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Abstract— We study necessary conditions which have to be
satisfied in order to have LDPC codes with linear minimum
distance. We give two conditions of this kind in this paper.
These conditions are not met for several interesting code families:
this shows that they are not asymptotically good. The second
one concerns LDPC codes that have a Tanner graph in which
there are cycles linking variable nodes of degree 2 together and
provides some insight about the combinatorial structure of some
low-weight codewords in such a case. When the LDPC code
family is obtained from the lifts of a given protograph and if there
are such cycles in the protograph, the second condition seems to
capture really well the linear minimum distance character of the
code. This is illustrated by a code family which is asymptotically
good for which there is a cycle linking all the variable nodes
of degree 2 together. Surprisingly, this family is only a slight
modification of a family which does not satisfy the second
condition.

I. INTRODUCTION

Generalized LDPC codes, namely codes given by Tanner

graphs where all check nodes are associated to single parity-

check codes, with possibly variable nodes of degree 1 and non-

transmitted (i.e. punctured) variable nodes have been shown to

yield very good codes for iterative decoding for a large range

of rates and lengths (see for instance [9]). If very low packet

error rates are required, then great care has to be taken to

design families of codes of large minimum distance. Ideally,

asymptotically good families of codes are sought (that is

families where the minimum distance grows linearly with the

code-length). It is therefore interesting to find necessary and/or

sufficient conditions for meeting this property. For well-studied

code families such as turbo codes or standard (irregular) LDPC

codes, upper bounds on their minimum distance can be found

in [3] and [4].

The purpose of this paper is to provide sufficient conditions

giving a logarithmic or sublinear upper bound on the minimum

distance which are often met for structured families of LDPC

codes. This complements the paper of Divsalar and al. [5]

concerning LDPC codes defined by protographs. They have

provided a sufficient condition for being asymptotically good

which is called the check node splitting condition. More

precisely, a protograph P satisfies the check node splitting

condition if P contains only transmitted variable nodes of

degree ≥ 2 and if the subgraph P2 of P that contains only

degree-2 variable nodes with their attached edges and check

nodes has no cycles.

This paper raises several issues:

• what happens if this subgraph contains cycles or for more

general LDPC code families which are not lifts of a given

protograph?

• what happens when there are non-transmitted variable

nodes and variable nodes of degree 1? It should be

stressed that having non-transmitted variable nodes and

variable nodes of degree 1 is an important ingredient for

having good iterative decoding performances, as it was

put forward in [9].

This paper addresses several of these issues. First of all,

for completeness, we recall a well known fact about how to

handle the case of variable nodes of degree 1. If for a given

check node there are more than one variable node of degree

1 attached to it, and if at least one of them is transmitted,

then the minimum distance of the resulting code is at most 2.

Moreover, all the variable nodes of degree 1 together with their

attached check nodes can be erased from the Tanner graph

without changing the linear minimum distance character of

the code. The case of non-transmitted variable nodes is much

more complicated however. We do not treat this case in full

generality here. We do address partially however an important

practical case, namely we consider the case when a certain

graph denoted here by G2 consists of disjoint cycles. Many

good LDPC codes belong to this class, see for instance [11],

[9].

Definition 1: The graph of degree-2 variable nodes G2 of

a generalized LDPC code is a graph whose vertex set V is

formed by the check nodes involving transmitted degree-2
variable nodes. An edge connects two check nodes of V if

and only if they are adjacent to a same transmitted degree 2

variable node in the Tanner graph.

Notice that G2 is a slight modification of a graph having

been considered in [4] for irregular LDPC code ensembles. We

show by generalizing a result of [10], that in this case these

codes are not asymptotically good when a certain condition

is met (Theorem 5). This condition is not only fulfilled by

several interesting families of LDPC codes, see for instance

Subsections IV-A or IV-B, but also casts some light about

the structure of some low-weight codewords: they basically



involve only a few variable nodes of degree greater than 2 and

a sublinear number of (transmitted) variable nodes of degree 2
which are arranged around a cycle. We also provide in Section

V an example of a code family which is asymptotically good

but for which the Tanner graph contains a cycle of linear length

joining the transmitted variable nodes of degree 2.

