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"GAUSSIANIZATION" METHOD FOR IDENTIFICATION OF MEMORYLESS NONLINEAR AUDIO SYSTEMS

Identification and compensation purposes of nonlinear systems are of interest for many audio processing applications. The analysis of systems under test must be done through realistic audio inputs in order to capture different aspects of the nonlinearity. However, the Gaussianity of the tested signal, is a desirable factor because it guarantees easy implementation and good performances for the nonlinearity identification process. In this paper, we show at a first stage, the importance of input Gaussianity for the identification of memoryless nonlinear systems. At a second stage, we propose an algorithm that makes the speech signals Gaussian. The proposed "Gaussianization" algorithm is based on the embedding of an imperceptible signal in the speech signal, to force it to be Gaussian. As expected, the performances of the optimal identification of a polynomial nonlinearity are much better with the Gaussianized input than with the original one. Moreover, these performances exhibit a robustness similar to the Gaussian input case.

INTRODUCTION

Identification

or compensation (predistorsion/equalization) purposes of acoustic nonlinear systems (transducers systems within loudspeakers and microphones) are of interest for many audio processing applications (hands-free telephone systems, visioconference systems, high quality loudspeaker systems,...).

Usually nonlinear distortions are modelled either by memoryless nonlinearities or by nonlinear systems with memory. Various structures such as neural networks [START_REF] Botoca | Neural Networks intelligent tools for telecommunications problems[END_REF], Volterra filters [START_REF] Stenger | Adaptive Volterra filters for nonlinear acoustic echo cancellation[END_REF], Wiener/Hammerstein systems, polynomial structures, etc. were tested.

Optimal approaches for the identification or the characterization of these nonlinear systems are generally made with "academic" inputs such as one or two tones, or with white Gaussian inputs. Whereas in practice, these audio systems are driven by audio signals such as speech that are more complex (non stationary, correlated, with Laplacian or Generalized Gaussian distribution function). To capture different aspects of the nonlinear distortions as with realistic signals, synthetic signals with required properties are designed for this use. For example, USASI data that are stationary correlated noise with the same spectrum as speech, was used to test acoustic echo canceller.

In this paper, we show the importance of input Gaussianity for the identification of memoryless nonlinear systems. To exploit the features of a realistic speech signal to identify the nonlinearity, we propose an algorithm that makes the speech signals "Gaussian".

The proposed "Gaussianization" is based on the embedding of an imperceptible information in the audio signal, which forces the audio signal to be Gaussian. The proposed approach has the same viewpoint as the audio stationnarization approach used to enhance the performances of a real-time adaptive echo canceller system [START_REF] Larbi | Audio watermarking : a way to stationnarize audio signals[END_REF][START_REF] Marrakchi | Speech processing in the watermarked domain : application in adaptive acoustic echo cancellation[END_REF].

This paper is organized as follows : we show in section 2 the importance of the Gaussian property for nonlinear system identification. A "Gaussianization" method for audio signals based on the embedding of an imperceptible signal to force the speech input to be Gaussian is proposed in section 3. Simulation results with original and "gaussianized" inputs are presented and discussed in section 4.

IMPORTANCE OF INPUT GAUSSIANITY FOR IDENTIFICATION OF MEMORYLESS NONLINEAR AUDIO SYSTEMS

In this section, we analyze the influence of the input Probability Density Function (PDF) on the optimal identification -in the mean square sense-of a nonlinear audio system using a memoryless polynomial model. We prove that the identification performances are all the more sensitive as the nonlinearity order increases. We can quantify then the expected identification performances when gaussianized speech inputs are used instead of speech signals (assumed to be Laplacian).

Optimal identification and input PDF influence

x k y k e k + - - - l y k A NL ? 6 - + FIG. 1 -Nonlinear system identification.
As shown in Fig. 1, x k denotes the input of the nonlinear (NL) audio system, y k is its output and y k = A T X k corresponds to the output estimate. A = (a 1 , a 2 , ..., a p ) T is the parameter vector to be optimized and X k = (x k , x 2 k , ..., x p k ) T is the observation vector of the p-order polynomial model.

The optimal vector A opt that minimizes the Mean Squared Error (MSE) E[(y k -y k ) 2 ] is given by :

R x A opt = r Xy , where R x = E[X k X T k ] and r Xy = E[X k y k ].
The symmetric matrix R x is defined by : 

    m 2 m 3 . . m p+1 m 3 . . m p+1 m p+2 . . m p+1 m p+2 . . m p+1 m p+2 . . m p+1 m p+2 . . m 2p      , (1) 
where

m i = E[x i k ]
is the i th order moment. The robustness of the identification performances are closely related to the conditioning of the matrix R x which depends on the PDF of the input signal x k . Typically the conditioning of a symmetric matrix R x is evaluated through its logarithmic condition number [START_REF] Golub | Matrix Computations, 3 rd Edition[END_REF] :

K(R) = Log 10 |λ max | |λ min | , (2) 
where λ max and λ min are respectively the largest and the smal- lest eigenvalues of the matrix R x . Audio signals such as speech signals are assumed to be Laplacian whereas music signals are rather Gaussian [START_REF] Gazor | Speech probability distribution[END_REF]. Therefore, we propose in the following, a comparative study of K(R) corresponding to a p-order polynomial nonlinearity model and an input with Gaussian or Laplacian distribution.

