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MAXISETS FOR MODEL SELECTION
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Abstract. We address the statistical issue of determining the maximal spaces

(maxisets) where model selection procedures attain a given rate of convergence. We

first prove that the answer lies in the approximation theory and we characterize

these maxisets in terms of approximation spaces. This result is exemplified by

three classical choices of model collections. For each of them, the corresponding

maxisets are described in term of classical functional spaces. We take a special

care of the issue of calculability and measure the induced loss of performance in

terms of maxisets.

Keywords: approximations spaces, approximation theory, Besov spaces, estima-

tion, maxiset, model selection, rates of convergence

AMS MOS: 62G05, 62G20, 41A25, 42C40

1. Introduction

The topic of this paper lies on the frontier between statistics and approximation

theory. Our goal is to characterize the functions well estimated by a special class of

estimation procedures: the model selection rules. Our purpose is not to build new

model selection estimators but to determine thoroughly the functions for which well

known model selection procedures achieve good performances. Of course, approx-

imation theory plays a crucial role in our setting but surprisingly its role is even
1



2 MAXISETS FOR MODEL SELECTION

more important than the one of statistical tools. This statement will be emphasized

by the use of the maxiset approach, which illustrates the well known fact that ”well

estimating is well approximating”.

More precisely we consider the classical Gaussian white noise model

(1.1) dYn,t = s(t)dt+
1√
n
dWt, t ∈ D,

where D ⊂ R, s is the unknown function, W is the Brownian motion in R and

n ∈ N∗ = {1, 2, . . . , }. This model means that for any u ∈ L2(D),

Yn(u) =

∫

D
u(t)dYn,t =

∫

D
u(t)s(t)dt+

1√
n

∫

D
u(t)dWt

is observable. We take a noise level of the form 1/
√
n to refer to the asymptotic

equivalence between the Gaussian white noise model and the classical regression

model with n equispaced observations.

Two questions naturally arise: how to construct an estimator ŝ of s based on the

observation dYn,t and how to measure its performance? Many estimators have been

proposed in this setting (wavelet thresholding, kernel rules, Bayesian procedures...).

In this paper, we only focus on model selection techniques, described accurately in

Section 2, which provide versatile tools to build estimators. Indeed, many natural

estimates can be obtained by considering different approximation spaces Sm and by

minimizing an empirical contrast γn(u) over u belonging to Sm yielding an estimate

ŝm for each approximation space. In the Gaussian white noise setting, ŝm is noth-

ing but the projection of the data onto Sm. A collection (Sm)m∈Mn of models is

considered and the aim of model selection is to construct a data driven criterion to
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select an estimate among the set of the estimates (ŝm)m∈Mn . The chosen space Sm

should be such that the unknown function s is well approximated by its projection

but should be not too large to avoid overfitting issues. To prevent the use of too large

models, a penalty penn(m), which depends on the complexity of the whole collection

of models, is added to the contrast γn. The final estimate is ŝm̂ where

m̂ = arg min
m∈Mn

{γn(ŝm) + pen(m)} .

Here we will only use penalties proportional to the dimension Dm of Sm of the form

penn(m) =
λn

n
Dm .

The pioneer work in model selection goes back in the 1970’s with Mallows [22] and [1].

Birgé and Massart develop the whole modern theory of model selection in [9, 10, 11] or

[7] for instance. Estimation of a regression function with model selection estimators is

considered by Baraud in [6, 5], while inverse problems are tackled in [20, 21]. Finally

model selection techniques provide nowadays valuable tools in statistical learning

[12].

These estimators are actually designed for estimating functions belonging to specific

class of functions. With this mind, it is natural to consider the minimax point of

view to measure the performance of an estimator; for a given functional space F , we

compare the rate of convergence with the best possible rate achieved by an estimator.

More precisely, let F(R) be the ball of radius R associated with F , the procedure
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s∗ = (s∗n)n achieves the rate ρ∗ = (ρ∗n)n on F(R) if

sup
n

[
sup

s∈F(R)

E
(
w
(
(ρ∗n)−1d(s∗n, s)

))
]
<∞,

where d is a distance and w a loss function (an increasing function such that w(0) =

0). To check that a procedure is optimal from the minimax point of view (said to

be minimax), it must be proved that its rate of convergence achieves the best rate

among any procedure on each ball of the class. This minimax approach is extensively

used and many methods cited above are proved to be minimax in different statistical

frameworks.

However, the choice of the function class is subjective and, in the minimax framework,

statisticians have no idea whether there are other functions well estimated at the rate

ρ∗ by their procedure. A different point of view is to consider the procedure s∗ as

given and search all the functions s that are well estimated at a given rate ρ∗, this is

the maxiset approach, which has been proposed by Cohen et al.[14]. The maximal

space, or maxiset, of the procedure s∗ for this rate ρ∗ is defined as the set of all these

functions. Obviously, the larger the maxiset, the better the procedure. We set the

following definition.

Definition 1. Let ρ∗ = (ρ∗n)n be a decreasing sequence of positive real numbers and

let s∗ = (s∗n)n be an estimation procedure. The maxiset of s∗ associated with the rate

ρ∗ is

MS(s∗, ρ∗) =

{
s : sup

n

[
E
(
w
(
(ρ∗n)−1d(s∗n, s)

))]
<∞

}
,
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the ball of radius R > 0 of the maxiset is defined by

MS(s∗, ρ∗)(R) =

{
f : sup

n

[
E
(
w
(
(ρ∗n)−1d(s∗n, s)

))]
≤ w(R)

}
.

We also use the following notation: if F is a given space MS(s∗, ρ∗) :=: F means in

the sequel that for any R > 0, there exists R′ > 0 such that MS(s∗, ρ∗)(R) ⊂ F(R′)

and for any R′ > 0, there exists R > 0 such that F(R′) ⊂MS(s∗, ρ∗)(R). Of course,

there exist connections between maxiset and minimax points of view: s∗ achieves the

rate ρ∗ on F if and only if

F ⊂MS(s∗, ρ∗).

In the white noise setting, the maxiset theory has been investigated for a wide

range of estimation procedures, including kernel, thresholding and Lepski proce-

dures, Bayesian or linear rules. We refer to [14], [18], [3], [4], [8], [25], and [26] for

general results. Maxisets have also been investigated for other statistical models, see

[2] and [27].

This paper deals with maxisets of model selection procedures for the classical choice

of the L2 distance for d and w(x) = x2. The main result characterizes these maxisets

in terms of approximation spaces. More precisely, we establish an equivalence be-

tween the statistical performance of ŝm̂ and the approximation properties of the

model collections Mn. Theorems 1 and 2 prove that, for a given function s, the

quadratic risk E[‖s − ŝm̂‖2] decays at a rate
(

λn

n

) 2α
1+2α if and only if the determin-

istic quantity infm∈Mn ‖s − sm‖2 + λn

n
Dm decays at the same rate

(
λn

n

) 2α
1+2α . This

result holds with mild assumptions on λn and under an embedding assumption on

the model collections (Mn ⊂ Mn+1). Once we impose additional structure on the
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model collections, the deterministic condition can be rephrased as a linear approx-

imation property and a non linear one as stated in Theorem 3. We illustrate these

results for three different collections. The first one deals with sieves in which all the

models are embedded, the second one with the collection of all subspaces spanned by

vectors of a given basis. For these examples, we handle the issue of calculability and

give more explicit characterizations of the maxisets, especially for the wavelet basis.

In the third example, we provide an intermediate choice of model collections in the

wavelet cases and prove that the embedding condition on the model collections can

be relaxed.

Section 2 describes the model selection procedures whose maxisets are characterized

in Section 3 and 4. Section 5 is devoted to the illustrations of previous results.

Section 6 gives the proofs of our results.

2. Model Selection in nonparametric estimation

Consider the Gaussian model defined in (1.1)

dYn,t = s(t)dt+
1√
n
dWt, t ∈ D.

We recall that this model means that for any u ∈ L2(D),

Yn(u) =

∫

D
u(t)dYn,t =

∫

D
u(t)s(t)dt+

1√
n

∫

D
u(t)dWt =

∫

D
u(t)s(t)dt+

1√
n
Wu

is observable where Wu is a centered gaussian process such that

E[WuWu′] =

∫

D
u(t)u′(t)dt
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for all functions u and u′. Assume we are given an orthonormal basis of L2(D),

denoted by (ϕi)i∈I where I is a countable set. The model (1.1) is translated in the

sequence space by taking successively u = ϕi for i ∈ I and we obtain the equivalent

sequence model

(2.1) β̂i = βi +
1√
n
wi, wi

iid∼ N(0, 1), i ∈ I

where for any i ∈ I,

βi =

∫

D
ϕi(t)s(t)dt, β̂i = Yn(ϕi).

