
m̂ be the

model selection estimator associated with the model collection M(s)
n .

Then, under Assumptions (2.4), (2.5), (2.7) and (2.8):

MS
(
ŝ
(l)
m̂ , ρα

)
:=: B

α
1+2α

2,∞ ∩W 2
1+2α

.

Observe that the estimator ŝ
(l)
m̂ is easily tractable from a computational

point of view as the minimization can be rewritten coefficientwise:

m̂(n) = argmin
m∈M(l)

n

{
γn(ŝm) +

λn

n
Dm

}

= argmin
m∈M(l)

n





j0(n)−1∑

j=0

2j−1∑

k=0

(
β̂2

jk1(j,k)/∈Im +
λn

n
1(j,k)∈Im

)
 .

The best subset Im̂ is thus the set {(j, k) ∈ Ij0 : |β̂jk| >
√
λn/n}

and ŝ
(l)
m̂ corresponds to the well-known hard thresholding estimator,

ŝ
(l)
m̂ = α̂00φ00 +

j0(n)−1∑

j=0

2j−1∑

k=0

β̂jk1
|β̂jk|>

√
λn
n

ψjk.

Proposition 4 corresponds thus to the maxiset result established by
Kerkyacharian and Picard[17].

3.3. A special strategy for Besov spaces. We consider now the
model collection proposed by Massart [21]. This collection can be
viewed as an hybrid collection between the collections of Sections 3.1
and 3.2. This strategy turns out to be minimax for all Besov spaces
Bα

p,∞ when α > max(1/p− 1/2, 0) and 1 ≤ p ≤ ∞.
More precisely, for a chosen θ > 2, define the model collection by

M(h) = {m = span{φ00, ψjk : (j, k) ∈ Im} : J ∈ N, Im ∈ PJ(I)},
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where for any J ∈ N, PJ (I) is the set of all subsets Im of I that can
be written

Im =
{
(j, k) : 0 ≤ j < J, 0 ≤ k < 2j

}
⋃

∪j≥J

{
(j, k) : k ∈ Aj, |Aj| = ⌊2J(j − J + 1)−θ⌋

}

with ⌊x⌋ := max{n ∈ N : n ≤ x}.
As remarked in [21], for any J ∈ N and any Im ∈ PJ(I), the dimension
Dm of the corresponding model m depends only on J and is such that

2J ≤ Dm ≤ 2J

(
1 +

∑

n≥1

n−θ

)
.

We denote by DJ this common dimension. Note that the model col-
lection M(h) does not vary with n. Using Theorem 3 with Vn = L2, we
have the following proposition.

Proposition 5. Let α0 < r be fixed, let 0 < α ≤ α0 and let ŝ
(h)
m̂ be the

model selection estimator associated with the model collection M(h).
Then, under Assumptions (2.4), (2.5), (2.7) and (2.8):

MS
(
ŝ
(h)
m̂ , ρα

)
:=: Aα

M(h)
,

with

Aα

M(h)
=



s = α00φ00 +

∑

j≥0

2j−1∑

k=0

βjkψjk ∈ L2 :

sup
J≥0

22Jα
∑

j≥J

∑

k≥⌊2J (j−J+1)−θ⌋

|βj |2(k) <∞



 ,

where (|βj|(k))k is the reordered sequence of coefficients (βjk)k:

|βj|(1) ≥ |βj|(2) · · · |βj|(k) ≥ · · · ≥ |βj|(2j).

Remark that, as in Section 3.1, as soon as λn ≥ λ0 with λ0 large
enough, Condition (2.8) holds.
This large set cannot be characterized in terms of classical spaces. Nev-
ertheless it is undoubtedly a large functional space, since as proved in
Section 4.4, for every α > 0 and every p ≥ 1 satisfying p > 2/(2α + 1)
we get

Bα
p,∞ ( Aα

M(h).(3.2)

This new procedure is not computable since one needs an infinite num-
ber of wavelet coefficients to perform it. The problem of calculability
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can be solved by introducing, as previously, a maximum scale j0(n) as

defined in (3.1). We consider the class of collection models (M(h)
n )n

defined as follows:

M(h)
n = {m = span{φ00, ψjk : (j, k) ∈ Im, j < j0(n)} :

J ∈ N, Im ∈ PJ (I)}.

This model collection does not satisfy the embedding condition M(h)
n ⊂

M(h)
n+1. Nevertheless, we can use Proposition 1 with

p̃enn(m) =
λn

n
DJ

if m is obtained from an index subset Im in PJ (I). This slight over-
penalization leads to the following result.

Proposition 6. Let α0 < r be fixed, let 0 < α ≤ α0 and let ŝ
(ht)
m̃ be the

model selection estimator associated with the model collection M(h)
n .

Then, under Assumptions (2.4), (2.5), (2.7) and (2.8):

MS
(
ŝ
(ht)
m̃ , ρα

)
:=: B

α
1+2α

2,∞ ∩Aα

M(h)
.

Modifying Massart’s strategy in order to obtain a practical estimator
changes the maxiset performance. The previous set Aα

M(h)
is inter-

sected with the strong Besov space Bα/(1+2α)
2,∞ . Nevertheless, as it will

be proved in Section 4.4, the maxiset MS
(
ŝ
(ht)
m̃ , ρα

)
is still a large

functional space. Indeed, for every α > 0 and every p satisfying

p ≥ max(1, 2
(

1
1+2α

+ 2α
)−1

)

Bα
p,∞ ⊆ B

α
1+2α

2,∞ ∩Aα
M(h).(3.3)

3.4. Comparisons of model selection estimators. In this para-
graph, we compare the maxiset performances of the different model
selection procedures described previously. For a chosen rate of conver-
gence let us recall that the larger the maxiset, the better the estimator.
To begin, we propose to focus on the model selection estimators which
are tractable from the computational point of view. Gathering Propo-
sitions 3, 4 and 6 we obtain the following comparison.

