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Abstract

Living cells are the product of gene expression programs that involve the regulated
transcription of thousands of genes. The elucidation of transcriptional regulatory networks
in thus needed to understand the cell’s working mechanism, and can for example be useful for
the discovery of novel therapeutic targets. Although several methods have been proposed to
infer gene regulatory networks from gene expression data, a recent comparison on a large-
scale benchmark experiment revealed that most current methods only predict a limited
number of known regulations at a reasonable precision level. We propose SIRENE, a new
method for the inference of gene regulatory networks from a compendium of expression
data. The method decomposes the problem of gene regulatory network inference into a
large number of local binary classification problems, that focus on separating target genes
from non-targets for each TF. SIRENE is thus conceptually simple and computationally
efficient. We test it on a benchmark experiment aimed at predicting regulations in E. coli,
and show that it retrieves of the order of 6 times more known regulations than other state-
of-the-art inference methods.

1 Introduction

Elucidating the structure of gene regulatory networks is crucial to understand how transcrip-
tion factors (TF) regulate gene expression and allow an organism to regulate its metabolism
and adapt itself to environmental changes. While high-throughput sequencing and other post-
genomics technologies offer a wealth of information about individual genes, the experimental
characterization of transcriptional cis-regulation at a genome scale remains a daunting chal-
lenge, even for well-studied model organisms. In silico methods that attempt to reconstruct
such global gene regulatory networks from prior biological knowledge and available genomic and
post-genomic data therefore constitute an interesting direction towards the elucidation of these
networks.

Transcriptional cis-regulation directly influences the level of mRNA transcripts of regulated
genes. Not surprisingly, many in silico methods have been proposed to reconstruct gene reg-
ulatory networks from gene expression data, produced at a fast rate by microarrays (Bansal
et al., 2007). Clustering gene expression profiles across different conditions identifies groups of
genes with similar transcriptomic response, suggesting co-regulation within each group (Tava-
zoie et al., 1999). Clustering methods are widely used, computationally efficient, but do not
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easily lead to the identification of regulators for a given set of genes. Some authors nonetheless
have observed that identifying similarities, or more generally mutual information between the
expression profiles of a TF and of a target gene is a good indicator of regulation (Butte et al.,
2000; Faith et al., 2007). When time series of gene expression data are available, other reverse-
engineering methodologies can be applied to capture the interactions governing the observed
dynamics. Different mathematical formalisms have been proposed to model such dynamics,
including boolean networks (Akutsu et al., 2000) or ordinary or stochastic partial differen-
tial equations (Chen et al., 1999; Tegner et al., 2003; Gardner et al., 2003; Chen et al., 2005;
di Bernardo et al., 2005; Bansal et al., 2006). Some authors have also attempted to detect
causality relationships between gene expression data, be they time series or compendia of vari-
ous experiments, using statistical methods such as Bayesian networks (Friedman et al., 2000).
These methods that estimate the regulatory network by fitting a dynamic or statistical model
are often computationally and data demanding.

The comparison of these different approaches and of their capacity to accurately reconstruct
large-scale regulatory networks has been hampered by the difficulty to assemble a realistic set
of biologically validated regulatory relationships and use it as a benchmark to assess the perfor-
mance of each method. Recently, Faith et al. (2007) compiled such a benchmark, by gathering
all known transcriptional cis-regulation in Escherichia coli and collecting a compendium of
several hundreds of gene expression profiling experiments. They compared several approaches,
including Bayesian networks (Friedman et al., 2000), ARACNe (Margolin et al., 2006), and the
context likelihood of relatedness (CLR) algorithm, a new method that extends the relevance
networks class of algorithms (Butte et al., 2000). They observed that CLR outperformed all
other methods in prediction accuracy, and experimentally validated some predictions. CLR
can therefore be considered as state-of-the-art among methods that use compendia of gene
expression data for large-scale inference of regulatory networks.