Statistical inference in this model has been widely studied among the previous

decades. One of the most popular method is given by M-estimation methodology

which consists in constructing an estimator by minimizing an empirical criterion

γn over a given set, called a model. In nonparametric estimation, a usual choice for

such a criterion is the quadratic norm, giving rise to the following empirical quadratic

contrast

γn(u) = −2Yn(u) + ‖u‖2 = −2
∑

i∈I
β̂iαi +

∑

i∈I
α2

i

for any function u =
∑

i∈I
αiϕi where ‖ · ‖ denotes the norm associated to L2(D).

The issue is the choice of the model. We consider models spanned by atoms of the

basis. For any subset m of I, we define Sm = span{ϕi : i ∈ m} and denote Dm = |m|

the dimension of Sm. Let ŝm be the function that minimizes the quadratic empirical

criterion γn(u) with respect to u ∈ Sm. A straightforward computation shows that

the estimator ŝm is the projection of the data onto the space Sm

ŝm =
∑

i∈m

β̂iϕi, and γn(ŝm) = −
∑

i∈m

β̂2
i .
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For the choice of Sm, we face the classical statistical tradeoff between bias and

variance. On the one hand, the set Sm must be large to allow a small bias. On the

other hand, large model induces large variance.

Given a collection of models (Sm)m∈M where M ⊂ P(I), model selection theory

aims at selecting from the data the best Sm from the collection, which gives rise to

the model selection estimator ŝm̂. For this purpose, a penalized rule is considered,

which aims at selecting an estimator, close enough to the data, but still lying in

a small space to avoid overfitting issues. Let pen(m) be a penalty function which

increases when Dm increases, the model m̂ is selected using the following penalized

criterion

(2.2) m̂ = arg min
m∈M

{γn(ŝm) + pen(m)} .

The choice of the model collection and the associated penalty are then the key issues

handled by model selection theory.

We also point out that the choices of both the model collection M and the penalty

function pen(m), should depend on the noise level. To stress this dependency on n,

we add a subscript to the model collection Mn and to the penalty penn(m).

The asymptotic behavior of model selection estimators has been studied by many

authors. We refer to [23] for general references. We recall hereafter the oracle

type inequality proved by Massart that allows to derive minimax results for many

functional classes. Such an oracle inequality provides a non asymptotic control on

the estimation error with respect to a bias term ‖s− sm‖, where sm stands for the

best approximation (in the L2 sense) of the function s by a function of Sm, that is
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sm is the orthogonal projection of s onto Sm, defined by

sm =
∑

i∈m

βiϕi.

Theorem 1 (Theorem 4.2 of [23]). Let n ∈ N⋆ be fixed and let (xm)m∈Mn be some

family of positive numbers such that

(2.3)
∑

m∈Mn

exp(−xm) = Σn <∞.

Let κ > 1 and assume that

(2.4) penn(m) ≥ κ

n

(√
Dm +

√
2xm

)2

.

Then, almost surely, there exists some minimizer m̂ of the penalized least-squares

criterion

γn(ŝm) + penn(m)

over m ∈ Mn. Moreover, the corresponding penalized least-squares estimator ŝm̂ is

unique and the following inequality is valid

E
[
‖ŝm̂ − s‖2

]
≤ C(κ)

[
inf

m∈Mn

{
‖sm − s‖2 + penn(m)

}
+

(1 + Σn)

n

]
,

where C(κ) depends only on κ.

The oracle inequality allows to derive convergence rates associated to a set of func-

tions Θ. Indeed, to obtain convergence rates on Θ it suffices to control

sup
s∈Θ

[
inf

m∈Mn

{
‖sm − s‖2 + penn(m)

}
+

(1 + Σn)

n

]
.
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For example, Massart[23] derives in his Inequality (4.70) minimax rates on Besov

bodies Bα
p,∞ when α > 1/p− 1/2 by a convenient choice of models based on wavelets

and by evaluating the infimum. Namely, he establishes

sup
n

[
n

2α
1+2α sup

s∈Bα
p,∞

E‖ŝm̂ − s‖2

]
<∞ .

3. Approximation properties and Model Selection estimators

Our goal is to determine maxisets associated to model selection estimators. If ρ∗ is

a given rate of convergence, we are looking at, for any R > 0, the set MS(ŝm̂, ρ
∗)(R)

defined by

MS(ŝm̂, ρ
∗)(R) =

{
s ∈ L2 : sup

n

[
(ρ∗n)−2E(‖ŝm̂ − s‖2)

]
≤ R2

}
.

Theorem 1 is a non asymptotic result while maxisets results deal with rates of con-

vergence (with asymptotics in n). Therefore obtaining maxiset results for model

selection estimators requires a structure on the sequence of model collections.

We will focus mainly on the case of nested model collections (Mn ⊂ Mn+1). Note

that this does not imply a strong structure on the model collection for a given n. In

particular, this does not imply that the models Sm are nested.

Following the classical model selection literature, we suppose that the penalty is

proportional to the dimension. More precisely, we assume that the penalty has the

following form:

∀ m ∈ Mn, penn(m) =
λn

n
Dm
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with (λn)n a non-decreasing sequence of positive numbers such that the non very

restrictive conditions holds

(3.1) lim
n→+∞

n−1λn = 0.

Identifying the maxiset MS(ŝm̂, ρ
∗) to a set Θ is a two-step procedure. First, we need

to establish that the model selection estimator attains the given rate of convergence

ρ∗ over Θ. Namely, Θ ⊂ MS(ŝm̂, ρ
∗).

Conversely, we need to prove that MS(ŝm̂, ρ
∗) ⊂ Θ. We prove in this paper that this

implies that Θ is characterized through approximation properties of the spaces Sm

involving the quantity

inf
m∈Mn

(
‖sm − s‖2 +

λn

n
Dm

)
.

Theorem 1 already provides the first inclusion and thus the following Theorem can

be seen as a converse of the theorem proved by Massart.

Theorem 2. Let 0 < α0 < ∞ be fixed. Let us assume that the sequence of models

satisfies

(3.2) ∀ n, Mn ⊂ Mn+1,

and that the sequence (λn)n satisfies (3.1) and

(3.3) ∀ n ∈ N∗, λ2n ≤ 2λn,

and

(3.4) ∃ n0 ≥ 0, λn0 ≥ 32I(α0)
−1,



12 MAXISETS FOR MODEL SELECTION

where I(α0) is the positive constant only depending on α0 defined by

(3.5) I(α0) = inf
α∈[0,α0]

inf
x∈[1/2,1)

x2α/(1+2α) − x

1 − x
> 0.

Then, the penalized rule ŝm̂ satisfies the following result. For any α ∈ (0, α0], for

any R > 0, there exists R′ > 0 such that for s ∈ L2,

sup
n

[(
λn

n

)− 2α
1+2α

E(‖ŝm̂ − s‖2)

]
≤ R2(3.6)

⇒ sup
n

[(
λn

n

)− 2α
1+2α

inf
m∈Mn

(
‖sm − s‖2 +

λn

n
Dm

)]
≤ (R′)2.

Technical Assumptions (3.1), (3.3) and (3.4) are very mild and could be partly relaxed

while preserving the results. Note that the classical cases λn = λ0 or λn = λ0 log(n)

satisfy (3.1) and (3.3). When λn = λ0 log(n), (3.4) is always satisfied. When λn =

λ0, it is also the case provided λ0 is large enough. Assumption (3.1) is necessary

to consider rates converging to 0. The assumption α ∈ (0, α0] can be relaxed for

particular model collection, which will be highlighted in Theorem 4 of Section 5.1.

Condition (3.2) can be removed for some special choice of model collection Mn at the

price of a slight overpenalization as it shall be shown in Proposition 3 and Section 5.3.

We emphasize the following remark.

Remark 1. If we further assume that λn ≥ κ
(
1 +

√
2δn
)2

with κ > 1 and δn such

that

(3.7)
∑

m∈Mn

e−δnDm ≤ Σn < +∞
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then Theorems 1 and 2 hold simultaneously giving a first characterization of the

maxiset of the model selection procedure ŝm̂. More precisely, assuming (3.1), (3.2),

(3.3), (3.4) and (3.7) with Σn ≤ λnΣ where Σ < +∞, then for any α > 0, ρα =

(ρn,α)n with for any n, ρn,α =
(

λn

n

)α/(1+2α)
MS(ŝm̂, ρα) is the set of the functions s

such that

sup
n

[(
λn

n

)− 2α
1+2α

inf
m∈Mn

(
‖sm − s‖2 +

λn

n
Dm

)]
<∞.