Applying the Price theorem [START_REF] Hill | Probability, random variables and stochastic processes : Price's theorem and joint moments[END_REF] on a zero mean Gaussian process x g , we may deduce all the higher order moments through σ 2

x g = E[(x g ) 2 ] : m g 2n+1 = E[(x g ) 2n+1 ] = 0, m g 2n = (2n -1)! 2 n-1 (n -1)! σ 2n x g , (3) 
where n > 0.

Similarly, for a zero mean Laplacian process x l :

m l 2n+1 = E[(x l ) 2n+1 ] = 0, m l 2n = (2n)! 2 n σ 2n x l , (4) 
where σ 2

x l = E[(x l ) 2 ]
. For a nonlinear model of order p = 3, for example :

R x g =   σ 2 x g 0 3σ 4 
x g 0 3σ 4

x g 0 3σ 4

x g 0 15σ 6 x g   (5) 
and

R x l =   σ 2 x l 0 6σ 4 x l 0 6σ 4 x l 0 6σ 4 x l 0 90σ 6 x l   . ( 6 
)
Assuming that x g and x l are unit variance processes, for p = 3,

R x g is better conditioned than R x l since K(R x g ) = 1.6 and K(R x l ) = 2.18.
This important result can be generalized for any nonlinearity order p. Indeed, as depicted on Fig. 2, the matrix R x g is better conditioned than R x l for all considered values of p. However, as expected, this shows that in the case of speech signal the matrix is ill-conditioned. The condition numbers of the estimated matrices R x s for speech were computed for N = 10000 samples.

Thus, we expect that the optimal identification of a nonlinear system by a memoryless polynomial model will have better performances for Gaussian input than for Laplacian input. 

Variability of identification performances

The nonlinear system NL is supposed to be a memoryless polynomial system of order Q ( where Q ≥ p). In the following, we evaluate the identification performance with respect to the nonlinearity order, for white Gaussian, Laplacian and speech inputs.

Exact modelling

When Q = p, we evaluate (Fig. 3) the mean relative estimation error :

e A = 1 M ∑ M i=1 e 2 i F , ( 7 
)
where F is the parameter vector of the nonlinear system (NL), e i = F -A opt i denotes the estimation error for the i th frame of length L = 256 samples, A opt i is the parameter vector obtained through the optimal identification for the i th frame and M is the number of frames.

According to the previous results on matrix conditioning (Fig. 2), the mean estimation error :

-increases with the nonlinearity order -is smaller for a white Gaussian signal than for white Laplacian or speech signals. In the exact modelling case, the expected contribution of "Gaussianization" is limited to a small range of nonlinearity orders between 12 ≤ p ≤ 17 (the error is less than 1% until p = 12 for Laplacian or speech signals and near to 100% from p = 17 for white Gaussian input).

Undermodelling

In the real undermodelling context, the identification performance is measured by the Signal to Error Ratio (SER) defined as :

SER(k) = 10 log 10 E[y 2 k ] E[e 2 k ] , (8) 
where y k is the system output and e k = y k -(A opt ) T X k is the identification error. We depict on Fig. 4 the SER computed over sliding frames of length L = 256 samples. For these reported results, the optimal nonlinearity parameter vector is computed over disjoint frames of length L. The considered undermodelling case is for Q = 17 and p = 15. Some conclusions about the expected performances with "gaussianized" inputs can be deduced :

-performance enhancement : the SER with white Gaussian input is always higher than for white Laplacian input or speech. -robustness : even for stationary inputs (Gaussian or Laplacian), the SER is variable due to the variability of the conditioning number through its realizations. However, the most robust SER performances are obtained for Gaussian input.

SPEECH "GAUSSIANIZATION" METHOD

The proposed "Gaussianization" method is based on slight changes of speech sample values (that preserve the inaudibility) so that the obtained PDF matches a normal distribution.

Gaussianization principles and algorithm

A "Gaussianization" method was proposed in [START_REF] Kidmose | Adaptive filtering for non-gaussian processes[END_REF], in a context of adaptive filtering. The principle of this method is to (i) use the empirical density transformation, to obtain an uniform density ; (ii) transform to a gaussian distribution, using the inverse of the gaussian cumulative distribution function. We propose a direct and slight transformation from the empirical distribution, which is laplacian for speech signals, to a gaussian distribution. Denoting by x k the speech signal, the different steps for its Gaussianization, which is done for disjoint frames of length N = 10000 samples, are :

1. normalizing each frame of the signal so that we obtain a unit variance and zero mean sequence. the empirical cumulative distribution function :

F emp Z (z k ) = P[Z ≤ z k ] = k N , k = 1 : N. ( 9 
)
The values of the target normal cumulative distribution function for the sequence Z are :

F th Z (z k ) = 1 - 1 2 er f c z k √ 2 , ( 10 
)
where er f c is the complementary error function. 3. for k = 1 : N, adding a small value g k to z k in order to get the value z g k so that :

F emp Z (z g k ) = F th Z (z g k ),
as illustrated in Fig. 5. 4. rearranging the samples of the sequence Z g = {z g 1 , z g 2 , ..., z g N } in the initial order (the order of X) to get the "Gaussianized" sequence X g = {x g 1 , x g 2 , ..., x g N }, 5. denormalizing the obtained sequence X g . Hence, the "Gaussianized" signal can be written as :

x g k = x k + g k ,
where g k represents the additive "Gaussianization" noise.