The case of disjoint cycles linking the transmitted variable

nodes of degree 2 together in the Tanner graph of the LDPC

code is in some sense the critical case. If the subgraph G2 is

only slightly denser, i.e. if its average degree is greater than 2,

then the minimum distance is only at most logarithmic in the

code-length, as stated in Proposition 2. This result is probably

well known, but the only place we could find the mentioning

on it is [2], so we have decided to include it here. The proof

we provide uses in a crucial way a rather recent proof of an

old conjecture of Bollobas giving a tight upper bound on the

girth of irregular graphs.

II. A LOGARITHMIC UPPER BOUND ON THE MINIMUM

DISTANCE

In this section, we treat the case when G2 is of average

degree greater than 2. In this case, it turns out that the

minimum distance is at most logarithmic in the code-length,

as stated in the following proposition.

Proposition 2: Let ∆ be the average degree of G2. If ∆ > 2
then the minimum distance dmin satisfies

dmin ≤ 2 log∆−1

(

∆ − 2

2
m + 1

)

+ 1 (1)

where m is the number of parity checks.

Proof of Proposition 2: Let g be the girth of G2. Note that

any cycle in G2 is associated to a codeword whose weight is

the length of the cycle (its support is given by the edges of the

cycle). Therefore dmin ≤ g. To upperbound this last quantity

we use the Moore bound for irregular graphs [1] which asserts

that the number of vertices m2 of G2 satisfies the following

inequality

m2 ≥ 2
(∆ − 1)

t − 1

∆ − 2

where t = ⌊ g
2⌋. This implies

t ≤ log∆−1

(

∆ − 2

2
m + 1

)

since m2 ≤ m. We now conclude by:

dmin ≤ g ≤ 2t + 1 ≤ 2 log∆−1

(

∆ − 2

2
m + 1

)

+ 1.

III. A POLYNOMIAL UPPER BOUND ON THE MINIMUM

DISTANCE

We have seen that when the average degree ∆ of the

transmitted degree-2 variable node graph G2 is greater than

2, then the code can not be asymptotically good. Moreover, if

G2 contains no cycle, that is to say ∆ < 2, we know [5] that

G2 is asymptotically good if it satisfies the check node splitting

condition. Therefore, the critical case is ∆ = 2. We give in

Theorem 5 sufficient conditions that enables to determine a

new polynomial upper bound. It generalizes a result of [10]

and some definitions are required to prove it.

Definition 3: A dangerous cycle is a set of parity-checks

and transmitted variable nodes of degree 2 which form a

single cycle in the Tanner graph. The set of parity-check nodes

belonging to dangerous cycles is called the set of dangerous

check nodes and is denoted by D.

Definition 4: A potentially bad set of variable nodes X is a

set of variable nodes in the Tanner graph which do no belong

to dangerous cycles and such that when they are assigned to 1

and all other variable nodes are assigned to 0, the only check

nodes which are not satisfied belong to dangerous cycles. The

defect of this set is the set of unsatisfied parity-checks and is

denoted by δ(X).
Theorem 5: Let n be the length of a generalized LDPC

code. If there exist K1n
α disjoint potentially bad sets of

variable nodes which are all of cardinality less than K2 and

defect size less than K3, then the minimum distance dmin of

the code satisfies

dmin ≤ K4n
1− α

K3 + 2K2 + 1,

where K4 = 2
K2

3

K1

.

To prove this theorem we will also need the following

Definition 6: An annihilating configuration of a subset A ⊂
D of dangerous check nodes is a set of (transmitted) variable

nodes of degree 2 belonging to dangerous cycles, such that

when they are assigned to 1 and all other variable nodes

are assigned to 0, the set of unsatisfied parity-check nodes

is precisely A. The set of annihilating configurations for A is

called the annihilating set of A and is denoted by Ann(A).
The distance between two subsets A and B of parity-check

nodes belonging to D is defined by the minimum size of an

annihilating configuration of the symmetric difference of A
and B denoted by A ⊕B. When A and B are disjoint and if

the annihilating set Ann(A⊕B) is empty, then the distance is

infinite. The corresponding quantity is denoted by ∆(A,B).
We set by definition ∆(A,A) = 0.