The deterministic bound of the right condition of (3.6)

sup
n

[(
λn

n

)− 2α
1+2α

inf
m∈Mn

(
‖sm − s‖2 +

λn

n
Dm

)]
≤ (R′)2(3.8)

gives an approximation property of s with respect to the models Mn. For special

choices of Mn, it can be related to some classical approximation properties of s.

Indeed, the following proposition shows that (3.8) implies a non linear approximation

rate of s in M̃ =
⋃

k Mk. If the model collection does not depend on n, it is even

equivalent.

Proposition 1. We consider a non-decreasing sequence of positive numbers (λn)n

such that (3.1) and (3.3) hold.

If there exists a constant C1 > 0 such that for s ∈ L2,

inf
m∈Mn

{
‖s− sm‖2 +

λn

n
Dm

}
≤ C1

(
λn

n

) 2α
1+2α

for any n, then there exists a constant C̃1 > 0 (not depending on s) such that for

any M ,

inf
{m∈M̃: Dm≤M}

‖s− sm‖2 ≤ C̃1M
−2α.
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If for any k and k′, Mk = Mk′ = M and thus M̃ = M, then these two properties

are equivalent.

This proposition is the direct consequence of the following more general lemma ap-

plied with T 2
n = λn

n
:

Lemma 1. Assume (Tn)n is a sequence of positive numbers going to 0 such that for

any n, T 2
2n ≤ T 2

n ≤ 2T 2
2n. Then if there exists a constant C1 > 0 such that for s ∈ L2,

inf
m∈Mn

{
‖s− sm‖2 + T 2

nDm

}
≤ C1

(
T 2

n

) 2α
1+2α

for any n, then there exists a constant C̃1 > 0 (not depending on s) such that for

any M ,

inf
{m∈M̃: Dm≤M}

‖s− sm‖2 ≤ C̃1M
−2α.

Assume now that for all k and k′, Mk = Mk′ = M and thus M̃ = M. If there

exists a constant C̃1 > 0 such that for s ∈ L2,

inf
{m∈M: Dm≤M}

‖s− sm‖2 ≤ C̃1M
−2α,

for any M ≥ 1, then for any T0 > 0, for all T ∈ (0, T0],

inf
m∈M

{
‖s− sm‖2 + T 2Dm

}
≤ C1

(
T 2
) 2α

1+2α

where C1 is a constant that only depends on C̃1, T0 and α.

If the model collection Mn depends on n, it is much more intricate to obtain explicit

approximation properties. Hence, we have to enforce a stronger relationship between
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the different model collections Mn. We construct thus the model collections Mn

through restrictions of a single model collection M. Namely, we define a sequence

In of increasing subsets of the indices set I and we let

M′
n = {m ∩ In : m ∈ M} .(3.9)

The model collections M′
n do not necessarily satisfy the embedding condition (3.2).

Thus, we define

Mn =
⋃

k≤n

M′
k

so Mn ⊂ Mn+1. We denote as before M̃ = ∪nMn = ∪nM′
n. Remark that without

any further assumption M̃ is a larger model collection than M.

Let us denote V = (Vn)n the sequence of approximation spaces defined by

Vn = span{ϕi : i ∈ In}.

The general approximation property (3.8) can be revisited as follows:

Proposition 2. We consider a non-decreasing sequence of positive numbers (λn)n

such that (3.1) and (3.3) hold. If there exists an increasing sequence of indices sets

(In)n such that

Mn =
⋃

k≤n

M′
k =

⋃

k≤n

{m ∩ Ik : m ∈ M}(3.10)
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then

∃R > 0, sup
n

[(
λn

n

)− 2α
1+2α

inf
m∈Mn

(
‖s− sm‖2 +

λn

n
Dm

)]
≤ R2

⇔





∃R′ > 0, supn

[(
λn

n

)−α/(1+2α) ‖s− PVns‖
]
≤ R′ (L)

∃R′′ > 0, supM

[
Mα inf{m∈M̃: Dm≤M} ‖s− sm‖

]
≤ R′′ (NL)

where PVn is the orthogonal projection operator on Vn = span{ϕi : i ∈ In} and

M̃ = ∪nM′
n.

Observe that the result pointed out in Proposition 2 links the performance of the

estimator to an approximation property for the estimated function. This approx-

imation property is decomposed into a linear approximation (L) and a non linear

approximation (NL). The linear condition is due to the use of the reduce model col-

lection Mn instead of M, which is often necessary to ensure either the calculability

of the estimator or Conditions (2.3) and (2.4) of Theorem 1. It plays the role of a

minimum regularity property that is easily satisfied.

To avoid considering the union of M′
k, that can dramatically increase the number of

models considered for a fixed n, leading to large penalties, we can relax the assump-

tion that the penalty is proportional to the dimension. Namely, if we overpenalize

by replacing the dimension Dm for any model m ∈ Mn by the dimension D+
m of the

corresponding model m′ ∈ M (m = m′ ∩ In):

penn(m) =
λn

n
D+

m :=
λn

n
Dm′

we establish a result similar to Proposition 2.
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Mimicking its proof, we obtain the following Proposition that will be used in Sec-

tion 5.3:

Proposition 3. We consider a non-decreasing sequence of positive numbers (λn)n

such that (3.1) and (3.3) hold. If there exists an increasing sequence of indices set

(In)n such that

Mn = M′
n = {m = m′ ∩ In : m′ ∈ M}(3.11)

then

∃R > 0, sup
n

[(
λn

n

)− 2α
1+2α

inf
m∈Mn

(
‖s− sm‖2 +

λn

n
Dm

)]
≤ R2

⇔





∃R′ > 0, supn

[(
λn

n

)− α
1+2α ‖s− PVns‖

]
≤ R′ (L)

∃R′′ > 0, supM

[
Mα inf{m∈M̃: Dm≤M} ‖s− sm‖

]
≤ R′′ (NL)

where PVn is the orthogonal projection operator on Vn = span{ϕi : i ∈ In} and

M̃ = ∪nM′
n.

4. Maxisets for Model Selection rules

We consider now the setting of Proposition 2:

Mn =
⋃

k≤n

M′
k =

⋃

k≤n

{m ∩ Ik : m ∈ M}

and let M̃ = ∪kMk.

Note that it contains the case where Mn does not depend on n by letting In = I

and thus M̃ = M.
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For a model collection and a rate of convergence ρα = (ρn,α)n with for any n,

(4.1) ρn,α =

(
λn

n

) α
1+2α

,

consider the corresponding approximation space

Lα
V =

{
s ∈ L2 : sup

n

[(
λn

n

)− α
1+2α

‖s− PVns‖
]
< +∞

}
,

where

Vn = span{ϕi : i ∈ In}.

Define also another kind of approximation set

Aα

M̃

=

{
s ∈ L2 : sup

M

[
Mα inf

{m∈M̃: Dm≤M}
‖s− sm‖

]
<∞

}
.

By using Remark 1 that combines Theorems 1 and 2, and Proposition 2, we obtain:

Theorem 3. Let α0 < ∞ be fixed. Let us assume that the non-decreasing sequence

(λn)n satisfies (2.3), (2.4), (3.1), (3.3) and (3.4). We denote for any α > 0, ρα =

(ρn,α)n with for any n,

ρn,α =

(
λn

n

) α
1+2α

.

Then, the penalized rule ŝm̂ satisfies the following result: for any α ∈ (0, α0],

MS(ŝm̂, ρα) :=: Aα

M̃

∩ Lα
V .

Observe that the rate ρn,α depends on the choice of λn. It can be for instance

polynomial, or can take the classical form (n−1 log(n))α/(1+2α). If the model collection

has the structure of Proposition 3 (Mn = M′
n = {m ∩ In : m ∈ M}), the result of



MAXISETS FOR MODEL SELECTION 19

Theorem 3 still holds as soon as we overpenalize the model as in Proposition 3. The

spaces Aα

M̃

and Lα
V highly depend on the models and the approximation space. At

first glance, the best choice seems to be Vn = L2 and

M = {m ∈ P(I)}

since the infimum in the definition of Aα

M̃

becomes smaller when the collection is

enriched. There is however a price to pay when enlarging the model collection, the

penalty has to be larger to satisfy the Kraft condition (2.3) of Theorem 1 which

deteriorates the convergence rate. A second issue comes from the tractability of the

minimization (2.2) itself which will further limit the size of the model collection. In

the next section, we will consider usual choices of models.