Proposition 7. Let 0 < α < r.

- If for every n, λn = λ0 log(n) with λ0 large enough, then

MS(ŝ
(st)
m̂ , ρα) ( MS(ŝ

(ht)
m̃ , ρα) ( MS(ŝ

(l)
m̂ , ρα).(3.4)
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- If for every n, λn = λ0 with λ0 large enough, then

MS(ŝ
(st)
m̂ , ρα) ( MS(ŝ

(ht)
m̃ , ρα).(3.5)

It means the followings.

- If for every n, λn = λ0 log(n) with λ0 large enough, then, ac-

cording to the maxiset point of view, the estimator ŝ
(l)
m̂ strictly

outperforms the estimator ŝ
(ht)
m̃ which strictly outperforms the

estimator ŝ
(st)
m̂ .

- If for every n, λn = λ0 or λn = λ0 log(n) with λ0 large enough,

then, according to the maxiset point of view, the estimator ŝ
(ht)
m̃

strictly outperforms the estimator ŝ
(st)
m̂ .

The corresponding embeddings of functional spaces are proved in Sec-

tion 4.4. The hard thresholding estimator ŝ
(l)
m̂ appears as the best esti-

mator when λn grows logarithmically while estimator ŝ
(ht)
m̃ is the best

estimator when λn is constant. In both cases, those estimators perform

very well since their maxiset contains all the Besov spaces B
α

1+2α
p,∞ with

p ≥ max
(
1,
(

1
1+2α

+ 2α
)−1
)
.

We forget now the calculability issues and consider the maxiset of the
original procedure proposed by Massart. Propositions 4, 5 and 6 lead
then to the following result.

Proposition 8. Let 0 < α < r.

- If for any n, λn = λ0 log(n) with λ0 large enough then

MS(ŝ
(h)
m̂ , ρα) 6⊂MS(ŝ

(l)
m̂ , ρα) and MS(ŝ

(l)
m̂ , ρα) 6⊂MS(ŝ

(h)
m̂ , ρα).

(3.6)

- If for any n, λn = λ0 or λn = λ0 log(n) with λ0 large enough
then

MS(ŝ
(ht)
m̃ , ρα) ( MS(ŝ

(h)
m̂ , ρα).(3.7)

Hence, within the maxiset framework, the estimator ŝ
(h)
m̂ strictly out-

performs the estimator ŝ
(ht)
m̃ while the estimators ŝ

(h)
m̂ and ŝ

(l)
m̂ are not

comparable. Note that we did not consider the maxisets of the estima-

tor ŝ
(s)
m̂ in this section as they are identical to the ones of the tractable

estimator ŝ
(st)
m̂ . We summarize all those embeddings in Figure 1 and

Figure 2: Figure 1 represents these maxiset embeddings for the choice
λn = λ0 log(n), while Figure 2 represents these maxiset embeddings for
the choice λn = λ0.
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Bαp,∞

B
α

1+2α

2,∞
W 2

1+2α

MS(ŝ
(h)
m̂ , ρα) MS(ŝ

(st)
m̂ , ρα)

MS(ŝ
(l)
m̂ , ρα)

MS(ŝ
(ht)
m̃ , ρα)

Figure 1. Maxiset embeddings when λn = λ0 log(n)

and max(1, 2
(

1
1+2α

+ 2α
)−1

) ≤ p ≤ 2.

Bαp,∞

B
α

1+2α

2,∞
W 2

1+2α

MS(ŝ
(h)
m̂ , ρα) MS(ŝ

(st)
m̂ , ρα) MS(ŝ

(ht)
m̃ , ρα)

Figure 2. Maxiset embeddings when λn = λ0 and

max(1, 2
(

1
1+2α

+ 2α
)−1

) ≤ p ≤ 2.

4. Proofs

For any functions u and u′ of L2(D), we denote by 〈u, u′〉 the L2-
scalar product between u and u′:

〈u, u′〉 =

∫

D
u(t)u′(t)dt.

We denote by C a constant whose value may change at each line.



20 MAXISETS FOR MODEL SELECTION

4.1. Proof of Theorem 2. Without loss of generality, we assume that
n0 = 1. We start by constructing a different representation of the white
noise model. For any model m, we define Wm, the projection of the
noise on m by

Wm =

Dm∑

i=1

Wem
i
em

i , Wem
i

=

∫

D
em

i (t)dWt,

where {em
i }Dm

i=1 is any orthonormal basis of m. For any function s ∈ m,
we have :

Ws =

∫

D
s(t)dWt =

Dm∑

i=1

〈s, em
i 〉Wem

i
= 〈Wm, s〉.

The key observation is now that with high probability, ‖Wm‖2 can
be controlled simultaneously over all models. More precisely, for any
m,m′ ∈ Mn, we define the space m+m′ as the space spanned by the
functions of m and m′ and control the norm of ‖Wm+m′‖2.

Lemma 1. Let n be fixed and

An =

{
sup

m∈Mn

sup
m′∈Mn

{
(Dm +Dm′)−1‖Wm+m′‖2

}
≤ λn

}
.

Then, under Assumption (2.6), we have P{An} ≥ p.