The proposed procedure can be compared to a watermarking process where the additive watermark signal is g k and the watermarked one is x g k .

Inaudibility and enhanced "Gaussianization"

The noise introduced by the Gaussianization process is clearly audible. This can be explained by the fact that the PDF of speech is much higher than the Gaussian one around zero. Consequently, the Gaussianization noise added to low level segments of speech induces a low signal to noise ratio in these areas. Such phenomenon is particularly noticeable for : -silence areas where the signal values are very small or null (values in {-q, 0, q} or in {-q/2, q/2} where q denotes the quantization step size generally used by speech codecs) -unvoiced areas where the zero crossing rate is high and consequently the PDF is to high near zero. In audio applications, the transmitted sound must be perceptually unchanged compared to the original one. Hence, in order to reduce the Gaussianization noise, we propose to exclude the silence and the unvoiced segments from the sets of samples to be Gaussianized. However, the Gaussianization noise is still audible. Fig. 6 shows the Power Spectral Density (PSD) of the Gaussianisation noise for a speech signal frame of duration 32 ms, compared to the frequency masking threshold of the signal (computed with the MPEG1 auditory model). As expected, the PSD of the Gaussianization noise is above the masking curve. Thus, we propose in the following an improved version of Gaussianization algorithm.

The proposed Gaussianization method

It can be noticed, in Fig. 6, that the PSD of the Gaussianization noise is rather parallel to the masking threshold of the audio signal. Thus, we propose to achieve the frequency masking through an iterative limitation of the maximum amplitude of g k , according to the following steps :

-getting the ordered sequence Z with mean value 0 and variance 1, as described in steps 1 and 2 of the basic algorithm presented in subsection 3.1 -fixing the target variance of the Gaussianization noise Informal tests indicate that for λ dB = 20Log 10 (λ ) = -20 dB, the perceptual quality of the original signal and its Gaussianized version is piecewise the same. This results is illustrated in Fig. 7 where we depict the PSD of a speech signal, of the Gaussianization noise under inaudibility constraint and the frequency masking threshold M x ( f ). One can notice that, under constraint, the PSD of the Gaussianization noise is quietly under the masking threshold.

In the following section, we will show the enhancement of "Gaussianization" under inaudibility constraint in the identification performances for nonlinear systems.

IDENTIFICATION PERFORMANCES AND ROBUSTNESS FOR "GAUSSIANIZED" SPEECH

The parameter settings chosen for all reported simulations are :

-a speech signal sampled at 8 kHz, -"Gaussianization" of disjoint frames of length N = 10000 samples, -an attenuation factor λ dB = -20 dB.

Improvement of the conditioning

In Fig. 8, we plotted the condition numbers for a white Gaussian noise, a speech signal and its "Gaussianized" versions (with and without inaudibility constraint) for different nonlinearity orders.

Then, we can conclude that the proposed "Gaussianization" method improves the conditioning of the input matrix R x .

Performance evaluation

Since the matrix R x is better conditioned for "Gaussianized" signal than for its original version, the identification performances should be better using the proposed "Gaussianization" method.

A polynomial memoryless system of order Q = 17 was simulated and identified through a model of order p = 15, over speech frames of length L = 256 (32 ms). The SER, FIG. 7 -PSDs of a speech signal S x ( f ), of the Gaussianization noise S g ( f ) (under constraint λ dB = -20 dB) and the masking threshold M x ( f ). displayed in Fig. 9, confirms the good identification performance achieved through the "Gaussianization", even with the inaudibility constraint. With this constraint, the proposed method performs an average gain of 25 dB.

CONCLUSION

In this paper we have investigated the impact of signal gaussianity and speech "Gaussianization" for memoryless nonlinear audio systems identification/characterization. Since speech signals are rather Laplacian, we have proposed a specific method of "Gaussianization" by embedding an imperceptible information to force the speech input to be Gaussian. Polynomial systems are tested and very promising results are obtained as the nonlinearity order increases. In particular, the identification is more robust with "Gaussianized" speech than with original speech. Now, an identification and compensation study shall be carried out for nonlinear systems with memory and for audio signals inputs (wide-band speech and music) to further emphasize the interest of the proposed procedure in a most general case. 
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 8 FIG.8-Condition number of the matrix R x for original speech signal, Gaussian version without constraint, Gaussianized version under constraint and for a Gaussian process.
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 9 FIG. 9 -SER for speech signal, Gaussian version (without constraint) and "Gaussianized" version (under constraint).
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