5. Maxiset results for particular model collections

First, we consider the two most classical choices of model collections in a basis: a

“poor” collection in which all the models are embedded (sieves) and the largest col-

lection in which all subsets of I are considered. Maxisets will be determined for such

collections. The issue of calculability will be pointed out and addressed. Further,

when the basis used is a wavelet basis, we will provide a functional characterization

of these maxisets. In addition, we will study an intermediate choice of collections

adapted to a specific class of sparse functions suggested by Massart in Section 4.3.5

of [23].

We briefly recall the construction of periodic wavelets bases of the interval [0, 1]. Let

(φ, ψ) be compactly supported functions of L2([0, 1]) and denote for all j ∈ N, all
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k ∈ Z and all x ∈ R, φjk(x) = 2
j/2
φ(2

j
x − k) and ψjk(x) = 2

j/2
ψ(2

j
x − k). The

functions φ and ψ can be chosen such that

{φ00, ψjk : j ≥ 0, k ∈ {0, . . . , 2j − 1}}

constitutes an orthonormal basis of L2([0, 1]). Some popular examples of such bases

are given in [15]. The function φ is called the scaling function and ψ the corresponding

wavelet. Any function s ∈ L2([0, 1]) can be represented as:

s = α00φ00 +
∑

j≥0

2j−1∑

k=0

βjkψjk

where

α00 =

∫

R

s(t)φ00(t)dt

and for any j ∈ N and for any k ∈ {0, . . . , 2j − 1}

βjk =

∫

R

s(t)ψjk(t)dt.

Finally, we recall the characterization of Besov spaces by using wavelets. Such spaces

will play an important role in following sections. In the sequel and in Sections 5.1,

5.2 and 5.3 we consider the basis

{φ00, ψjk : j ≥ 0, k ∈ {0, . . . , 2j − 1}}

and assume that the multiresolution analysis associated with this basis is r-regular

with r ≥ 1 as defined in [24]. In this case, for any 0 < α < r and any 1 ≤ p, q ≤ ∞,
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the function s belongs to the Besov space Bα
p,q if and only if |α00| <∞ and

∑

j≥0

2jq(α+ 1
2
− 1

p
)‖βj.‖q

ℓp
<∞ if q <∞,

sup
j≥0

2j(α+ 1
2
− 1

p
)‖βj.‖ℓp <∞ if q = ∞

where (βj.) = (βjk)k. This characterization allows to recall following embeddings:

Bα
p,q ( Bα′

p′,q′ as soon as α− 1

p
≥ α′ − 1

p′
, p ≤ p′ and q ≤ q′

and

Bα
p,∞ ( Bα

2,∞ as soon as p > 2.

5.1. Collection of Sieves. In this section, we consider only one model collection,

namely the class of nested models:

(5.1) Msieve = {m ⊂ I : m = {1, 2, . . . , d}}

where we have identified I with N∗. For such a model collection, the following result

is deduced from Remark 1 and Proposition 1 or from Theorem 3 with the choice

Vn = L2:

Corollary 1. Let 0 < α0 < ∞ be fixed. Assume that the non-decreasing sequence

(λn)n satisfies (3.1), (3.3) and (3.4). For Msieve the model collection (5.1) and for

any m ∈ Msieve, we set

penn(m) =
λn

n
Dm.
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We denote for any α > 0, ρα = (ρn,α)n with for any n,

ρn,α =

(
λn

n

) α
1+2α

.

Then, the penalized rule ŝm̂ satisfies the following result: for any α ∈ (0, α0],

MS(ŝm̂, ρα) :=: Aα

Msieve
.

Note that Conditions (2.3) and (2.4) are satisfied under condition (3.4).

In fact, this result can be generalized by omitting the assumption α ∈ (0, α0]. In this

case, we slightly restrict the class of sequences (λn)n and prove the following result.

Theorem 4. Let us assume that the non-decreasing sequence (λn)n satisfies (3.1),

with λ0 > 1 and there exists δ ∈ (0, 1) such that

∀ n, λ2n ≤ 2(1 − δ)λn.

For Msieve the model collection (5.1) and for any m ∈ Msieve, we set

penn(m) =
λn

n
Dm.

We denote for any α > 0, ρα = (ρn,α)n with for any n,

ρn,α =

(
λn

n

) α
1+2α

.

Then, the penalized rule ŝm̂ satisfies the following result:

MS(ŝm̂, ρα) :=: Aα

Msieve
.
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Now, consider the special case where the Sm’s are built with the wavelet basis. The

models are specified by a scale index j:

Smj
= span

{
φ0,0, ψj′,k : j′ < j, k ∈ {0, . . . , 2j′ − 1}

}
.

Note that Dmj
= 2j and thus penn(mj) = λn2j

n
. Then,

Aα
Msieve =



s = α00φ00 +

∑

j≥0

2j−1∑

k=0

βjkψjk ∈ L2 : sup
J≥0

22Jα
∑

j≥J

2j−1∑

k=0

β2
jk <∞



 .

So, if α < r, where r is the regularity associated with the multiresolution analysis,

then

Aα
Msieve = Bα

2,∞

as supJ≥0 22Jα
∑

j≥J

∑2j−1
k=0 β

2
jk < ∞ is obviously an equivalent characterization of

Bα
2,∞. We deduce:

Proposition 4. For ρα = (ρn,α)n with for any n, ρn,α =
(

λn

n

)α/(1+2α)
the maxiset of

ŝm̂ for the collection of wavelet sieves is

MS(ŝm̂, ρα) :=: Bα
2,∞.

The estimator ŝm̂ cannot be computed in practice because to determine the best

model m̂ one needs to consider an infinite number of models and it cannot be done

without computing an infinite number of wavelet coefficients. To overcome this issue,

we specify a maximum resolution level j0(n) for estimation where n 7→ j0(n) is non-

decreasing. This modification is in the scope of Theorem 3: it corresponds to the

choice Vn = Smj0(n)
leading to consider collections of truncated wavelet sieves. For
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the specific choice

(5.2) 2j0(n) ≤ nλ−1
n < 2j0(n)+1,

we have:

Lα
V = B

α
1+2α

2,∞ .

Since B
α

1+2α

2,∞ ∩ Bα
2,∞ reduces to Bα

2,∞ for α > 0 we have:

Proposition 5. For ρα = (ρn,α)n with for any n, ρn,α =
(

λn

n

)α/(1+2α)
the maxiset

of ŝm̂ associated with the collections of truncated wavelet sieves at the scale j0(n)

specified in (5.2) is

MS(ŝm̂, ρα) :=: Bα
2,∞.

Thus, this tractable procedure is as efficient as the original one. We obtain the

maxiset behavior of the non adaptive linear wavelet procedure pointed out by [25]

but here the procedure is adaptive and completely data-driven.

5.2. The largest model collection case. At first glance, we would like to deal

with the model collection

Mlargest = {m : m ⊂ I}.

But with such a choice and with penalties used in Section 5.1, (2.3) and (2.4) may be

not satisfied. In addition, the penalized estimate is not tractable. So, we introduce

an increasing sequence (Nn)n such that for all n ∈ N∗,

Nn ≤ n

log(n)
< Nn + 1.
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Such a choice still corresponds to a sequence of approximation spaces defined by

(Vn)n with for any n,

Vn = span{ϕi : i < Nn}.

Then, we consider the class of models (Mlargest
n )n, with for any n,

(5.3) Mlargest
n = {m : m ⊂ {1, 2, . . . , Nn − 1}}

and thus M̃largest = ∪nMlargest
n = Mlargest. Straightforward computations (see [23]

p. 92) show that the choice λn = λ0 log(n) with λ0 > (1+
√

2)2 is sufficient to ensure

that Conditions (2.3) and (2.4) hold with Σn < ∞ not depending on n. Applying

Theorem 3, thus we obtain the following result:

Corollary 2. Let α0 < ∞ be fixed. Let Mlargest
n be the model collection (5.3) with

for any m ∈ Mn,

penn(m) =
λn

n
Dm =

λ0 log(n)

n
Dm, λ0 > (1 +

√
2)2.

Then, the penalized rule ŝm̂ associated with this penalty function satisfies the following

result. For any α ∈ (0, α0], if ρα = (ρn,α)n with for any n,

ρn,α =

(
log n

n

) α
1+2α

MS (ŝm̂, ρα) :=: Aα
Mlargest ∩ Lα

V .
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It is easy to characterize the approximation space in our setting. Indeed, as M̃largest =

Mlargest gathers all possible models, we have:

(5.4) Aα
Mlargest =

{
s =

∑

i∈I
βiϕi ∈ L2 : sup

M∈N∗

[
Mα inf

m: Dm=M
‖s− sm‖

]
<∞

}
.