Proof. The Cirelson-Ibragimov-Sudakov inequality (see [21], page 10)
implies that for any t > 0, any m ∈ Mn and any m′ ∈ Mn

P {‖Wm+m′‖ ≥ E [‖Wm+m′‖] + t} ≤ e−
t2

2 .

Since
E [‖Wm+m′‖] ≤

√
E [‖Wm+m′‖2] ≤

√
Dm +Dm′ ,

with t =
√
λn(Dm +Dm′) −

√
Dm +Dm′ , we obtain

P
{
‖Wm+m′‖2 ≥ λn(Dm +Dm′)

}
≤ e−

(
√

λn−1)2(Dm+D
m′ )

2 .

Assumption (2.6) implies thus that

1 − P{An} ≤
∑

m∈Mn

∑

m′∈Mn

P
{
‖Wm+m′‖2 ≥ λn(Dm +D′

m)
}

≤
∑

m∈Mn

∑

m′∈Mn

e−
(
√

λn−1)2(Dm+D
m′ )

2

≤
(
∑

m∈Mn

e−
(
√

λn−1)2Dm
2

)2

≤ 1 − p.
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�

We define m0(n) (denoted m0 when there is no ambiguity), the model
that minimizes a quantity close to Q(s, n):

m0(n) = argminm∈Mn

{
‖sm − s‖2 +

λn

Kn
Dm

}
,

where K is an absolute constant larger than 1 specified later. The
proof of the theorem begins by a bound on ‖sm0 − s‖2:

Lemma 2. For any 0 < γ < 1,

‖sm0 − s‖2 ≤ K̃ + 4γ−1

K̃P{An}
E
[
‖ŝm̂ − s‖2

]
+

(
K(2γ−1 + 1)

K̃P{An}
+

2Kγλn

K̃

)
Dm0

Kn

(4.1)

if the constant K̃ = K(1 − γ) − 2γ−1 − 1 satisfies K̃ > 0.

Proof. By definition,

γn(ŝm̂) + λn
Dm̂

n
≤ γn(ŝm0) + λn

Dm0

n
.

Thus,

λn
Dm̂ −Dm0

n
≤ γn(ŝm0) − γn(ŝm̂)

≤ −2Yn(ŝm0) + ‖ŝm0‖2 + 2Yn(ŝm̂) − ‖ŝm̂‖2

≤ −2〈ŝm0 , s〉 + ‖ŝm0‖2 + 2〈ŝm̂, s〉 − ‖ŝm̂‖2 +
2√
n
Wŝm̂−ŝm0

≤ ‖ŝm0 − s‖2 − ‖ŝm̂ − s‖2 +
2√
n
Wŝm̂−ŝm0

.

Let 0 < γ < 1. As ŝm̂ − ŝm0 is supported by the space m̂+m0 spanned
by the functions of m̂ and m0, we obtain with the previous definition

λn
Dm̂ −Dm0

n
≤ ‖ŝm0 − s‖2 − ‖ŝm̂ − s‖2 +

2√
n
〈Wm̂+m0 , ŝm̂ − ŝm0〉

≤ ‖ŝm0 − s‖2 − ‖ŝm̂ − s‖2 +
γ

n
‖Wm̂+m0‖2

+
2

γ

(
‖ŝm0 − s‖2 + ‖ŝm̂ − s‖2

)

≤
(

2

γ
+ 1

)
‖ŝm0 − s‖2 +

(
2

γ
− 1

)
‖ŝm̂ − s‖2 +

γ

n
‖Wm̂+m0‖2.
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We multiply now by 1An to obtain

λn1An

Dm̂ −Dm0

n
≤
(

2

γ
+ 1

)
1An‖ŝm0 − s‖2 +

(
2

γ
− 1

)
1An‖ŝm̂ − s‖2

+ 1An

γ

n
‖Wm̂+m0‖2.

Using now the definition of An and Lemma 1, it yields

λn1An

Dm̂ −Dm0

n
≤
(

2

γ
+ 1

)
1An‖ŝm0 − s‖2 +

(
2

γ
− 1

)
1An‖ŝm̂ − s‖2

+ γλn1An

Dm̂ +Dm0

n

and thus

(1 − γ)λn1An

Dm̂ −Dm0

n
≤
(

2

γ
+ 1

)
1An‖ŝm0 − s‖2

+

(
2

γ
− 1

)
1An‖ŝm̂ − s‖2 + 2γλn1An

Dm0

n
.

One obtains

λn1An

Dm̂ −Dm0

n
≤

2
γ

+ 1

1 − γ
1An‖ŝm0 − s‖2 +

2
γ
− 1

1 − γ
1An‖ŝm̂ − s‖2

+
2γ

1 − γ
λn1An

Dm0

n
.