It should be noted that ∆(, ) is indeed a distance. This is

a consequence of the following fact. If x is an annihilating

configuration for A⊕B and y is an annihilating configuration

for B ⊕ C, then by linearity of parity-checks x ⊕ y is

an annihilating configuration for A ⊕ C. This implies the

triangular inequality for ∆(, ).
Since for any pair of disjoint potentially bad sets of variable

nodes A and B, and any x ∈ Ann(δ(A) ⊕ δ(B)), A ∪ B ∪ x
is the support of a codeword, we have

dmin ≤ ∆(δ(A), δ(B)) + |A| + |B|. (2)

This is the crucial inequality. What we are going to prove now

is that there are two potentially bad sets of variable nodes

of small size (less than K2) A and B such that there is an

annihilating configuration for δ(A)⊕δ(B) of sublinear size. In

other words we are going to prove the existence of a codeword



which involve at most 2K2 variable nodes which are not in

dangerous cycles and a sublinear number of positions which

belong to dangerous cycles.

Proof of Theorem 5: This is essentially a packing argument

over the set of all possible defects of a given size. Let t be the

number in {1, . . . ,K3} for which the number of potentially

bad sets of size at most K2 and defect size t is the largest. We

know that this number is at least K1

K3

nα and denote by B the

corresponding set of potentially bad sets. For a subset A ⊂ D,

we denote by Br(A) the set of subsets of D of size t which

are at distance at most r of A. From Inequality (2) we know

that all the sets B
⌊

dmin−2K2−1

2
⌋
(δ(X)) are disjoint for X ∈ B.

Therefore

∑

X∈B

∣

∣

∣
B

⌊
dmin−2K2−1

2
⌋
(δ(X))

∣

∣

∣
≤
(

m

t

)

≤ mt

t!
, (3)

where m
def
= |D|. On the other hand there is a simple lower

bound on the sizes of such balls when all the dangerous cycles

are large enough. There are two cases to consider : all dan-

gerous cycles are of size at least 2M where M
def
=K4n

K3−α

K3 +
2K2 +1 or there is one dangerous cycle whose size is smaller.

In the latter case there is a non-zero codeword of weight less

than M with support the variable nodes of degree 2 belonging

to the aforementioned cycle and we are done.

Assume now that all dangerous cycles are of size at least

2M . For A ⊂ D of size t and r ≤ M we have

|Br(A)| ≥
(

t+r
t

)

t!
≥ rt

(t!)2
. (4)

To check this point let us choose some order on the dangerous

checks and let us observe that the aforementioned ball contains

all subsets B of t dangerous check nodes such that for all

i ∈ {1, . . . , t} the i-th check node in B is in the same cycle

as the i-th check node of A and at distance li such that
∑

i

li ≤ r.

The number of such subsets is clearly lower bounded by the

number of non-negative t-tuples (l1, . . . , lt) such that l1+· · ·+
lt ≤ r divided by t!. The number of such t-tuples is equal to
(

t+r
t

)

and this implies Equation (4). Combining Equations (3)

and (4) and letting r = ⌊dmin−2K2−1
2 ⌋, we obtain

K1

K3
nα rt

(t!)2
≤ mt

t!
,

which implies

r ≤
(

t!
K3

K1

)
1

t

n−α

t m,

and since m ≤ n we deduce that

r ≤
(

t!
K3

K1

)
1

t

n1−α

t ,

so we have that

dmin ≤ 2

(

t!
K3

K1

)
1

t

n1−α

t + 2K2 + 1.

Using the fact that (t!)
1

t ≤ K3 for 1 ≤ t ≤ K3, we obtain

dmin ≤ 2K2
3

K1
n1− α

K3 + 2K2 + 1.

IV. EXAMPLES

A. LDPC codes with two variable nodes of degree 2 per

parity-check equation

An important class of LDPC codes is obtained by choosing

structured LDPC codes where each parity check involves

exactly two variable nodes of degree 2. They display many

interesting features which make them quite attractive for

standardisation: they can be linearly encoded [8], [11], the

minimum distance is typically some power of the code-length

[10] and they can be decoded in a repeat-accumulate way

which generally decreases drastically the number of decoding

iterations. It is known that “regular” codes of this kind can

not be asymptotically good. By “regular”, we mean LDPC

codes where all parity checks involve exactly 2 variable nodes

of degree 2 and some constant number c of variable nodes

of degree d. It is namely proved in [10] that the minimum

distance of such a code with length n is always upper-bounded

by a term of order O(n
d−1

d ) where d is the degree of the

variable nodes of degree greater than 2. This result is a special

case of Theorem 5. Indeed, in this case there are Θ(n) variable

nodes of degree d. Any such variable node forms a potentially

bad set of variable node of size 1 and defect size d. More

generally, by the same kind of argument we obtain

Proposition 7: Any LDPC code of length n with two vari-

able nodes of degree 2 per parity-check equation with Θ(n)

variable nodes of degree d is of distance at most O(n
d−1

d ).