The estimator ŝm̂ seems to be hardly tractable from the computational point of view

as it requires a minimization over 2Nn models. Fortunately, the minimization can be

rewritten coefficientwise as:

m̂(n) = argminm∈Mlargest
n

{
γn(ŝm) +

λn

n
Dm

}
= argminm∈Mlargest

n

{
∑

i<Nn

(
β̂2

i 1i6∈m +
λn

n
1i∈m

)}

that corresponds to the easily computable hard thresholding rule:

m̂(n) =

{
i < Nn : |β̂i| ≥

√
λn

n

}
.

Now, let us focus on the different possible characterizations of Aα
Mlargest . First, we

focus on characterizations in terms of sparsity properties. In our context, sparsity

means that there is a relative small proportion of relative large entries of the coeffi-

cients of a signal. So, we introduce for n ∈ N∗, the notation

|β|(n) = inf {u : card {i ∈ I : |βi| > u} < n}

to represent a non-increasing rearrangement of a counting family (βi)i∈I :

|β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(n) ≥ · · · .
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Now, by using (5.4)

Aα
Mlargest =

{
s =

∑

i∈I
βiϕi ∈ L2 : sup

M∈N∗

[
M2α

∞∑

i=M+1

|β|2(i)

]
<∞

}
.

Using Theorem 2.1 of [18], we have for α > 0,

Aα
Mlargest = W 2

1+2α

with for any q < 2,

Wq =

{
s =

∑

i∈I
βiϕi ∈ L2 : sup

n∈N∗

n1/q|β|(n) <∞
}
.(5.5)

So, the larger α, the smaller q = 2/(1 + 2α) and the more substantial the sparsity

of the sequence (βi)i∈I . Lemma 2.2 of [18] shows that the spaces Wq (q < 2) have

other characterizations in terms of coefficients:

Wq =

{
s =

∑

i∈I
βiϕi ∈ L2 : sup

u>0
uq−2

∑

i∈I
β2

i 1|βi|≤u <∞
}

(5.6)

=

{
s =

∑

i∈I
βiϕi ∈ L2 : sup

u>0
uq
∑

i∈I
1|βi|>u <∞

}
.

Finally, we have

MS (ŝm̂, ρα) :=: Lα
V ∩W 2

1+2α
.

Now, for the special case of wavelet bases, the maxisets can be characterized more

precisely. We still use the parameter r defined as the regularity of the multiresolution

analysis associated with the basis introduced previously. We set Nn = 2j0(n), j0(n) ∈

N∗, with 2j0(n) ≤ n
log n

< 2j0(n)+1 and Mlargest
n contains all the subsets of coefficients
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of scale strictly smaller than j0(n). As in Section 5.1,

Lα
V = B

α
1+2α

2,∞ .

It yields

Proposition 6. For the procedure associated to the collection Mlargest

MS (ŝm̂, ρα) :=: W 2
1+2α

∩ B
α

1+2α

2,∞ .

Now, let us characterize Aα
Mlargest in terms of interpolation spaces. We refer the reader

to Section 3 of [13] for the definition of interpolation spaces. Since we also have

Aα
Mlargest =

{
s =

∑

i∈I
βiϕi ∈ L2 : sup

M>0

[
Mα inf

S∈ΣM

‖s− S‖
]
<∞

}

where ΣM is the set of all S =
∑

i∈I αiϕi, card(I) ≤M, Theorems 3.1 and 4.3 and

Corollary 4.1 of [13], we obtain for 0 < s < r and for τ such that 1/τ = s+ 1/2 < 1,

Aα
Mlargest = (L2,Bs

τ,τ )α/s,∞, 0 < α < s.

This last result, which establishes that Aα
Mlargest can be viewed as an interpolation

space between L2 and a suitable Besov space, proves that the dependency on the

wavelet basis is not crucial at all. The space Aα
Mlargest could be defined by using any

wavelet basis if this basis is regular enough. The condition s+1/2 < 1 implies s < 1/2

and Aα
Mlargest can be characterized only if α < 1/2. However, the interpolation result

remains true for α ≥ 1/2 under additional involved conditions on the basis (ϕi)i∈I [13].
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Now, let us establish simple embeddings between Besov spaces and the spaces Wq.

For this purpose, we still consider

s = α00φ00 +
∑

j≥0

2j−1∑

k=0

βjkψjk =
∑

j≥−1

2j−1∑

k=0

βjkψjk.

Then, if q = 2
1+2α

, using the simple Markov inequality, if s ∈ Bα
2

1+2α
, 2
1+2α

, then

sup
0<u<∞

u−
4α

1+2α

∑

j≥−1

2j−1∑

k=0

β2
jk1|βjk|≤u <∞.

So,

Bα
2

1+2α
, 2
1+2α

⊂ W 2
1+2α

.

Thus, the spaces Wq appear as weak versions of Besov spaces and are called “weak

Besov spaces” by [14]. Now, assume that s belongs to Bα
2,∞. Then, for any 0 < u < 1,

let us set J(u) ∈ N such that

2J(u) ≤ u−
2

1+2α < 2J(u)+1.

uq−2
∑

j≥−1

2j−1∑

k=0

β2
jk1|βjk|≤u = uq−2

∑

j<J(u)

2j−1∑

k=0

β2
jk1|βjk|≤u + uq−2

∑

j≥J(u)

2j−1∑

k=0

β2
jk1|βjk|≤u

≤ uq−2
∑

j<J(u)

2j−1∑

k=0

u2 + uq−2
∑

j≥J(u)

2j−1∑

k=0

β2
jk

≤ uq2J(u) + C1u
q−2

∑

j≥J(u)

2−2jα

≤ C2

(
uq− 2

1+2α + uq−2+ 4α
1+2α

)
,
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where C1 and C2 denote two constants depending on the radius of the Besov ball

containing s. So, with q = 2
1+2α

,

sup
0<u<1

uq−2
∑

j≥−1

2j−1∑

k=0

β2
jk1|βjk|≤u <∞,

yielding

Bα
2,∞ ⊂ W 2

1+2α
.

Actually, Lemma 1 of [25] extends this result and proves that

Bα
2,∞ ( W 2

1+2α
∩ B

α
1+2α

2,∞ .

This result establishes a maxiset comparison between the strategies of Sections 5.1

and 5.2 in the wavelet setting.

We can go further and improve the procedure from the maxiset point of view

without loosing the tractability. For this purpose, we fix γ ≥ 1 and modify Nn by

setting Nn = 2j0(n), j0(n) ∈ N∗, with 2j0(n) ≤
(

n
log n

)γ

< 2j0(n)+1. The maxiset of the

modified procedure with

penn(m) =
λn

n
Dm =

λ0 log(n)

n
Dm, λ0 > γ(1 +

√
2)2.

is

MS (ŝm̂, ρα) :=: W 2
1+2α

∩ B
α

γ(1+2α)

2,∞ .

The larger γ, the larger the maxiset but the larger λ0 as well.

5.3. A special strategy for Besov spaces. On page 122 of [23], Massart provides

a collection of models, adapted to estimation in Besov spaces, which turns out to be
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minimax for all Besov spaces Bα
p,∞ when α > max(1/p− 1/2, 0). This new strategy

aims at taking advantage on the dyadic structure of the decomposition obtained on

wavelet bases. This special adaptive strategy is now recalled. For a chosen θ > 2,

define the model collection by

Mhyb = {m ∈ MJ , J ∈ N}(5.7)

where for any J ∈ N,

MJ =
{

m′ = {(j, k); 0 ≤ j < J, 0 ≤ k < 2j}
⋃

∪j≥J{(j, k), k ∈ Aj , |Aj | = ⌊2J (j − J + 1)−θ⌋}
}

with ⌊x⌋ := max{n ∈ N : n ≤ x}.

As remarked in [23], for any J ∈ N and any m′ ∈ MJ the dimension Dm′ of Sm′ is

such that

2J ≤ Dm′ ≤ 2J

(
1 +

∑

n≥1

n−θ

)
.

Note that the model collection Mhyb does not vary with n and thus Remark 1 applies.

We have the following proposition

Proposition 7. Let us assume that the non-decreasing sequence (λn)n satisfies condi-

tions of Theorem 2. Then, for Mhyb the model collection (5.7) and for any m ∈ Mhyb,

we set

penn(m) =
λn

n
Dm.