(4.2)

We derive now a bound on ‖sm0 − s‖2. By definition,

‖sm0 − s‖2 + λn
Dm0

Kn
≤ ‖sm̂ − s‖2 + λn

Dm̂

Kn

and thus

‖sm0 − s‖2 ≤ ‖sm̂ − s‖2 + λn
Dm̂ −Dm0

Kn
.
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By multiplying by 1An and plugging the bound (4.2), we have:

1An‖sm0 − s‖2 ≤ 1An‖sm̂ − s‖2 + λn1An

Dm̂ −Dm0

Kn

≤ 1An‖sm̂ − s‖2 +

2
γ

+ 1

K(1 − γ)
1An‖ŝm0 − s‖2

+

2
γ
− 1

K(1 − γ)
1An‖ŝm̂ − s‖2 +

2γ

K(1 − γ)
λn1An

Dm0

n

≤
(

1 +

2
γ
− 1

K(1 − γ)

)
1An‖ŝm̂ − s‖2

+

2
γ

+ 1

K(1 − γ)
1An(‖sm0 − s‖2 +

1

n
‖Wm0‖2)

+
2γ

K(1 − γ)
λn1An

Dm0

n

≤
(

1 +

2
γ
− 1

K(1 − γ)

)
‖ŝm̂ − s‖2 +

2
γ

+ 1

K(1 − γ)
1An‖sm0 − s‖2

+

2
γ

+ 1

K(1 − γ)

1

n
‖Wm0‖2 +

2γ

K(1 − γ)
λn1An

Dm0

n

and thus(
1 −

2
γ

+ 1

K(1 − γ)

)
1An‖sm0 − s‖2

≤
(

1 +

2
γ
− 1

K(1 − γ)

)
‖ŝm̂ − s‖2

+

2
γ

+ 1

K(1 − γ)

1

n
‖Wm0‖2 +

2γ

K(1 − γ)
λn1An

Dm0

n
.

Taking the expectation on both sides yields
(

1 −
2
γ

+ 1

K(1 − γ)

)
P{An}‖sm0 − s‖2

≤
(

1 +

2
γ
− 1

K(1 − γ)

)
E
[
‖ŝm̂ − s‖2

]

+

(
2
γ

+ 1

K(1 − γ)
+

2γ

K(1 − γ)
P{An}λn

)
Dm0

n
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and thus as soon as 1 −
2
γ
+1

K(1−γ)
> 0

‖sm0 − s‖2 ≤
1 +

2
γ
−1

K(1−γ)(
1 −

2
γ
+1

K(1−γ)

)
P{An}

E
[
‖ŝm̂ − s‖2

]

+

2
γ
+1

K(1−γ)
+ 2γ

K(1−γ)
P{An}λn(

1 −
2
γ
+1

K(1−γ)

)
P{An}

Dm0

n

≤
K(1 − γ) + 2

γ
− 1

(
K(1 − γ) − 2

γ
− 1
)

P{An}
E
[
‖ŝm̂ − s‖2

]

+

2
γ

+ 1 + 2γP{An}λn(
K(1 − γ) − 2

γ
− 1
)

P{An}
Dm0

n

≤
K̃ + 4

γ

K̃P{An}
E
[
‖ŝm̂ − s‖2

]
+

2
γ

+ 1 + 2γP{An}λn

K̃P{An}
Dm0

n

which yields

‖sm0 − s‖2 ≤
K̃ + 4

γ

K̃P{An}
E
[
‖ŝm̂ − s‖2

]
+

(
K( 2

γ
+ 1)

K̃P{An}
+

2Kγλn

K̃

)
Dm0

Kn

with K̃ = K(1 − γ) − 2
γ
− 1. �

Now, let us specify the constants. We take

g(δ, α0) = inf
α∈(0,α0]

inf
x∈[ 1

2
,1−δ]

{
x

2α
2α+1 − x

}
= (1 − δ)

2α0
2α0+1 − 1 + δ ∈ (0, 1).

Then we take

γ =
1

8
g(δ, α0) and K =

2
γ

+ 1
1
2
− γ

.

This implies K̃ = K
2

and assumptions of the previous lemma are sat-
isfied. We consider now the dependency of m0 on n and prove by
induction the following lemma.

Lemma 3. If there exists C1 > 0 such that for any n,

E
[
‖ŝm̂(n/2) − s‖2

]
≤ C1

(
2λn/2

n

) 2α
2α+1
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then, provided λ1 ≥ Υ(δ, p, α0), where

(4.3) Υ(δ, p, α0) =
8

pg(δ, α0)

(
16

g(δ, α0)
+ 1

)
,

there exists a constant C2 such that for any n,

‖sm0(n) − s‖2 + λn

Dm0(n)

Kn
≤ C2

(
λn

n

) 2α
2α+1

.

Proof. By using Mn/2 ⊂ Mn and (4.1), for any β ∈ [0, 1], if we denote

A = ‖sm0(n) − s‖2 + λn

Dm0(n)

Kn
,

we have

A ≤ ‖sm0(n/2) − s‖2 + λn

Dm0(n/2)

Kn

≤ β‖sm0(n/2) − s‖2 + (1 − β)‖sm0(n/2) − s‖2 +
λn

2λn/2

λn/2

2Dm0(n/2)

Kn

≤ β
K̃ + 4

γ

K̃P{An/2}
E
[
‖ŝm̂(n/2) − s‖2

]
+ (1 − β)‖sm0(n/2) − s‖2

+

(
β

(
K( 2

γ
+ 1)

K̃P{An/2}λn/2

+
2Kγ

K̃

)
+

λn

2λn/2

)
2λn/2Dm0(n/2)

Kn
.

As λn ≤ 2λn/2, there exists βn ∈ [0, 1] such that

1 − βn = βn

(
K( 2

γ
+ 1)

K̃P{An/2}λn/2

+
2Kγ

K̃

)
+

λn

2λn/2

so that

A ≤ βn

K̃ + 4
γ

K̃P{An/2}
E
[
‖ŝm̂(n/2) − s‖2

]

+ (1 − βn)

(
‖sm0(n/2) − s‖2 +

2λn/2Dm0(n/2)

Kn

)
.