B. A Multi-edge example

In [9] a few generalized LDPC codes are presented, and

some of them have quite good iterative decoding perfor-

mances. In particular, the multi-edge code of rate 1
2 defined

in table VIII displays one of the best known performances

for low-complexity iterative decoding for lengths in the range

1000 − 10000 and target block error rates in the range

10−5−10−2. This code family presents however an error floor

which begins in the range 10−5−10−3, depending on the code

length. One might wonder whether or not such a code can be

asymptotically good. Actually, this is not the case.

To see this, recall that the Tanner graph of such a code of

length n is given by the following figure, where the transmitted

nodes are in black and the non-transmitted variable nodes are

in white. The edges are obtained by matching together the

sockets associated with the variable nodes and the sockets

associated with the check nodes which are of the same type.

The type is given by the color (blue,red,black) and the fact

that it is represented by a solid or a dashed line. There are 6

types of sockets here.

The dangerous cycles are formed by variable nodes of

degree 2 alternating with check nodes of degree 5 (which

might belong either to the first group of check nodes of degree



5 or to the second one). The potentially bad set of variable

nodes are given by single (transmitted) vertices of degree 3.

Their defect is of size 3. There are therefore 3n
10 potentially

bad sets of variable nodes. By using Theorem 5, we know

that the minimum distance of this code is at most of order

O(n
2

3 ). It should be added that in this case, by using the

same kind of proof technique as in [10], it could be proved

that by taking random matchings of sockets of the same kind

the typical minimum distance would be smaller: it would be

of order O(n
1

3 ).

C. A protograph example

In all the previous examples, the potentially bad sets of

variables nodes were formed by single vertices of degree

greater than 2. We will now give a more complicated example

of a code of designed rate 1
3 and of sublinear minimum

distance where the potentially bad sets of variable nodes have

a more complicated structure. This code is defined by a Tanner

graph which is a lift of the protograph of Figure 1. There are

three kinds of variable nodes, white, red and blue variable

nodes. The dangerous cycles of the Tanner graph are formed

here by cycles with alternating red check nodes and blue

variable nodes. The structure of the potentially bad sets of

variable nodes is now given by the subgraph of the Tanner

graph induced by a white vertex and the three neighboring red

vertices as shown in Figure 2. If the code is of length n, there

are n
3 white variable nodes and therefore also Θ(n) disjoint

potentially bad sets of variable nodes of size 4 and defect size

6. The minimum distance of such codes is therefore at most

of order O(n
5

6 ) by Theorem 5.

V. AN ASYMPTOTICALLY GOOD FAMILY OF CODES WITH A

CYCLE OF DEGREE 2 VERTICES

One might wonder whether codes where G2 consists of

cycles may have linear minimum distance. This is of course

possible just by taking a Tanner graph of a code of some

length n with linear minimum distance and by adding a

new cycle of length 2n consisting of n additional degree-

2 variable nodes alternating with check nodes of degree 2.

This defines a new code of length 2n with the same minimum

distance as the former code. But there are far more interesting

examples of codes with linear minimum distance for which

the Tanner graph contains dangerous cycles of linear size.

Consider the slight modification of the code of Subsection IV-

C which consists in changing just one edge of the protograph

as indicated in Figure 3.

We consider codes of length 3n consisting in n-lifts of this

protograph where the n blue vertices of degree 2 form a cycle

of length 2n with the check nodes of degree 3. Note that in

this case, Theorem 5 does not apply : there are no potentially

bad sets of variable nodes of constant size.