We denote for any α > 0, ρα = (ρn,α)n with for any n,

ρn,α =

(
λn

n

) α
1+2α

.
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Then, the penalized rule ŝm̂ satisfies the following maxiset result:

MS(ŝm̂, ρα) :=: Aα

Mhyb
.

Furthermore

Aα

Mhyb
=



s = α00φ00 +

∑

j≥0

2j−1∑

k=0

βjkψjk ∈ L2 : sup
J≥0



22Jα

∑

j≥J

∑

k≥⌊2J (j−J+1)−θ⌋

|βj|2(k)



 <∞





where (|βj|(k))k is the reordered sequence of coefficients (βjk)k: .

|βj|(0) ≥ |βj|(1) · · · |βj|(k) ≥ · · · ≥ |βj|(2j−1).

This set cannot be characterized in terms of classical spaces. Nevertheless, we estab-

lish in Section 6.4 the following embeddings

⋃

p> 2
1+2α

Bα
p,∞ ( Aα

Mhyb ( W 2
1+2α

.

In particular, we have

Bα
2,∞ ( Aα

Mhyb .(5.8)

So, the strategy proposed by Massart outperforms the model selection procedure

associated with the nested collection of models of Section 5.1 from the maxiset point

of view for general rates.

This new procedure is not computable since one needs an infinite number of wavelet

coefficients to perform it. The problem of calculability can be pushed away by

introducing, as previously, a maximum scale j0(n) for estimation.
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Proposition 8. Let γ ≥ 1 and assume that the non-decreasing sequence (λn)n sat-

isfying conditions of Theorem 2. Then, for Mhyb the model collection (5.7), we set

for any n ∈ N

Jn = {1, . . . , j0(n)}, with 2j0(n) ≤
(
n

λn

)γ

< 2j0(n)+1,

Mn = {m = m′ ∩ Jn : m′ ∈ Mhyb}.(5.9)

Let us put for any m = m′ ∩ Jn ∈ Mn

penn(m) =
λn

n
D+

m :=
λn

n
Dm′ .

We denote for any α > 0, ρα = (ρn,α)n with for any n,

ρn,α =

(
λn

n

) α
1+2α

.

Then, the penalized rule ŝm̂ associated with satisfies the following maxiset result:

MS(ŝm̂, ρα) :=: Aα

Mhyb
∩ Lα

V .

Furthermore,

Lα
V = B

α
γ(1+2α)

2,∞

and

Aα

Mhyb
=



s = α00φ00 +

∑

j≥0

2j−1∑

k=0

βjkψjk ∈ L2 : sup
J≥0



22Jα

∑

j>J

∑

k≥⌊2J (j−J+1)−θ⌋

β2
j(k)



 <∞



 .

Note that this result is not a consequence of Theorem 2 since the embedded model

collections condition is not satisfied. Its proof is a slight variation of the proof of
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Theorems 2 and 3 based on Proposition 3. Finally, we prove in Section 6.4 that

Bα
2,∞ ( Aα

Mhyb
∩ B

α
γ(2α+1)

2,∞

and thus, this truncated procedure outperforms in the maxiset sense the computable

model selection procedure associated with the nested collection of models of Section

5.1.

6. Proofs

6.1. Proof of Theorem 2. The proof follows from the two following auxiliary

lemmas. For any n, we first introduce m0 = m0(n) such that

(6.1) m0 = arg min
m∈M

(
‖s− sm‖2 +

pen(m)

4

)
= arg min

m∈M

(
‖s− sm‖2 +

λnDm

4n

)
.

The model Sm0 , that can be viewed as an oracle model in the model selection point

of view, will play a capital role in the sequel.

Lemma 2. We have for any n,

(6.2) ‖s− sm0‖2 − 4Dm0

n
≤ 5 E(‖s− ŝm̂‖2).

Proof. First note that

γn(ŝm̂) + pen(m̂) ≤ γn(ŝm0) + pen(m0)
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to obtain

pen(m̂) − pen(m0) ≤ ‖s− ŝm0‖2 − ‖s− ŝm̂‖2 + νn(ŝm̂ − ŝm0),

where for any u =
∑

i∈I αiϕi,

νn(u) = 2
∑

i∈I
αi(β̂i − βi).

We denote for any subset of indices m′ of I,

χ(m′) =

√∑

i∈m′

(β̂i − βi)2.

Then,

νn(ŝm̂ − ŝm0) ≤ ‖ŝm0 − ŝm̂‖2 + χ2(m̂ ∪m0)

≤ ‖ŝm0 − ŝm̂‖2 + χ2(m̂) + χ2(m0).

So,

pen(m̂) − pen(m0) ≤ ‖s− ŝm0‖2 − ‖s− ŝm̂‖2 + ‖ŝm0 − ŝm̂‖2 + χ2(m̂) + χ2(m0)

≤ ‖s− ŝm̂‖2 + 3‖s− ŝm0‖2 + χ2(m̂) + χ2(m0).

Since

(6.3) ‖s− sm0‖2 +
pen(m0)

4
≤ ‖s− sm̂‖2 +

pen(m̂)

4
,



36 MAXISETS FOR MODEL SELECTION

we derive

‖s− sm0‖2 ≤ ‖s− sm̂‖2 +
pen(m̂) − pen(m0)

4

≤ ‖s− sm̂‖2 +
1

4
‖s− ŝm̂‖2 +

3

4
‖s− ŝm0‖2 +

1

4
χ2(m̂) +

1

4
χ2(m0).

Using

‖s− sm̂‖2 = ‖s− ŝm̂‖2 − χ2(m̂)

and taking expectation, we have,

‖s− sm0‖2 ≤ 3

4
E‖s− ŝm0‖2 +

5

4
E‖s− ŝm̂‖2 +

E(χ2(m0))

4

≤ 3

4

(
‖s− sm0‖2 +

Dm0

n

)
+

5

4
E‖s− ŝm̂‖2 +

Dm0

4n
.

So,

1

4
‖s− sm0‖2 ≤ 5

4
E‖s− ŝm̂‖2 +

Dm0

n

and (6.2) follows. �

Remark 2. More generally, if for K > 2 we consider

mK = arg min
m∈M

(
‖s− sm‖2 +

pen(m)

K

)
= arg min

m∈M

(
‖s− sm‖2 +

λnDm

Kn

)
,

then, we prove for any n,

‖s− smK
‖2 − 3 + c−1

K − 2 − c−1

DmK

n
≤ K + c

K − 2 − c−1
E(‖s− ŝm̂‖2)

with c > (K − 1)−2. In Lemma 2, we can take K = 4 and c = 1.
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Lemma 3. Under Assumptions of Theorem 2, there exists a constant C1 > 0 such

that for any n,

(6.4) ‖s− sm0‖2 +
λnDm0

4n
≤ C1

(
λn

n

) 2α
1+2α

.

Proof. First recall the dependency of the model on the parameter n and observe

that

‖s− sm0(n)‖2 +
penn(m0(n))

4
≤ ‖s− sm0(n/2)‖2 +

penn(m0(n/2))

4
,

with

penn(m0(n)) =
λnDm0(n)

n
, penn(m0(n/2)) =

λnDm0(n/2)

n

(without loss of generality, we assume that n is even). So,

‖s− sm0(n)‖2 +
λnDm0(n)

4n
≤ ‖s− sm0(n/2)‖2 +

λnDm0(n/2)

4n
.

For any βn ∈ [0, 1], using Lemma 2,

‖s− sm0(n)‖2 +
λnDm0(n)

4n
≤ βn

(
‖s− sm0(n/2)‖2 − 8Dm0(n/2)

n

)
+ (1 − βn)‖s− sm0(n/2)‖2

+
8βnDm0(n/2)

n
+
λnDm0(n/2)

4n

≤ 5βn E(‖s− ŝm̂(n/2)‖2) + (1 − βn)‖s− sm0(n/2)‖2

+

(
8βn +

λn

4

)
Dm0(n/2)

n

≤ 5βn E(‖s− ŝm̂(n/2)‖2) + (1 − βn)‖s− sm0(n/2)‖2

+
(32βn + λn)

2λn/2

penn/2(m0(n/2))

4
.
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Now, since λn ≤ 2λn/2, we take

βn =
2λn/2 − λn

32 + 2λn/2

∈ [0, 1]

so

(32βn + λn)

2λn/2

= 1 − βn

and we obtain

‖s− sm0(n)‖2 +
penn(m0(n))

4
≤ 5βnE(‖s− ŝm̂(n/2)‖2)

+(1 − βn)

(
‖s− sm0(n/2)‖2 +

penn/2(m0(n/2))

4

)

≤ 5R2βn

(
2λn/2

n

) 2α
1+2α

+(1 − βn)

(
‖s− sm0(n/2)‖2 +

penn/2(m0(n/2))

4

)
.

