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ABSTRACT
Identification and compensation purposes of nonlinear sys-
tems are of interest for many audio processing applications.
The analysis of systems under test must be done through rea-
listic audio inputs in order to capture different aspects of the
nonlinearity. However, the Gaussianity of the tested signal,
is a desirable factor because it guarantees easy implemen-
tation and good performances for the nonlinearity identifi-
cation process. In this paper, we show at a first stage, the
importance of input Gaussianity for the identification of me-
moryless nonlinear systems. At a second stage, we propose
an algorithm that makes the speech signals Gaussian. The
proposed ”Gaussianization” algorithm is based on the em-
bedding of an imperceptible signal in the speech signal, to
force it to be Gaussian. As expected, the performances of the
optimal identification of a polynomial nonlinearity are much
better with the Gaussianized input than with the original one.
Moreover, these performances exhibit a robustness similar to
the Gaussian input case.

1. INTRODUCTION

Identification or compensation (predistor-
sion/equalization) purposes of acoustic nonlinear systems
(transducers systems within loudspeakers and microphones)
are of interest for many audio processing applications
(hands-free telephone systems, visioconference systems,
high quality loudspeaker systems,...).

Usually nonlinear distortions are modelled either by me-
moryless nonlinearities or by nonlinear systems with me-
mory. Various structures such as neural networks [1], Vol-
terra filters [2], Wiener/Hammerstein systems, polynomial
structures, etc. were tested.

Optimal approaches for the identification or the characte-
rization of these nonlinear systems are generally made with
”academic” inputs such as one or two tones, or with white
Gaussian inputs. Whereas in practice, these audio systems
are driven by audio signals such as speech that are more
complex (non stationary, correlated, with Laplacian or Gene-
ralized Gaussian distribution function). To capture different
aspects of the nonlinear distortions as with realistic signals,
synthetic signals with required properties are designed for
this use. For example, USASI data that are stationary corre-
lated noise with the same spectrum as speech, was used to
test acoustic echo canceller.

In this paper, we show the importance of input Gaussia-
nity for the identification of memoryless nonlinear systems.
To exploit the features of a realistic speech signal to iden-
tify the nonlinearity, we propose an algorithm that makes the

speech signals ”Gaussian”.
The proposed ”Gaussianization” is based on the embed-

ding of an imperceptible information in the audio signal,
which forces the audio signal to be Gaussian. The propo-
sed approach has the same viewpoint as the audio station-
narization approach used to enhance the performances of a
real-time adaptive echo canceller system [3, 4].

This paper is organized as follows : we show in section 2
the importance of the Gaussian property for nonlinear system
identification. A ”Gaussianization” method for audio signals
based on the embedding of an imperceptible signal to force
the speech input to be Gaussian is proposed in section 3. Si-
mulation results with original and ”gaussianized” inputs are
presented and discussed in section 4.

2. IMPORTANCE OF INPUT GAUSSIANITY FOR
IDENTIFICATION OF MEMORYLESS NONLINEAR

AUDIO SYSTEMS

In this section, we analyze the influence of the input Pro-
bability Density Function (PDF) on the optimal identification
-in the mean square sense- of a nonlinear audio system using
a memoryless polynomial model. We prove that the identi-
fication performances are all the more sensitive as the non-
linearity order increases. We can quantify then the expected
identification performances when gaussianized speech inputs
are used instead of speech signals (assumed to be Laplacian).

2.1 Optimal identification and input PDF influence
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FIG. 1 – Nonlinear system identification.

As shown in Fig. 1, xk denotes the input of the nonlinear
(NL) audio system, yk is its output and ŷk = AT Xk corres-
ponds to the output estimate. A = (a1,a2, ...,ap)

T is the para-
meter vector to be optimized and Xk = (xk,x2

k , ...,x
p
k )T is the

observation vector of the p-order polynomial model.
The optimal vector Aopt that minimizes the Mean Squa-

red Error (MSE) E[(yk − ŷk)
2] is given by :

RxAopt = rXy,

where Rx = E[XkXT
k ] and rXy = E[Xkyk].
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The symmetric matrix Rx is defined by :



m2 m3 . . mp+1
m3 . . mp+1 mp+2
. . mp+1 mp+2 .
. mp+1 mp+2 . .

mp+1 mp+2 . . m2p


 , (1)

where mi = E[xi
k] is the ith order moment.