In this paper we present SIRENE (Supervised Inference of REgulatory NEtworks), a new
method to infer gene regulatory networks on a genome scale from a compendium of gene expres-
sion data. SIRENE differs fundamentally from other approaches in that it requires as inputs
not only gene expression data, but also a list of known regulation relationships between TF and
target genes. In machine learning terminology, the method is supervised in the sense that it uses
a partial knowledge of the information we want to predict in order to guide the inference engine
for the prediction of new information. The necessity to input some known regulations is not a
serious restriction in many applications, as many regulations have already been characterized
in model organisms, and can be inferred by homology in newly sequenced genomes. Known
regulations allow us to use a natural induction principle to predict new regulations: if a gene A
has an expression profile similar to a gene B known to be regulated by a given TF, then gene A
is likely to be also regulated by the TF. The fact that genes with similar expression profiles are
likely to be co-regulated has been used for a long time in the construction of groups of genes
by unsupervised clustering of expression profiles. The novelty in our approach is to use this
principle in a supervised classification paradigm. This inference paradigm has the advantage
that no particular hypothesis is made regarding the relationship between the expression data
of a TF and those of regulated genes. In fact, expression data for the TF are not even needed
in our approach.

Many algorithms for supervised classification can be used to transform this inference prin-
ciple into a working algorithm. We use in our experiments the support vector machine (SVM)
algorithm, a state-of-the-art method for supervised classification. The idea to cast the prob-
lem of gene or protein networks inference as a supervised classification problem, using known
interactions as inputs, has been recently proposed and investigated for the reconstruction of
protein-protein interaction (PPI) and metabolic networks (Yamanishi et al., 2004; Ben-Hur and
Noble, 2005). Bleakley et al. (2007) proposed a simple method where a local model is esti-
mated to predict the interacting partners of each protein in the network, and all local models
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are then combined together to predict edges throughout the network. They showed that this
method gave important improvement in accuracy compared to more elaborated methods on
both the PPI and metabolic networks. Here we adapt this strategy for the reconstruction of
gene regulatory networks. For each TF, we estimate a local model to discriminate, based on
their expression profiles, the genes regulated by the TF from others genes. All local models
are then combined to rank candidate regulatory relationships between TFs and all genes in the
genome. SIRENE is conceptually simple, easy to implement, and computationally scalable to
whole genomes because each local model only involves the training of a supervised classification
algorithm on a few hundreds or thousands examples.

We test SIRENE on the benchmark experiment proposed by Faith et al. (2007), which aims
at reconstructing known regulations within E. coli genes from a compendium of gene expression
data. On this benchmark, SIRENE strongly outperforms the best results reported by Faith et al.

(2007), with the CLR algorithm. For example, at a 60% true positive rate (precision), CLR
identifies 7.5% of all known regulatory relationships (recall), while SIRENE has a recall of 44.5%
at the same precision level using expression profiles.

2 System and Methods

2.1 SIRENE

SIRENE is a general method to infer new regulation relationships between known TF and
all genes of an organism. It requires two types of data as inputs. First, each gene in the
organism needs to be characterized by some data, in our case a vector of expression values in
a compendium of expression profiles. Second, a list of known regulation relationships between
known TF and some genes is needed. More precisely, for each TF, we need a list of genes
known to be regulated by the TF, and if possible a list of genes known not to be regulated by
it. Such lists can typically be constructed from publicly available databases of experimentally
characterized regulation, e.g., RegulonDB for E. coli genes (Salgado et al., 2006). While such
databases usually do not contain informations about the absence of regulation, we discuss in
Section 2.3 below how we generate negative examples.

When such data are available, SIRENE splits the problem of regulatory network inference
into many binary classification subproblems, one subproblem being associated to each TF. More
precisely, for each TF, SIRENE trains a binary classifier to discriminate between genes known to
be regulated and genes known not to be regulated by the TF, based on the data that characterize
the genes (e.g., expression data). The rationale behind this approach is that, although we make
no hypothesis regarding the relationship between the measured expression level of a TF and
its targets, we assume that if two genes are regulated by the same TF then they are likely to
exhibit similar expression patterns. In our implementation, we use a SVM to solve the binary
classification problems (Section 2.2), but any other algorithm for supervised binary classification
could in principle be used. Once trained, the model associated to a given TF is able to assign
to each new gene, not used during training, a score that tends to be positive and large when
it believes, based on the data that characterize the gene, that the gene is regulated by the TF.
The final step is to combine all scores of the different models to rank the candidate TF-gene
interactions in a unique list by decreasing score.