Now, we set

(6.5) I(α0) = inf
α∈[0,α0]

inf
x∈[1/2,1]

x
2α

1+2α − x

1 − x
> 0,

tn =
16

λn/2

, xn =
λn

2λn/2

∈ [1/2, 1]

and

C2 = 10R2I(α0)
−1.

Observe that

(6.6)
x

2α
1+2α
n − xn

1 − xn

− tn


1 − x

2α
1+2α
n

1 − xn


 ≥ I(α0)

2
.
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We assume that

(6.7) ∀ l < n, ‖s− sm0(l)‖2 +
penl(m0(l))

4
≤ C2

(
λl

l

) 2α
1+2α

,

then,

‖s− sm0(n)‖2 +
penn(m0(n))

4
≤

(
5R2βn + (1 − βn)C2

)(2λn/2

n

) 2α
1+2α

≤
(
5R2C−1

2 βn + (1 − βn)
)(2λn/2

λn

) 2α
1+2α

C2

(
λn

n

) 2α
1+2α

≤ C2

(
λn

n

) 2α
1+2α

,

since, by using (6.6)

(
5R2C−1

2 βn + (1 − βn)
)(2λn/2

λn

) 2α
1+2α

≤
(
βnI(α0)

2
+ (1 − βn)

)(
2λn/2

λn

) 2α
1+2α

≤
(
I(α0)(1 − xn)

2(1 + tn)
+
xn + tn
1 + tn

)
1

x
2α

1+2α
n

≤ 1

and (6.7) is true for any l ≤ n. For an appropriate choice of C1 that allows to

initialize the recursion, the lemma is proved. �

6.2. Proofs of approximation results.

6.2.1. Proofs of Proposition 1 and Lemma 1. We denote

m̃(n) = arg min
m∈Mn

{
‖s− sm‖2 + T 2

nDm

}
.
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First, let us assume that for any n

‖s− sm̃(n)‖2 + T 2
nDm̃(n) ≤ C1

(
T 2

n

) 2α
1+2α .

Then,

Dm̃(n) ≤ C1

(
T 2

n

)− 1
1+2α .

Using T 2
n ≤ 2T 2

2n , for M ∈ N∗, as soon as M ≥ C1 (T 2
1 )

− 1
1+2α , there exists n ∈ N∗

such that

(6.8) C1

(
T 2

n

)− 1
1+2α ≤M < C1

(
T 2

2n

)− 1
1+2α ≤ C12

1
1+2α

(
T 2

n

)− 1
1+2α .

Then,

inf
{m∈

⋃
k Mk: Dm≤M}

‖s− sm‖2 ≤ inf
{m∈

⋃
k Mk : Dm≤M}

{
‖s− sm‖2 + T 2

nDm

}

≤ inf{
m∈

⋃
k Mk: Dm≤C1(T 2

n)
−

1
1+2α

}
{
‖s− sm‖2 + T 2

nDm

}

Using (6.8)

≤ C1

(
T 2

n

) 2α
1+2α

≤ C2α+1
1 2

2α
1+2αM−2α .
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When for all k, k,′ Mk = Mk′ = M and if there exists a constant C̃1 > 0 such that

for any M ,

inf
{m∈M: Dm≤M}

‖s− sm‖2 ≤ C̃1M
−2α.

Then for any T ∈ (0, T0]

inf
m∈M

{
‖s− sm‖2 + T 2Dm

}
= inf

M∈N

inf
{m∈M: Dm=M}

{
‖s− sm‖2 + T 2M

}

≤ inf
M∈N∗

{
C̃1M

−2α + T 2M
}

≤ inf
x∈R∗

+

{
C̃1x

−2α + T 2(x+ 1)
}

≤ C̃1

(
T 2

2αC1

) 2α
1+2α

+ T 2

((
T 2

2αC1

) −1
1+2α

+ 1

)

≤ C1

(
T 2
) 2α

1+2α ,

where C1 is a constant large enough that depends on T0.

6.2.2. Proof of Propositions 2 and 3. Let us assume that ∃R > 0,

sup
n

[(
λn

n

)− 2α
1+2α

inf
m∈Mn

(
‖s− sm‖2 +

λn

n
Dm

)]
≤ R2.

As ∀m ∈ Mn, as m ⊂ In, ‖s−PVns‖ ≤ ‖s− sm‖, (L) is straightforward while (NL)

is a consequence of Proposition 1.

Assume now (L) and (NL) hold, applying the second part of Proposition 1 with a

constant model collection ∪kMk = ∪kM′
k yields the existence of C > 0 such that
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for any s satisfying (L) and (NL)

inf
m∈∪kMk

‖s− sm‖2 +
λn

n
Dm ≤ C

(
λn

n

) 2α
1+2α

.

There exists thus k ∈ N∗ such that the infimum is attained for a m ∈ M′
k. If not, as

in any M-estimation procedure (see for instance [17]), we can see that the asymptotic

behaviors of the estimate do not change if we consider modify the criterion by adding

a εn = O(1/n) term so that the minimum is attained.

If k ≤ n then m ∈ Mn and thus

inf
m∈Mn

‖s− sm‖2 +
λn

n
Dm ≤ C

(
λn

n

) 2α
1+2α

.

Otherwise k > n, let m′ ∈ M be the model such that m = m′ ∩ Ik, we define

m′′ = m′ ∩ In. As m′′ ⊂ m and m \m′′ ⊂ Ic
n, where Ic

n denotes the complementary

of In,

‖s− sm′′‖2 +
λn

n
Dm′′ = ‖s− sm‖2 + ‖sm − sm′′‖2 +

λn

n
Dm′′

≤ ‖s− sm‖2 +
λn

n
Dm + ‖s− PVns‖2

≤ (C + (R′)2)

(
λn

n

) 2α
1+2α

.

The proof of Proposition 3 relies on the

inf
m=m′∩In

‖s− sm‖2 +
λn

n
D+

m = ‖s− sm′‖2 +
λn

n
Dm

and arguments of Proposition 2.
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6.3. Proof of Theorem 4. As in the proof of Theorem 2, for any n, we denote

(6.9)

m0(n) = arg min
m∈M

(
‖s− sm‖2 +

pen(m)

4

)
= arg min

m∈M

(
‖s− sm‖2 +

λnDm

4n

)
.

and

(6.10) m̂(n) = arg min
m∈M

(
−‖ŝm‖2 + pen(m)

)
= arg min

m∈M

(
−‖ŝm‖2 +

λnDm

n

)
.

In the nested case, Lemma 2 becomes the following much stronger lemma:

Lemma 4. For any n, almost surely

(6.11) ‖s− sm0(n)‖2 ≤ ‖s− ŝm̂(n)‖2.

Proof. As the models are embedded, either m̂(n) ⊂ m0(n) or m0(n) ⊂ m̂(n).

In the first case, ‖s− sm0(n)‖2 ≤ ‖s− sm̂(n)‖2 ≤ ‖s− ŝm̂(n)‖2 and thus (6.11) holds.

Otherwise, by construction





‖s− sm0(n)‖2 +
λnDm0(n)

4n
≤ ‖s− sm̂(n)‖2 +

λnDm̂(n)

4n

−‖ŝm̂(n)‖2 +
λnDm̂(n)

n
≤ −‖ŝm0(n)‖2 +

λnDm0(n)

n

and thus as m0(n) ⊂ m̂(n)





‖sm̂(n)\m0(n)‖2 ≤ λnDm̂(n)

4n
− λnDm0(n)

4n

λnDm̂(n)

n
− λnDm0(n)

n
≤ ‖ŝm̂(n)\m0(n)‖2.
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Combining these two inequalities yields

‖sm̂(n)\m0(n)‖2 ≤ 1

4
‖ŝm̂(n)\m0(n)‖2

‖sm̂(n)\m0(n)‖2 ≤ 1

2

(
‖ŝm̂(n)\m0(n) − sm̂(n)\m0(n)‖2 + ‖sm̂(n)\m0(n)‖2

)

and thus

‖sm̂(n)\m0(n)‖2 ≤ ‖ŝm̂(n)\m0(n) − sm̂(n)\m0(n)‖2.