The robustness of the identification performances are clo-
sely related to the conditioning of the matrix Rx which de-
pends on the PDF of the input signal xk. Typically the condi-
tioning of a symmetric matrix Rx is evaluated through its lo-
garithmic condition number [6] :

K(R) = Log10

( |λmax|
|λmin|

)
, (2)

where λmax and λmin are respectively the largest and the smal-
lest eigenvalues of the matrix Rx.

Audio signals such as speech signals are assumed to be
Laplacian whereas music signals are rather Gaussian [5].
Therefore, we propose in the following, a comparative study
of K(R) corresponding to a p-order polynomial nonlinearity
model and an input with Gaussian or Laplacian distribution.

Applying the Price theorem [7] on a zero mean Gaus-
sian process xg, we may deduce all the higher order moments
through σ 2

xg = E[(xg)2] :

mg
2n+1 = E[(xg)2n+1] = 0,

mg
2n =

(2n−1)!
2n−1(n−1)!

σ 2n
xg , (3)

where n > 0.
Similarly, for a zero mean Laplacian process xl :

ml
2n+1 = E[(xl)2n+1] = 0,

ml
2n =

(2n)!
2n σ 2n

xl , (4)

where σ 2
xl = E[(xl)2]. For a nonlinear model of order p = 3,

for example :

Rxg =




σ 2
xg 0 3σ 4

xg

0 3σ 4
xg 0

3σ 4
xg 0 15σ 6

xg


 (5)

and

Rxl =




σ 2
xl 0 6σ 4

xl

0 6σ 4
xl 0

6σ 4
xl 0 90σ 6

xl


 . (6)

Assuming that xg and xl are unit variance processes, for p =
3, Rxg is better conditioned than Rxl since K(Rxg) = 1.6 and
K(Rxl ) = 2.18.

This important result can be generalized for any nonli-
nearity order p. Indeed, as depicted on Fig. 2, the matrix Rxg

is better conditioned than Rxl for all considered values of p.
However, as expected, this shows that in the case of speech
signal the matrix is ill-conditioned. The condition numbers
of the estimated matrices R̂xs for speech were computed for
N = 10000 samples.

Thus, we expect that the optimal identification of a non-
linear system by a memoryless polynomial model will have
better performances for Gaussian input than for Laplacian
input.
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FIG. 2 – Condition number evolution of Rxg (Gaussian pro-
cess), Rxl (Laplacian process) and R̂xs (speech signals).

2.2 Variability of identification performances
The nonlinear system NL is supposed to be a memory-

less polynomial system of order Q ( where Q ≥ p). In the
following, we evaluate the identification performance with
respect to the nonlinearity order, for white Gaussian, Lapla-
cian and speech inputs.

2.2.1 Exact modelling

When Q = p, we evaluate (Fig. 3) the mean relative esti-
mation error :

eA =

√
1
M ∑M

i=1 e2
i

‖F‖ , (7)

where F is the parameter vector of the nonlinear system
(NL), ei = ‖F −Aopt

i ‖ denotes the estimation error for the
ith frame of length L = 256 samples, Aopt

i is the parameter
vector obtained through the optimal identification for the ith
frame and M is the number of frames.

According to the previous results on matrix conditioning
(Fig. 2), the mean estimation error :

– increases with the nonlinearity order
– is smaller for a white Gaussian signal than for white

Laplacian or speech signals.
In the exact modelling case, the expected contribution of
”Gaussianization” is limited to a small range of nonlinearity
orders between 12 ≤ p ≤ 17 (the error is less than 1% un-
til p = 12 for Laplacian or speech signals and near to 100%
from p = 17 for white Gaussian input).

2.2.2 Undermodelling

In the real undermodelling context, the identification per-
formance is measured by the Signal to Error Ratio (SER) de-
fined as :

SER(k) = 10log10

(
E[y2

k ]

E[e2
k ]

)
, (8)

where yk is the system output and ek = yk − (Aopt)T Xk is the
identification error.
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FIG. 3 – The mean relative estimation error for Gaussian,
Laplacian and speech signals (exact modelling case Q = p).