It turns out that a constant fraction of codes of this kind

have linear minimum distance. The proof uses considerations

on the average weight distribution (the average being taken

over all codes of this kind of the same length). Let ās,t,u be

the average number of codewords of such a code consisting of

s blue variables being equal to 1, t red variable nodes being

equal to 1, u white variable nodes being equal to 1 and all

remaining variable nodes being equal to 0. Let dmin be the

minimum distance of our code. We will use that

Prob(dmin ≤ v) ≤
∑

s,t,u:0<s+t+u≤v

ās,t,u. (5)

Let bs,t be the number of codewords of the code of length

2n given by the Tanner graph given by Figure 4, where there

are exactly s blue vertices assigned to 1 and t red vertices

assigned to 1. One might check, following [7], that bs,t = 0
if t is odd, and if t is even that

bs,t =
2n
(

s−1
t/2−1

)(

n−s−1
t/2−1

)

t
. (6)

We also let

C(y, z)
def
=
∑

t,u

ct,uytzudef
=(1+y2+6yz+3z2+2yz3+3y2z2)n.

(7)

It can be checked that ct,u is the number of codewords of the

code of length 5n given by the Tanner graph given by Figure

5, where there are exactly t red vertices assigned to 1 and u
white vertices which are assigned to 1.

With the help of these quantities it is readily checked that

Lemma 8:

ās,t,u =
bs,tc2t,3u

(

n
u

)

(

2n
2t

)(

3n
3u

) .

It will be convenient to bring in the quantities

σ
def
=

s

n

τ
def
=

t

n

ν
def
=

u

n

α(σ, τ, ν)
def
= lim sup

n→∞

ln (ās,t,u)

n

To evaluate α(σ, τ, ν), we first handle the c2t,3u terms with

Lemma 9: Let γ(τ, µ)
def
= lim sup 1

n ln ct,u. Then

γ(τ, ν) ≤ τ +
3

2
ν − τ ln

τ

1 + 3µ
− 3ν

2
ln

ν

2 + 2/µ
, (8)

where µ
def
=

3ν−2τ+
√

(2τ−3ν)2+8τν

4τ .

We will not give the details of the calculations here, but we

just indicate that this follows from the trivial upper bound

c2t,3u ≤ inf
y>0,z>0

C(y, z)

y2tz3u
,

from which it follows that

γ(τ, ν) ≤ inf
y>0,z>0

ln(1 + y2 + 6yz + 3z2 + 2yz3 + 3y2z2)

−2τ ln y − 3ν ln z.

From this upper bound, we deduce the handier expression

Lemma 10: For τ + ν ≤ 0.009,

γ(τ, ν) ≤ 2τ + 2ν − τ ln τ − 15

8
ν ln ν.



For the other terms, which involve binomial coefficients, we

use the following inequalities which are quite sharp for small

t and which can be deduced from Stirling’s approximation, [6,

§II.9].
Fact 11: There exist two constants K and K ′ such that

K′e−
t
2

n−t

r

n

t(n − t)

“ne

t

”t

≤

 

n

t

!

≤ K

r

n

t(n − t)

“ne

t

”t

.

For the term bs,t we proceed by bringing in

β(σ, τ)
def
= 1

n ln bs,t which we upper-bound as follows by

using Fact 11 :

β(σ, τ) ≤ −τ ln τ + τ +
τ

2
ln (4σ(1 − σ)) +

ln(τ/σ)

n
(9)

On the other hand the term
(n

u)
(2n

2t)(
3n

3u)
is upper-bounded by Fact

11 as follows

1

n
ln

(

(

n
u

)

(

2n
2t

)(

3n
3u

)

)

≤ −2τ−2ν+2τ ln τ +2ν ln ν+K(τ +ν)2,

(10)

for some constant K > 0. Putting all these upper bounds

together we obtain
Lemma 12: For τ + ν ≤ 0.009, there exists some constant

K > 0 such that:

α(σ, τ, ν) ≤
τ

2
ln
`

4e2σ(1 − σ)
´

+
ln(τ/σ)

n
+

1

8
ν ln ν+K(τ +ν)2.

From the last lemma and ās,0,0 = 0 for s 6= 0, s 6= n we

deduce that

Lemma 13: There exists δ > 0 such that
∑

0<s+t+u<δn

ās,t,u ≤ 1

2
.

By using this lemma and Inequality (5) we obtain

Proposition 14: At least half of the codes defined in this

section have their minimum distance greater than δn.
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Fig. 1. A protograph defining a code of designed rate 1
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Fig. 2. A potentially bad set of size 4 and defect 6

Fig. 3. A slight modification of the protograph given in Figure 1
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Fig. 4. A cyclic Tanner graph
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Fig. 5. The Tanner graph with weight distribution C(y, z)