Now, (6.11) holds as

‖s− sm0(n)‖2 = ‖s− sm̂(n)‖2 + ‖sm̂(n)\m0(n)‖2

≤ ‖s− sm̂(n)‖2 + ‖ŝm̂(n)\m0(n) − sm̂(n)\m0(n)‖2

‖s− sm0(n)‖2 ≤ ‖s− sm̂(n)‖2 + ‖ŝm̂(n) − sm̂(n)‖2 = ‖s− ŝm̂(n)‖2.

�

Now we can conclude the proof of Theorem 4 with a similar recursion as the one

used in the proof of Theorem 2. Indeed,

‖s− sm0(n)‖2 +
λnDm0(n)

4n
≤ ‖s− sm0(n/2)‖2 +

λnDm0(n/2)

4n

≤ βnE(‖s− ŝm̂(n/2)‖2) + (1 − βn)‖s− sm0(n/2)‖2 +
λn

2λn/2

λn/2Dm0(n/2)

4(n/2)
.
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The choice βn = 1 − λn

2λn/2
is such that δ ≤ βn ≤ 1 and implies

‖s− sm0(n)‖2 +
λnDm0(n)

4n
≤ βnE(‖s− ŝm̂(n/2)‖2) + (1 − βn)

(
‖s− sm0(n/2)‖2 +

λn/2Dm0(n/2)

4(n/2)

)
.

Using now the same recursion as in Theorem 2, we obtain

‖s− sm0(n)‖2 +
λnDm0(n)

4n
≤ βnR

2

(
2λn/2

n

) 2α
1+2α

+ (1 − βn)C2

(
2λn/2

n

) 2α
1+2α

‖s− sm0(n)‖2 +
λnDm0(n)

4n
≤
(

2λn/2

λn

) 2α
1+2α

(R2βnC
−1
2 + (1 − βn))C2

(
λn

n

) 2α
1+2α

.

It suffices thus to verify that
(

2λn/2

λn

) 2α
1+2α (

R2βnC
−1
2 + (1 − βn)

)
≤ 1 which is the

case as soon as C2 ≥ R2(1−(1−δ)1/(1+2α)

2(1−δ)2α/(1+2α) .

6.4. Proofs of space embeddings. We first establish

⋃

p> 2
1+2α

Bα
p,∞ ( Aα

Mhyb ( W 2
1+2α

.

Using the Hölder inequality for p > 2 yields Bα
p,∞ ⊂ Bα

2,∞ and thus it is sufficient

to prove Bα
p,∞ ⊂ Aα

Mhyb for p ≤ 2 to obtain the non strict left inclusion.

Let s = α00φ00+
∑

j≥0

∑2j−1
k=0 βjkψjk and denote by |βj |(k) the scale by scale reordered

coefficient sequence (|βj |(0) ≥ |βj |(1) · · · |βj|(k) ≥ · · · ≥ |βj |(2j−1)). s belongs to Aα
Mhyb

if and only if

sup
J≥0

22Jα
∑

j≥J

∑

k≥⌊2J (j−J+1)−θ⌋

|βj|2(k) <∞ .
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Assume that s belongs to Bα
p,∞ with p ∈ ( 2

1+2α
, 2], then there exists a non negative

constant C such that for any j

2j−1∑

k=0

|βj|p(k) ≤ C2−jp(α+1/2−1/p).

If p < 2, Lemma 4.16 of [23] yields for all j larger than J

2j−1∑

k≥⌊2J (j−J+1)−θ⌋

|βj |2(k) ≤ C2/p2−2j(α+1/2−1/p)
(
⌊2J(j − J + 1)−θ⌋

)1−2/p

≤ C2/p2−2Jα2−2(j−J)(α+1/2−1/p)(j − J + 1)θ(2/p−1) .

Summing over the indices j larger than J yields

∑

j≥J

2j−1∑

k=⌊2J (j−J+1)−θ⌋

|βj|2(k) ≤ C2/p2−2Jα
∑

j′≥0

2−2j′(α+1/2−1/p)(j′ + 1)θ(2/p−1)

and thus

sup
J≥0

22Jα
∑

j≥J

∑

k≥⌊2J (j−J+1)−θ⌋

|βj |2(k) ≤ C2/p
∑

j′≥0

2−2j′(α+1/2−1/p)(j′ + 1)θ(2/p−1) < +∞

so s belongs to Aα
Mhyb.

Now if p = 2,

∑

j≥J

2j−1∑

k=⌊2J (j−J+1)−θ⌋

|βj|2(k) ≤
∑

j≥J

2j−1∑

k≥0

|βj |2(k) ≤
∑

j≥J

C2−2jα = C
2−2Jα

1 − 2−α

thus s also belongs to Aα
Mhyb .
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To obtain the strict inclusion, we consider the function s defined by

s =
∑

j≥0

2−
√

jψj,0 .

On the one hand, a straightforward calculation proves that s /∈ Bα
p,∞ for all p > 0.

On the other hand, for any J ,

22Jα
∑

j≥J

∑

k≥⌊2J (j−J+1)−θ⌋

|βj |2(k) = 22Jα
∑

j≥min{j′≥J :2J(j′−J+1)−θ<1}

2−2
√

j

≤ 22Jα
∑

j≥2J/θ

2−2
√

j

and thus

sup
J≥0

22Jα
∑

j≥J

∑

k≥⌊2J (j−J+1)−θ⌋

|βj |2(k) < +∞

and s ∈ Aα
Mhyb .

To prove that Aα
Mhyb ⊂ W 2

1+2α
, it suffices to notice that the model collection Mhyb

is a subset of the model collection Mlargest and that Aα
Mlargest = W 2

1+2α
.

To obtain the strict inclusion, we consider the function s defined by

s =
∑

j≥0

2j−0∑

k=0

2−j(α+1/2)ψj2k

which belongs to Aα
Mlargest = W 2

1+2α
. Indeed, the number of non zero coefficients

whose scale index is smaller than j2 is equal to 2j+1 while the sum of the square of

the coefficients above is smaller than 2−2αj

1−2−α .
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Now, if we assume that (J − log2 J)2 ≥ J

22Jα
∑

j≥J

∑

k≥⌊2J (j−J+1)−θ⌋

|βj|2(k) = 22Jα
∑

j2≥J

2j−1∑

k≥⌊2J (j2−J+1)−θ⌋

2−j(2α+1)

= 22Jα
∑

j2≥J

2−j(2α+1) max(2j − ⌊2J(j2 − J + 1)−θ⌋, 0)

≥ 22Jα
∑

j≥J−log2 J

2−j(2α+1) max(2j − ⌊2J(j2 − J + 1)−θ⌋, 0) .

For J large enough ⌊2J(j2 − J + 1)−θ⌋ ≤ 2J

2J
for all j ≥ J − log2 J and thus 2j −

⌊2J(j2 − J + 1)−θ⌋ ≥ 2j

2

22Jα
∑

j≥J

∑

k≥⌊2J (j−J+1)−θ⌋

|βj|2(k) ≥ 22Jα
∑

j≥J−log2 J

1

2
2−2jα ≥ CJ2α

which implies that s does not belong to Aα
Mhyb .

It remains now to establish that

Bα
2,∞ ( Aα

Mhyb
∩ B

α
1+2α

2,∞ .

We have Bα
2,∞∩B

α
1+2α

2,∞ = Bα
2,∞ and thus Bα

2,∞ ⊂ Aα
Mhyb implies Bα

2,∞ ⊂ Aα
Mhyb ∩B

α
1+2α

2,∞ .

For the strict inclusion, we consider the function s defined by

s =
∑

j≥0

2−j(α−1/p+1/2)ψj,0 .

where p < 2 is chosen such that 0 < α
1+2α

≤ α− 1
p
+ 1

2
. One easily checks that s does

not belong to Bα
2,∞ but is in B

α
1+2α

2,∞ and Bα
p,∞. As Bα

p,∞ ⊂ Aα
Mhyb , one deduces that s

belongs to Aα
Mhyb ∩ B

α
1+2α

2,∞ which proves the strict inclusion.
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[7] Barron, A., Birgé, L., Massart, P. Risk bounds for model selection via penalization, Probab.

Theory Related Fields, 113, (3), 301-413, 1999.

[8] Bertin, K. and Rivoirard, V. Maxiset in sup-norm for kernel estimators. Submitted. 2007.

[9] Birgé, L. and Massart, P., Minimal penalties for Gaussian model selection, Probab. Theory

Related Fields, 138, (1-2), 33-73, 2007.

[10] Birgé, L. and Massart, P., Gaussian model selection, J. Eur. Math. Soc. (JEMS), 3, (3), 203-

268, 2001.
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