We depict on Fig. 4 the SER computed over sliding
frames of length L = 256 samples. For these reported results,
the optimal nonlinearity parameter vector is computed over
disjoint frames of length L. The considered undermodelling
case is for Q = 17 and p = 15.

Some conclusions about the expected performances with
”gaussianized” inputs can be deduced :

– performance enhancement : the SER with white Gaus-
sian input is always higher than for white Laplacian
input or speech.

– robustness : even for stationary inputs (Gaussian or La-
placian), the SER is variable due to the variability of
the conditioning number through its realizations. Ho-
wever, the most robust SER performances are obtained
for Gaussian input.

3. SPEECH ”GAUSSIANIZATION” METHOD

The proposed ”Gaussianization” method is based on
slight changes of speech sample values (that preserve the in-
audibility) so that the obtained PDF matches a normal distri-
bution.

3.1 Gaussianization principles and algorithm

A ”Gaussianization” method was proposed in [8], in a
context of adaptive filtering. The principle of this method
is to (i) use the empirical density transformation, to obtain
an uniform density ; (ii) transform to a gaussian distribu-
tion, using the inverse of the gaussian cumulative distribu-
tion function. We propose a direct and slight transformation
from the empirical distribution, which is laplacian for speech
signals, to a gaussian distribution. Denoting by xk the speech
signal, the different steps for its Gaussianization, which is
done for disjoint frames of length N = 10000 samples, are :

1. normalizing each frame of the signal so that we obtain a
unit variance and zero mean sequence.

2. arranging in an ascending order the samples of the nor-
malized sequence X = {x1,x2, ...,xN}. We get the corres-
ponding ordered sequence Z = {z1,z2, ...,zN}, which has
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FIG. 4 – SER time evolution for white Gaussian, Laplacian
and speech inputs (undermodelling case Q = 17, p = 15).

the empirical cumulative distribution function :

Femp
Z (zk) = P[Z ≤ zk] =

k
N

, k = 1 : N. (9)

The values of the target normal cumulative distribution
function for the sequence Z are :

F th
Z (zk) = 1− 1

2
er f c

(
zk√

2

)
, (10)

where er f c is the complementary error function.
3. for k = 1 : N, adding a small value gk to zk in order to get

the value zg
k so that :

Femp
Z (zg

k) = F th
Z (zg

k),

as illustrated in Fig. 5.
4. rearranging the samples of the sequence Zg =

{zg
1,z

g
2, ...,z

g
N} in the initial order (the order of X)

to get the ”Gaussianized” sequence X g = {xg
1,x

g
2, ...,x

g
N},

5. denormalizing the obtained sequence X g.

Hence, the ”Gaussianized” signal can be written as :

xg
k = xk +gk,

where gk represents the additive ”Gaussianization” noise.
The proposed procedure can be compared to a watermarking
process where the additive watermark signal is gk and the
watermarked one is xg

k .

3.2 Inaudibility and enhanced ”Gaussianization”
The noise introduced by the Gaussianization process is

clearly audible. This can be explained by the fact that the
PDF of speech is much higher than the Gaussian one around
zero. Consequently, the Gaussianization noise added to low
level segments of speech induces a low signal to noise ratio
in these areas. Such phenomenon is particularly noticeable
for :
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FIG. 5 – Empirical and target distribution functions of a
speech signal of length N = 10000 samples.

– silence areas where the signal values are very small
or null (values in {−q,0,q} or in {−q/2,q/2} where
q denotes the quantization step size generally used by
speech codecs)

– unvoiced areas where the zero crossing rate is high and
consequently the PDF is to high near zero.

In audio applications, the transmitted sound must be percep-
tually unchanged compared to the original one. Hence, in or-
der to reduce the Gaussianization noise, we propose to ex-
clude the silence and the unvoiced segments from the sets of
samples to be Gaussianized. However, the Gaussianization
noise is still audible.

Fig. 6 shows the Power Spectral Density (PSD) of the
Gaussianisation noise for a speech signal frame of duration
32 ms, compared to the frequency masking threshold of the
signal (computed with the MPEG1 auditory model). As ex-
pected, the PSD of the Gaussianization noise is above the
masking curve. Thus, we propose in the following an impro-
ved version of Gaussianization algorithm.