In summary, SIRENE decomposes the difficult problem of gene regulatory network inference
into a large number of subproblems that attempt to estimate local models to characterize the
genes regulated by each TF. A similar approach was proposed by Bleakley et al. (2007) to infer
undirected graphs, and successfully tested on the reconstruction of metabolic and PPI networks.
Here we are confronted with a slightly different problem, since the graph we wish to infer is
directed and we just need to infer local models to predict genes regulated by any given TF.
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2.2 SVM

In our implementation of SIRENE, we use a SVM to train predictors for each local model
associated to a TF. SVM is a popular algorithm to solve general supervised binary classification
problems which is considered state-of-the-art in many applications and is available in many free
and public implementations (Vapnik, 1998; Schölkopf et al., 2004). The basic ingredient of a
SVM is a kernel function K(x, y) between any two genes x and y, that can often be thought
of as a measure of similarity between the genes. In our case, the similarity between genes is
measured in terms of expression profiles. Given a set of n genes x1, . . . , xn that belong to two
classes, denoted arbitrarily −1 and +1, a SVM estimates a scoring function for any new gene x

of the form:

f(x) =

n
∑

i=1

αiK(xi, x) .

The weights αi in this expression are optimized by the SVM to enforce as much as possible
large positive scores for genes in the class +1 and large negative scores for genes in the class
−1 in the training set. A parameter, often called C, allows to control the possible overfitting to
the training set. The scoring function f(x) can then be used to rank genes with unknown class
by decreasing score, from the most likely to belong to class +1 to the most likely to belong to
class −1.

The kernel K(x, y) defines the similarity measure used by the SVM to build the scoring
function. In our experiments we want to infer regulations from gene expression data. Each
collection of gene expression data is a vector, so we simply use the common Gaussian radial
basis function kernel between vectors u and v:

K(u, v) = exp

(

−||u− v||2
2σ2

)

,

where σ > 0 is the bandwidth parameter of the kernel.
Each SVM has therefore two parameters, C and σ. In order to limit the risk of overfitting

and positive bias in our performance evaluation that could result from an over-optimization of
these parameters on the benchmark data, we simply fix them for all SVM to the unique values
C = +∞ and σ = 8. The value C = +∞means that we train hard-margin SVM, which is always
possible with a Gaussian kernel (Vapnik, 1998). The choice σ = 8 was based on the observation
that we use expression profiles for 445 microarrays scaled to zero mean and unit standard
deviation, i.e., each gene is represented by a vector of dimension 445 and of length

√
445 ∼ 21.

Hence the distance between two orthogonal profiles is of the order of
√
2×

√
445 ∼ 32. We expect

that a bandwidth of the order of σ = 8, which puts two orthogonal profiles at about 4σ from
each other, is a safe default choice. We performed preliminary experiments with different values
of C and σ, which did not result in any significant improvement or decrease of performance,
suggesting that the behaviour of SIRENE is robust to variations in its parameters around these
default values. All results below were obtained with this default parameter choice.

2.3 Choice of negative examples

SIRENE being a supervised inference algorithm, two sets of positive and negative training
examples are needed for each SVM. Although regulations reported in databases such as Regu-
lonDB can safely be taken as positive training examples, the choice of negative examples is more
problematic for two reasons. First, few information is published and archived regarding the fact
that a given TF is found not to regulate a given target gene. Hence there is no systematic
source of negative examples for our problem. A natural choice is then to take TF-gene pairs
not reported to have regulatory relationships in databases as negative examples, mixing both
true negative and false negative. In that case, we are then confronted with the second problem
which is that, once a hard-margin SVM is trained on positive and negative examples, it always
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predict significantly negative scores on negative examples used during training. As a result it
is not possible to use the SVM score on genes used during training if we want to find TF-pairs
that were wrongly assigned to the negative class.

To overcome this issue, we propose the following scheme. Let us suppose we want to predict
whether genes are regulated of not by a given TF. All genes known to be regulated by this TF
form a set of positive examples, and no prediction is needed for them. The other genes are split
in 3 subsets of roughly equal size. Then, in turn, each subset is taken apart, and a SVM is
trained with all positive examples and all genes in the two other subsets as negative examples.
The SIRENE score for the genes in the subset left apart is the SVM prediction score on these
genes, which were not used during SVM training. Repeating this loop 3 times, we obtain the
SIRENE score for all genes with no known regulation by the TF. This process is then repeated
for all other TF one by one. The advantage of this procedure is that, even though there are false
negative in the training set of each SVM, the predictions on the genes not used during training
can still be positive if some of these genes look similar to the positive training examples.