The induction can now be started. We assume now that for all n′ ≤
n− 1

‖sm0(n′) − s‖2 + λn′
Dm0(n′)

Kn′ ≤ C2

(
λn′

n′

) 2α
2α+1

.

By assumption,

E
[
‖ŝm̂(n/2) − s‖2

]
≤ C1

(
2λn/2

n

) 2α
2α+1

,
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so that,

A ≤ βn

K̃ + 4
γ

K̃P{An/2}
C1

(
2λn/2

n

) 2α
2α+1

+ (1 − βn)C2

(
2λn/2

n

) 2α
2α+1

≤
(
βn

K̃ + 4
γ

K̃P{An/2}
C1

C2
+ 1 − βn

)(
2λn/2

λn

) 2α
2α+1

C2

(
λn

n

) 2α
2α+1

.

So, we have to prove that
(
βn

K̃ + 4
γ

K̃P{An/2}
C1

C2
+ 1 − βn

)(
2λn/2

λn

) 2α
2α+1

≤ 1

or equivalently,
(
βn

(
K̃ + 4

γ

K̃P{An/2}
C1

C2
+

K( 2
γ

+ 1)

K̃P{An/2}λn/2

+
2Kγ

K̃

)
+

λn

2λn/2

)(
2λn/2

λn

) 2α
2α+1

≤ 1.

This condition can be rewritten as

βn

(
K̃ + 4

γ

K̃P{An/2}
C1

C2
+

K( 2
γ

+ 1)

K̃P{An/2}λn/2

+
2Kγ

K̃

)(
2λn/2

λn

) 2α
2α+1

≤ 1 −
(

λn

2λn/2

) 1
2α+1

or

λn/2 ≥
K( 2

γ
+ 1)

K̃P{An/2}

[
1

βn

((
λn

2λn/2

) 2α
2α+1

− λn

2λn/2

)
−

K̃ + 4
γ

K̃P{An/2}
C1

C2
− 2Kγ

K̃

]−1

provided the right member is positive. Under the very mild assumption
2(1 − δ)λn/2 ≥ λn ≥ λn/2, it is sufficient to ensure that (4.3) is true.
Indeed, λn/2 ≥ λ1 and using values of the constants we have

K( 2
γ

+ 1)

K̃P{An/2}

[
1

βn

((
λn

2λn/2

) 2α
2α+1

− λn

2λn/2

)
−

K̃ + 4
γ

K̃P{An/2}
C1

C2
− 2Kγ

K̃

]−1

≤
2
(

2
γ

+ 1
)

p

[
g(δ, α0)

2
−
K̃ + 4

γ

K̃p

C1

C2

]−1

≤
8
(

2
γ

+ 1
)

pg(δ, α0)

≤ 8

pg(δ, α0)

(
16

g(δ, α0)
+ 1

)

if

C2 ≥
4K̃ + 16

γ

K̃p

C1

g(δ, α0)
.
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Finally, Theorem 2 follows from the previous lemma that gives the
following inequality:

Q(s, n)

K
≤ inf

m∈Mn

{
‖s− sm‖2 +

λn

Kn
Dm

}

≤ ‖sm0(n) − s‖2 +
λn

Kn
Dm0(n)

≤ C2

(
λn

n

) 2α
2α+1

.

4.2. Proofs of Theorem 3 and Proposition 1. Theorem 2 implies
that for any s ∈MS(ŝm̂, ρα),

sup
n

{
ρ−2

n,αQ(s, n)
}
<∞

or equivalently there exists C > 0 such that for any n,

inf
m∈Mn

{
‖sm − s‖2 +

λn

n
Dm

}
≤ Cρ2

n,α.(4.4)

By definition of Vn, any function sm with m ∈ Mn belongs to Vn and
thus Inequality (4.4) implies

‖PVns− s‖2 ≤ Cρ2
n,α(4.5)

that is s ∈ Lα
V . By definition, M̃ is a larger collection than Mn and

thus Inequality (4.4) also implies that for any n,

inf
m∈ fM

{
‖sm − s‖2 +

λn

n
Dm

}
≤ Cρ2

n,α,

which turns out to be a characterization of Aα
fM when ρn,α =

(
λn

n

) α
2α+1

as a consequence of the following lemma.

Lemma 4. Under Assumptions of Theorem 3,

sup
n

{(
λn

n

)− 2α
2α+1

inf
m∈ fM

{
‖sm − s‖2 +

λn

n
Dm

}}
<∞ ⇔ s ∈ Aα

fM.

(4.6)

Proof. We denote

m̃(n) = arg min
m∈ fM

{
‖sm − s‖2 +

λn

n
Dm

}
.
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First, let us assume that for any n

‖sm̃(n) − s‖2 +
λn

n
Dm̃(n) ≤ C1

(
λn

n

) 2α
2α+1

where C1 is a constant. Then,

Dm̃(n) ≤ C1

(
λn

n

)− 1
1+2α

.

Using λn ≤ λ2n ≤ 2λn, for M ∈ N∗, as soon as M ≥ C1 (λ1)
− 1

1+2α ,
there exists n ∈ N∗ such that

(4.7) C1

(
λn

n

)− 1
1+2α

≤M < C1

(
λ2n

2n

)− 1
1+2α

≤ C12
1

1+2α

(
λn

n

)− 1
1+2α

.

Then,

inf
{m∈ fM: Dm≤M}

‖sm − s‖2 ≤ inf
{m∈ fM: Dm≤M}

{
‖sm − s‖2 +

λn

n
Dm

}

≤ inf
m∈ fM: Dm≤C1(λn

n )
− 1

1+2α

ff

{
‖sm − s‖2 +

λn

n
Dm

}

≤ C1

(
λn

n

) 2α
1+2α

≤ C2α+1
1 2

2α
1+2αM−2α.