3.3 The proposed Gaussianization method
It can be noticed, in Fig. 6, that the PSD of the Gaussia-

nization noise is rather parallel to the masking threshold of
the audio signal. Thus, we propose to achieve the frequency
masking through an iterative limitation of the maximum am-
plitude of gk, according to the following steps :

– getting the ordered sequence Z with mean value 0 and
variance 1, as described in steps 1 and 2 of the basic
algorithm presented in subsection 3.1

– fixing the target variance of the Gaussianization noise

σ target
g = λ ,

where λ is the attenuation factor (0 ≤ λ ≤ 1).
– initializing the maximum allowed amplitude of gk,
|gk|max =

√
3σ target

g . This initial value is based on the
hypothesis that g will have a uniform distribution

– repeating step 3 of the basic algorithm under the
constraint |gk| ≤ |gk|max, until σg = σ target

g . The value
of |gk|max is adjusted at each iteration according to a
dichotomic process based on the value of σg.

0 500 1000 1500 2000 2500 3000 3500 4000
30

40

50

60

70

80

90

100

110

f [Hz]

D
e
n
s
i
t
y
 
S
p
e
c
t
r
a
l
 
P
o
w
e
r
(
P
S
D
)
 
i
n
 
[
d
B
]

 

 

S
x
(f)

M
x
(f)

S
g
(f)

FIG. 6 – PSDs of speech signal Sx( f ), Gaussianization noise
Sg( f ) and masking threshold Mx( f ).

Informal tests indicate that for λdB = 20Log10(λ ) =−20
dB, the perceptual quality of the original signal and its Gaus-
sianized version is piecewise the same. This results is illus-
trated in Fig. 7 where we depict the PSD of a speech signal,
of the Gaussianization noise under inaudibility constraint and
the frequency masking threshold Mx( f ). One can notice that,
under constraint, the PSD of the Gaussianization noise is
quietly under the masking threshold.

In the following section, we will show the enhance-
ment of ”Gaussianization” under inaudibility constraint in
the identification performances for nonlinear systems.

4. IDENTIFICATION PERFORMANCES AND
ROBUSTNESS FOR ”GAUSSIANIZED” SPEECH

The parameter settings chosen for all reported simula-
tions are :

– a speech signal sampled at 8 kHz,
– ”Gaussianization” of disjoint frames of length N =

10000 samples,
– an attenuation factor λdB = −20 dB.

4.1 Improvement of the conditioning
In Fig. 8, we plotted the condition numbers for a white

Gaussian noise, a speech signal and its ”Gaussianized” ver-
sions (with and without inaudibility constraint) for different
nonlinearity orders.

Then, we can conclude that the proposed ”Gaussianiza-
tion” method improves the conditioning of the input matrix
Rx.

4.2 Performance evaluation
Since the matrix Rx is better conditioned for ”Gaussia-

nized” signal than for its original version, the identification
performances should be better using the proposed ”Gaussia-
nization” method.

A polynomial memoryless system of order Q = 17 was
simulated and identified through a model of order p = 15,
over speech frames of length L = 256 (32 ms). The SER,
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FIG. 7 – PSDs of a speech signal Sx( f ), of the Gaussiani-
zation noise Sg( f ) (under constraint λdB = −20 dB) and the
masking threshold Mx( f ).

displayed in Fig. 9, confirms the good identification perfor-
mance achieved through the ”Gaussianization”, even with the
inaudibility constraint. With this constraint, the proposed me-
thod performs an average gain of 25 dB.

5. CONCLUSION

In this paper we have investigated the impact of si-
gnal gaussianity and speech ”Gaussianization” for memory-
less nonlinear audio systems identification/characterization.
Since speech signals are rather Laplacian, we have proposed
a specific method of ”Gaussianization” by embedding an im-
perceptible information to force the speech input to be Gaus-
sian. Polynomial systems are tested and very promising re-
sults are obtained as the nonlinearity order increases. In par-
ticular, the identification is more robust with ”Gaussianized”
speech than with original speech.

Now, an identification and compensation study shall be
carried out for nonlinear systems with memory and for au-
dio signals inputs (wide-band speech and music) to further
emphasize the interest of the proposed procedure in a most
general case.

* This work is related to the project WaRRIS (Watermarking
Réflexif pour le Renforcement des Images et des Sons) supported by
the French National Research Agency (ANR 2006-2009).
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