2.4 CLR

We compare the performance of SIRENE with CLR, a method for gene network reconstruction
from gene expression data that was shown by Faith et al. (2007) to be state-of-the-art on a large-
scale benchmark evaluation. CLR an extension of the relevance networks class of algorithm
(Butte et al., 2000), which predict regulations between TF and genes when important mutual
information can be detected. In the case of CLR, an adaptive background correction step is
added to the estimation of mutual information. For each gene, the statistical likelihood of the
mutual information score is computed within its network context. Then, for each TF-target
gene pair, the mutual information score is compared to the context likelihood of both the TF
and the target gene, and turned into a z-score. Putative TF-gene interactions are then ranked
by decreasing z-score.

2.5 Experimental protocol

In order to assess the performance of SIRENE as an inference engine, and compare it with
other existing methods, we test it on a benchmark of known regulatory network. However,
SIRENE being a supervised method, we adopt a cross-validation procedure to make sure that its
performance is measured on prediction not used during the model training step. Consequently
we adopt the following 3-fold cross validation strategy, coherent with the SIRENE protocol to
make predictions explained in Section 2.3. Given a set of TF, a set of genes, and a set of known
TF-gene regulations within these sets, we split randomly the set of genes in 3 parts, train the
SVM for each TF on two of these subsets, and evaluate their prediction quality on the third
subset, i.e., on the regulations of those genes that were not used during training (Figure 1). This
process is repeated 3 times, testing successively on each subset, and the prediction qualities of
all folds are averaged.

In this cross-validation procedure, a particular attention must be paid to the existence of
transcription units and operons in E. coli. Indeed, a given TF typically regulates all genes
within an operons, which moreover usually have very similar expression profiles. As a result,
if genes within an operon are split between a training and a test set, then the SVM prediction
is likely to be correct simply because the SVM will predict that a test gene with a profile very
similar to a training gene should be in the same class. In other words, the SVM can probably
easily recognize operons and make correct predictions due to the presence of operons. However
we are interested here in the prediction of inference of regulations for new operons. To simulate
this problem in our cross-validation setting, we make sure that all genes that belong to the same
operon are in the same subset of genes, i.e., are always either in the training set or in the test
set together. In our experiments below we report results both an a classical cross-validation
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Figure 1: Cross validation for the transcriptional regulatory graph

setting, and on this particular scheme that preserves the integrity of operons in the train/test
splits.

The CLR algorithm is evaluated with the same protocol. However, since CLR is unsuper-
vised, the training set is not used in each fold, and the final ROC and precision/recall curves
are equivalently obtained by computing the curves on all genes simultaneously.

To evaluate the quality of a prediction we rank all possible TF-gene regulation in the test
set by decreasing score, and compute both the receiving operating characteristic (ROC) curve
and the precision/recall (PR) curve. The ROC curve plots the recall, i.e., the percentage true
interactions that have a score above a threshold, as a function of the false positive rate, i.e., the
fraction of negative interactions that have a score above a threshold, when the threshold varies.
The PR curve plots the precision, i.e., the percentage of true positive among the predictions
above a threshold, as a function of recall, when the threshold varies. One ROC and PR curve
is obtained in each fold of cross-validation, and these curves are averaged over the three folds
to yield the final estimated ROC and PR curve.

3 Data

We used in our experiments the expression and regulation data made publicly available by Faith
et al. (2007) for E. coli, and downloaded from http://gardnerlab.bu.edu/netinfer_plos_2007/?page_id=5.
The expression data consist of a compendium of 445 E. coli Affymetrix Antisense2 microarray
expression profiles for 4345 genes. The microarrays were collected under different experimental
conditions such as PH changes, growth phases, antibiotics, heat shock, different media, varying
oxygen concentrations and numerous genetic perturbations. The expression data for each gene
were normalized to zero mean and unit standard deviation. The regulation data consist of
3293 experimentally confirmed regulations between 154 TF and 1211 genes, extracted from the
RegulonDB database (Salgado et al., 2006).