Conversely, assume that there exists C̃1 satisfying

inf
{m∈ fM: Dm≤M}

‖sm − s‖2 ≤ C̃1M
−2α.

Then for any T > 0,

inf
m∈ fM

{
‖sm − s‖2 + T 2Dm

}
= inf

M∈N∗
inf

{m∈ fM: Dm=M}

{
‖sm − s‖2 + T 2M

}

≤ inf
M∈N∗

{
C̃1M

−2α + T 2M
}

≤ inf
x∈R∗

+

{
C̃1x

−2α + T 2(x+ 1)
}

≤ C̃1

(
T 2

2αC̃1

) 2α
1+2α

+ T 2

((
T 2

2αC̃1

)− 1
1+2α

+ 1

)

≤ C1

(
T 2
) 2α

1+2α ,

where C1 is a constant. �
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We have proved so far that MS(ŝm̂, ρα) ⊂ Lα
V ∩ Aα

fM. It remains to
prove the converse inclusion. Corollary 1 and the previous lemma im-
ply that it suffices to prove that inequalities (4.5) and (4.6) imply in-
equality (4.4) (possibly with a different constant C).
Let s ∈ Lα

V ∩Aα
fM. By inequality (4.6), for every n, there exists a model

m ∈ M̃ such that

‖sm − s‖2 +
λn

n
Dm ≤ Cρ2

n,α.

By definition of M̃, there exists k such that m ∈ M′
k.

If k ≤ n then m ∈ Mn and thus

inf
m∈Mn

{
‖sm − s‖2 +

λn

n
Dm

}
≤ Cρ2

n,α.

Otherwise k > n and let m′ ∈ M be the model such that Im = Im′∩Jk

as defined in Section 2.2. We define m′′ ∈ Mn by its index set Im′′ =
Im′ ∩ Jn. Remark that m′′ ⊂ m and sm − sm′′ ∈ V ⊥

n , so

‖sm′′ − s‖2 +
λn

n
Dm′′ = ‖sm′′ − sm‖2 + ‖sm − s‖2 +

λn

n
Dm′′

≤ ‖PVns− s‖2 + ‖sm − s‖2 +
λn

n
Dm

≤ Cρ2
n,α.

Theorem 3 is proved.
The proof of Proposition 1 relies on the definition of p̃enn(m). Recall
that for any model m ∈ M′

n there is a model m̃ ∈ M such that

m = span {ϕi : i ∈ Im̃ ∩ Jn}

and that

p̃enn(m) =
λn

n
Dm̃.

One deduces

‖sm − s‖2 + p̃enn(m) = ‖sm − s‖2 +
λn

n
Dm̃ ≥ ‖sm̃ − s‖2 +

λn

n
Dm̃

and thus

inf
m∈Mn

{
‖sm − s‖2 + p̃enn(m)

}
≤ Cρ2

n,α =⇒ inf
m∈M

{
‖sm − s‖2 +

λn

n
Dm

}
≤ Cρ2

n,α.

Mimicking the proof of Theorem 3, one obtains Proposition 1.
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4.3. Proof of Proposition 2. In the same spirit as in the proof of
Theorem 2, for any n, we denote
(4.8)

m0(n) = arg min
m∈M

{
‖sm − s‖2 +

pen(m)

4

}
= arg min

m∈M

{
‖sm − s‖2 +

λnDm

4n

}
.

(we have set K = 4) and
(4.9)

m̂(n) = arg min
m∈M

{
−‖ŝm‖2 + pen(m)

}
= arg min

m∈M

{
−‖ŝm‖2 +

λnDm

n

}
.

In the nested case, Lemma 2 becomes the following much stronger
lemma:

Lemma 5. For any n, almost surely

(4.10) ‖sm0(n) − s‖2 ≤ ‖ŝm̂(n) − s‖2.

Proof. As the models are embedded, either m̂(n) ⊂ m0(n) or m0(n) ⊂
m̂(n).
In the first case, ‖sm0(n) − s‖2 ≤ ‖sm̂(n) − s‖2 ≤ ‖ŝm̂(n) − s‖2 and thus
(4.10) holds.
Otherwise, by construction{

‖sm0(n) − s‖2 +
λnDm0(n)

4n
≤ ‖sm̂(n) − s‖2 +

λnDm̂(n)

4n

−‖ŝm̂(n)‖2 +
λnDm̂(n)

n
≤ −‖ŝm0(n)‖2 +

λnDm0(n)

n

and thus as m0(n) ⊂ m̂(n)
{
‖sm̂(n)\m0(n)‖2 ≤ λnDm̂(n)

4n
− λnDm0(n)

4n
λnDm̂(n)

n
− λnDm0(n)

n
≤ ‖ŝm̂(n)\m0(n)‖2.

Combining these two inequalities yields

‖sm̂(n)\m0(n)‖2 ≤ 1

4
‖ŝm̂(n)\m0(n)‖2

≤ 1

2

(
‖ŝm̂(n)\m0(n) − sm̂(n)\m0(n)‖2 + ‖sm̂(n)\m0(n)‖2

)

and thus

‖sm̂(n)\m0(n)‖2 ≤ ‖ŝm̂(n)\m0(n) − sm̂(n)\m0(n)‖2.