We downloaded the list of 899 known operons in E. coli from RegulonDB. Each operon
contains one or several genes, and each gene belongs to at most one operon. Genes not present
in any of the regulonDB were considered to form an operon by themselves, resulting in a total
of 3360 operons for the 4345 genes. This operon information was used to create the folds in the
cross-validation procedure, as explained in Section 2.5.

4 Results

SIRENE was compared to CLR and other algorithms on the E coli benchmark used by Faith
et al. (2007) and described in the previous section. Figure 2 shows the ROC and PR curves
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of CLR and SIRENE. The two curves for the later, labeled SIRENE and SIRENE-Bias, are
respectively obtained when we use the cross-validation protocol presented in Section 2.5 and
when we use a classical cross-validation scheme where genes within a known operon can be split
between training and test sets.
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Figure 2: Comparison of performance between CLR and SIRENE. (A) ROC curves, and (B)
precision/recall curves. The SIRENE curve corresponds to the SIRENE algorithm evaluated
by 3-fold cross-validation, when genes within an operon are never split between the training
and the test set. The SIRENE-bias curve is the same algorithm evaluated by classical 3-fold
cross-validation, where genes are randomly assigned to training and test sets.

CLR scores were obtained directly from Faith et al. (2007). The PR curve of CLR is similar
to that presented by Faith et al. (2007), confirming that we use the exact same benchmark.
Both for ROC and PR, SIRENE performance curves are significantly above CLR. SIRENE-
bias is itself much better than SIRENE, confirming the importance of the evaluation bias if
operons are split artificially between training and test sets in the cross-validation procedure.
In what follows we restrict ourselves to the analysis of the results of SIRENE in the correct
cross-validation protocal.

The PR curve is particularly relevant because the number of true regulations is very small
compared to the total number of possible TF-gene pairs. We see that the recall obtained by
SIRENE, i.e., the proportion of known regulations that are correctly predicted, is several times
larger than the recall of CLR at all levels of precision. More precisely, Table 1 compares the
recalls of SIRENE, CLR and several other methods at 80% and 60% precision. The other
methods reported are relevance network (Butte et al., 2000), ARACNe (Margolin et al., 2006),
and a Bayesian network (Friedman et al., 2000) implemented by Faith et al. (2007). The
performance of these three methods was taken directly from Faith et al. (2007).

At 60% precision, SIRENE predicts 6 times more known regulations than CLR, which was
the best among all methods tested on this benchmark by Faith et al. (2007). With 44.5% recall
at this precision level, the performance of SIRENE allows one, in principle, to retrieve almost
half of all known regulations.

The main conceptual difference between SIRENE and other methods is that SIRENE is
a supervised method that requires known regulations to train its models. As an attempt to
understand why the performance of SIRENE was better than that of other state-of-the-art
unsupervised methods, we reasoned that TF with a large number of known regulated target
genes could better take advantage of the supervised setting, and therefore that predictions
for these TF should in general be better than predictions for TF with few known targets. To
validate this hypothesis, we computed the ROC curve for SIRENE by cross-validation, restricted

7



Table 1: Recall of different gene regulation prediction algorithm at different levels of precision
(60% and 80%). The values for relevance network, ARACNe and Bayesian network were taken
from Faith et al. (2007).

Method Recall at 60% Recall at 80%

SIRENE 44.5% 17.6%

CLR 7.5% 5.5%

Relevance networks 4.7% 3.3%

ARACNe 1% 0%

Bayesian network 1% 0%

to the prediction of targets for each individual TF in turn. For each TF, we then computed
the area under the ROC curve (AUC) as an indicator of how well the targets of each particular
TF are predicted. We did this estimation for both CLR and SIRENE, and show in Figure 3
the distributions of AUC scores for all TF as a function of the number of known target genes
in RegulonDB, for both CLR and SIRENE. As expected, the values for SIRENE tend to be
larger than those for CLR. More importantly, we observe in the SIRENE plot a trend to have
better AUC values for TF trained on more known targets. This trend is not present for CLR,
which does not benefit from the knowledge of more or less targets for each TF. This result was
expected and suggests that, as our knowledge expands and the number of known regulations
continues to increase, so will the performance of supervised methods like SIRENE.
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Figure 3: AUC per TF as a function of the number of regulated genes. (A) CLR and, (B)
SIRENE

Having validated the relevance and performance of SIRENE on the regulonDB benchmark,
we performed a global prediction of the E. coli regulatory network at 60% precision in order to
predict new regulations in E. coli. More precisely, for each of the 154 TF with at least one known
target in RegulonDB we computed the SIRENE score for all E. coli genes (4345 in total) that
were not known targets, using the protocol described in Section 2.3. The RegulonDB database
contained 3293 known TF-target regulations, so we assigned a score to the 4345× 154− 3293 =
665837 other candidate TF-gene pairs. From the cross-validation experiment we calibrated the
level of SIRENE score threshold associated to various levels of precision. We selected all pairs
with a score above a threshold of −0.41, corresponding to an estimated precision of 60%. At this
threshold, 991 new regulations were predicted in addition to the 3293 known ones. Combining
known and predicted regulations we obtained a regulatory network with 4284 edges involving
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1688 genes.
In order to illustrate some predicted regulations, we focus now on the regulations of TF by

other TF. Removing all non-TF genes of the predicted network, we obtain a graph with 131 TF
and 349 interactions among them (TF with no interaction were removed). Among them, the
rpoD gene, which codes for the RNA polymerase sigma factor, accounts alone for 85 regulations.
In order to obtain a picture easier to visualize with the Cytoscape software (Shannon et al.,
2003), we removed rpoD from this graph, and only kept the main connected component which
is shown in Figure 4. This core regulatory network involves 90 TF, and combines 196 known
regulations among them with 32 predicted ones.

Figure 4: Main connected component of the predicted regulatory network among TF of E.

coli, at an estimated 60% precision level. For clarity purpose the rpoD gene was removed
from this picture. Grey arrows indicate known regulations, blue arrows indicate new predicted
interactions.

Most regulations in this densely connected region of the E. coli regulatory network have
been investigated in detail, and it not a surprise that the number of newly predicted regulations
is limited. Still a quick survey of the literature can confirm some of these predictions. For
example, four new regulators are predicted for yhiW (crp,hns,rpoS,yhiX and itself), which is
itself predicted to regulate yhiE. Although these regulations were not present in the database
used to train the model, they are confirmed by the literature. The GadW protein coded by
yhiW is a regulator that participates in controlling several genes of the acid resistance system.
It is indeed regulated by the proteins coded by yhiX and by the general proteins crp,hns,rpoS
that control resistance to acidity through the gad system that utilizes two isoforms of glutamate
decarboxylase encoded by gene regions gadA and gadB and a putative glutamate:-aminobutyric
acid antiporter encoded by gadC (Tucker et al., 2002; Waterman and Small, 2003; Ma et al.,
2003). Another predicted regulation that was confirmed by a literature search is the dependence
of hcaR, a TF involved in the oxidative stress response, by a functional CAP protein encoded
by the crp gene (Turlin et al., 2001). Although preliminary, these first validations confirm the
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relevance of the approach and may suggest further experimental validations for subsystems of
interest.

SIRENE is easy to implement and scales well to large-scale inference. Indeed, the main idea
behind SIRENE is to decompose the network inference into a set of local binary classification
problems, aimed at discriminating targets from non-targets of each TF. Although we used a
SVM as a basic algorithm to solve these local problems, any algorithm for pattern recognition
may be used instead. Each local problem involves at most a training set of a few thousands
genes, easily manageable by most machine learning algorithms. This strategy also paves the
way to the use of other genomic data to predict regulation. Indeed, local models for gene
classification often improve in performance when several data, such as phylogenetic or cell
subcellular localization information is available, and SVM provide a convenient framework to
practically perform this data integration (Lanckriet et al., 2004; Bleakley et al., 2007). Another
interesting features of SIRENE is its ability to predict self-regulation, that other methods have
generally difficulties to deal with.

A important limitation of SIRENE is its inability to predict targets of TF with no a priori

known target. More generally, the performance of SIRENE tends to decrease when few targets
are known. Thus, for example, it can not be used to discover new transcription factors. An
interesting direction of future research is therefore to extend the predictions to TF with no
known target. A possible direction may be to combine the supervised approach with other
non-supervised approaches in some meaningful way.
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