Now, (4.10) holds as

‖sm0(n) − s‖2 = ‖sm̂(n) − s‖2 + ‖sm̂(n)\m0(n)‖2

≤ ‖sm̂(n) − s‖2 + ‖ŝm̂(n)\m0(n) − sm̂(n)\m0(n)‖2

≤ ‖sm̂(n) − s‖2 + ‖ŝm̂(n) − sm̂(n)‖2 = ‖ŝm̂(n) − s‖2.
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Now we can conclude the proof of Proposition 2 with an induction
similar to the one used in the proof of Lemma 3. Indeed, let

A = ‖sm0(n) − s‖2 +
λnDm0(n)

4n
,

A ≤ ‖sm0(n/2) − s‖2 +
λnDm0(n/2)

4n

≤ βnE(‖ŝm̂(n/2) − s‖2) + (1 − βn)‖sm0(n/2) − s‖2 +
λn

2λn/2

λn/2Dm0(n/2)

4(n/2)
.

The choice βn = 1 − λn

2λn/2
is such that δ ≤ βn ≤ 1

2
and it implies

A ≤ βnE(‖ŝm̂(n/2) − s‖2) + (1 − βn)

(
‖sm0(n/2) − s‖2 +

λn/2Dm0(n/2)

4(n/2)

)
.

Using now almost the same induction as in Theorem 2, we obtain

A ≤ βnC
2
1

(
2λn/2

n

) 2α
1+2α

+ (1 − βn)C2

(
2λn/2

n

) 2α
1+2α

≤
(

2λn/2

λn

) 2α
1+2α

(C2
1βnC

−1
2 + (1 − βn))C2

(
λn

n

) 2α
1+2α

.

where C1 is a constant. It suffices thus to verify that

(
2λn/2

λn

) 2α
1+2α (

C2
1βnC

−1
2 + (1 − βn)

)
≤ 1,

which is the case as soon as C2 ≥ C2
1

2g(δ,α)
.

4.4. Space embeddings. In this paragraph we provide many embed-
ding properties between the functional spaces considered in Section 3.
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Let us recall the following definitions:

Bα
p,∞ =



s ∈ L2([0, 1]) : sup

J∈N

2J(α− 1
p
+ 1

2
)p

2j−1∑

k=0

|βjk|p <∞



 ;

B
α

1+2α

2,∞ =



s ∈ L2([0, 1]) : sup

J∈N

2
2Jα
1+2α

∑

j≥J

2j−1∑

k=0

β2
jk <∞



 ;

Aα

M(h)
=



s ∈ L2([0, 1]) : sup

J∈N

22Jα
∑

j≥J

2j∑

k=⌊2J (j−J+1)−θ⌋

|βj|2(k) <∞



 ;

W 2
1+2α

=



s ∈ L2([0, 1]) : sup

u>0
u

2
1+2α

∞∑

j=0

2j−1∑

k=0

1|βjk|>u
<∞



 .

4.4.1. Space embeddings : part I.

⋃

p≥1,p> 2
1+2α

Bα
p,∞

(i)

( Aα

M(h)

(ii)

( W 2
1+2α

.

Proof of (i).
Let s belong to Bα

p,∞ with p ≥ 1 and p > 2
1+2α

and, for any scale j ∈ N,

let us denote by
(
|βj |(k)

)
k

the sequence of the non-decreasing reordered
wavelet coefficients of any level j. Then there exists a non negative
constant C such that for any j ∈ N

2j∑

k=1

|βj|p(k) ≤ C2−jp(α+1/2−1/p).

Fix J ∈ N. If p < 2, according to Lemma 4.16 of [21], for all j larger
than J

2j∑

k=⌊2J(j−J+1)−θ⌋+1

|βj|2(k) ≤ C2/p 2−2j(α+1/2−1/p)
(
⌊2J(j − J + 1)−θ⌋

)1−2/p

≤ C2/p 2−2Jα2−2(j−J)(α+1/2−1/p)(j − J + 1)θ(2/p−1).

Summing over the indices j larger than J yields

∑

j≥J

2j∑

k=⌊2J (j−J+1)−θ⌋

|βj|2(k) ≤ C2/p2−2Jα
∑

j′≥0

2−2j′(α+1/2−1/p)(j′ + 1)θ(2/p−1)
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and thus

sup
J≥0

22Jα
∑

j≥J

2j∑

k=⌊2J(j−J+1)−θ⌋

|βj|2(k) ≤ C2/p
∑

j′≥0

2−2j′(α+1/2−1/p)(j′ + 1)θ(2/p−1) <∞.

So s belongs to Aα
M(h).

For the case p = 2,

∑

j≥J

2j∑

k=⌊2J (j−J+1)−θ⌋

|βj|2(k) ≤
∑

j≥J

2j∑

k=1

|βj |2(k) ≤
∑

j≥J

C2−2jα ≤ C
2−2Jα

1 − 2−2α
.

Thus

sup
J∈N

22Jα
∑

j≥J

2j∑

k=⌊2J (j−J+1)−θ⌋

|βj|2(k) <∞.

So s also belongs to Aα
M(h).

We conclude that for any p ≥ 1 satisfying p > 2
1+2α

, Bα
p,∞ ⊆ Aα

M(h).
Let us now prove the strict inclusion by considering the function s0

defined as follows:

s0 =
∑

j≥0

2j−1∑

k=0

βjkψjk =
∑

j≥0

2−
√

jψj,0.

For any (α′, p) such that α′ > max(1
p
− 1

2
, 0)

2(α′− 1
p
+ 1

2
)pj

2j−1∑

k=0

|βj,k|p = 2(α′− 1
p
+ 1

2
)pj2−

√
jp

and thus goes to +∞ when j goes to +∞. It implies that s0 does not
belong to Bα

p,∞ for any p > 2
1+2α

.

Now for any J ∈ N,

22Jα
∑

j≥J

2j∑

k≥⌊2J (j−J+1)−θ⌋

|βj |2(k) = 22Jα
∑

j≥min{j′≥J :2J(j′−J+1)−θ<1}

2−2
√

j

≤ 22Jα
∑

j≥2J/θ+J

2−2
√

j,
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which implies

sup
J≥0

22Jα
∑

j≥J

2j∑

k≥⌊2J (j−J+1)−θ⌋

|βj |2(k) <∞

and thus s0 ∈ Aα
M(h). Hence (i) is proved. �

Proof of (ii).
There is no doubt that Aα

M(h)
⊆ W 2

1+2α
since W 2

1+2α
= Aα

M(l)
. The strict

inclusion is a direct consequence of (iν), just below. �

4.4.2. Space embeddings : part II.

⋃

p≥max(1, 2
(1+2α)−1+2α

)

Bα
p,∞

(iii)

⊆ B
α

1+2α

2,∞ ∩ Aα

M(h)

(iν)

( B
α

1+2α

2,∞ ∩W 2
1+2α

.

Proof of (iii).
Let α > 0 and p ≥ 1 satisfying p ≥ 2((1 + 2α)−1 + 2α)−1. Using the

classical Besov embeddings Bα
p,∞ ⊆ B

α
1+2α

2,∞ , and, according to (i), we

have Bα
p,∞ ( Aα

M(h)
. Hence Bα

p,∞ ⊆ B
α

1+2α

2,∞ ∩ Aα

M(h)
and (iii) is proved.

�

Proof of (iν).

We already know that B
α

1+2α

2,∞ ∩ Aα

M(h)
⊆ B

α
1+2α

2,∞ ∩ W 2
1+2α

. The strict

inclusion is a direct consequence of (νi) proved in the next subsection.
�

4.4.3. A non-embedded case.

Aα

M(h)

(ν)

6⊂ B
α

1+2α

2,∞ ∩W 2
1+2α

and B
α

1+2α

2,∞ ∩W 2
1+2α

(νi)

6⊂ Aα

M(h)
.

Proof of (ν).
Let us consider the function s0 ∈ Aα

M(h)
defined in the proof of (i). We

already know that it does not belong to Bα′
p,∞ for any (α′, p) satisfying

α′ > max(1
p
− 1

2
, 0). As a consequence for the case (α′, p) = ( α

1+2α
, 2)
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where α > 0, we deduce that s0 does not belong to B
α

1+2α

2,∞ .

Moreover, we immediately deduce that Aα

M(h)
6⊂ B

α
1+2α

2,∞ ∩W 2
1+2α

. �

Proof of (νi).
Let s1 ∈ L2([0, 1]) whose wavelet expansion is given by

s1 =

∞∑

j=0

2j−1∑

k=0

βjkψjk.

We set

βjk =

{
2−

j
2 if k < 2

j
1+2α

0 otherwise.

We are going to prove that s1 ∈ B
α

1+2α

2,∞ ∩W 2
1+2α

while s1 /∈ Aα
M(h).

Summing at a given scale j yields

2j−1∑

k=0

β2
jk = 2

j
1+2α 2−j = 2−

2αj
1+2α

and thus s1 ∈ B
α

1+2α

2,∞ .

Let 0 < u < 1 and ju the real number such that 2ju = u−2. Then

u
2

1+2α

∞∑

j=0

2j−1∑

k=0

1|βjk|>u
= u

2
1+2α

∑

j<ju

2j−1∑

k=0

1|βjk|>u

= u
2

1+2α

∑

j<ju

2
j

1+2α

≤ 2
1

1+2α (2
1

1+2α − 1)−1.

So

sup
u>0

u
2

1+2α

∞∑

j=0

2j−1∑

k=0

1|βjk|>u
<∞

and s1 ∈ W 2
1+2α

.
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Let us now prove that s1 does not belong to Aα
M(h). Fix J ∈ N large

enough. Then

EJ =
∑

j≥J

2j−1∑

k=⌊2J (j−J+1)−θ⌋

|βj|2(k)

=
∑

j≥J

max

(
0, 2j/(2α+1) − 2J

(j − J + 1)θ

)
2−j .

Let J⋆ be the real number such that 2
J⋆

1+2α = 2J

(J⋆−J+1)θ .

From J⋆ = (2α+1)J−(2α+1)θ log2(J
⋆−J+1) one deduces thus J⋆ ≤

(2α+1)J , which implies J⋆ ≥ (2α+1)J− (2α+1)θ log2(2αJ +1), and
finally J⋆ ≤ (2α+1)J−(2α+1)θ log2(2αJ+1−(2α+1)θ log2(2αJ+1)).
So,

EJ =
∑

j>J⋆

(
2j/(2α+1) − 2J

(j − J + 1)θ

)
2−j

≥
∑

j>J⋆

(
2j/(2α+1) − 2J⋆/(2α+1)

)
2−j

≥ C 2−2J⋆α/(2α+1)

≥ C (log)2αθ 2−2Jα.

So,

sup
J≥0

22Jα
∑

j≥J

2j−1∑

k≥⌊2J (j−J+1)−θ⌋

|βj|2(k) = ∞.

This implies that s1 /∈ Aα
M(h). Finally (νi) is proved. �
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