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Abstract

Synthetic indices are used in Economics to measure various aspects of
monetary inequalities. These scalar indices take as input the distribution
over a finite population, for example the population of a specific country.
In this article we consider the case of the French 2004 Wealth survey. We
have at hand a partial measurement on the distribution of interest con-
sisting of bracketed and sometimes missing data, over a subsample of the
population of interest. We present in this article the statistical method-
ology used to obtain point and interval estimates taking into account the
various uncertainties. The inequality indices being nonlinear in the input
distribution, we rely on a simulation based approach where the model for
the wealth per household is multivariate. Using the survey data as well as
matched auxiliary tax declarations data, we have at hand a quite intricate
non-rectangle multidimensional censoring. For practical issues we use a
Bayesian approach. Inference using Monte-Carlo approximations relies on
a Monte-Carlo Markov chain algorithm namely the Gibbs sampler. The
quantities interesting to the decision maker are taken to be the various in-
equality indices for the French population. Their distribution conditional
on the data of the subsample are assumed to be normal centered on the
design-based estimates with variance computed through linearization and
taking into account the sample design and total nonresponse. Exogeneous
selection of the subsample, in particular the nonresponse mechanism, is
assumed and we condition on the adequate covariates.

KEY WORDS: Inequality; Wealth distribution; Survey methodology; Bayesian
statistics; Monte-Carlo Markov chains.
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1 Introduction

Approximately every six years the French statistical office INSEE collects a cross
sectional wealth survey on households. The last dataset was collected in 2004.
Several aspects can be studied focusing for example on holdings or particular



types of assets like the professional wealth or intergenerational transfers. One
natural question concerns the nature of the distribution of wealth and its allo-
cation in the various possible holdings. However, it is known to be a difficult
one as well (Juster and Smith 1997) due to the difficulty to have good mea-
surements and to possible selection biases. Questions on income and wealth are
particularly sensitive and the nonresponse probability is very likely to be related
to the value itself, resulting in possible endogeneous selection and biases. Also,
it is for example particularly difficult to give a precise amount for the market
value of one’s real estate piece of property unless people assessed it recently,
say in order to sell it. Thus, amounts are usually collected in bracketed format
and imputation methods (see experiment based on the knowledge of the true
income distribution in Lollivier and Verger 1988) are used in practice at the
French institute.

For some variables the brackets are defined by each household, they give
upper and lower bounds for the amount based on their evaluation. For other
variables the households choose among a predefined system of brackets. The
method allows to replace missing data, impairing inference due to selection bias
and loss of efficiency implied by a reduced sample, by censored data. In the cur-
rent article we focus on the evaluation of inequality indices on the total wealth
for the whole French population. A specific question at the end of the survey:
”Suppose you had to sell everything, how much do you assess the value of your
total wealth including durable goods, artwork, private collections and jewelry”
allows to measure the total wealth. The values of the last items were not col-
lected. It is troublesome to ask such information because the pollster comes to
the household’s home and they could be suspected of theft in case a robbery
occurs after the visit. The system of brackets for the question collecting the to-
tal wealth has an unbounded last bracket. The threshold for the higher bracket
is 450.000 € which is pretty low. Also in order to improve, in principle, the
precision of design based estimates, certain categories have been over-sampled:
self employed, executives, retired people and people living in rich neighborhoods.
These variables, available from the census, are indeed correlated with the wealth
and sampling more a priori wealthy people improve the precision of design based
estimates of inequality indices sensitive to the top of the distribution. But due
to the censoring, a billionaire is equivalent to an household whose total wealth
is 451.000 €. Over-sampling has increased the number of household for which
we measure wealth very imprecisely. Thus, though we are interested in the
particular concept of total wealth collected in this final question, we aim to
gather more information in order to better estimate the inequality indices. Due
to the high amount of censoring for the wealthiest, the less wealthy contribute
the most to the likelihood. Moreover, some of the indices are quite sensitive
to misspecification of the model. Though it is pretty usual for wages and even
for wealth to specify linear models for the logarithm with normals residuals,
some of the assumptions like the distributional assumption for the residuals are
not testable in the absence of pointwise measurements. Other distributions like
Pareto are also quite popular in the literature on wealth inequalities (Lollivier
and Verger 1988). It is also possible that the influence of certain covariates is



not additive, for example the contribution of the income might differ for low
incomes from that of high incomes, and, due to the censoring of high wealth, it
is possible that we do not capture well this mixture (see for example Duclos et
al. 2004 and Esteban and Ray 1994 for theoretical foundations of polarization).
Another possible source of misspecification is heteroscedasticity. If for example
the variance of the residuals increase with income, censoring and specification
of an homoscedastic model will imply lower inequality indices. Therefore, we
gather more information in order to recover better knowledge of the top of the
distribution of wealth and better estimate the total population indices. We use
bracketed information on components of the total wealth as well as bracketed
information involving several components: the total wealth (sum of the compo-
nents) and the information on the imposition on the Solidarity Tax on Wealth
(ISF) obtained by matching with data from the tax declarations.

Our approach relies on Bayesian multiple imputations (Little and Rubin
2002) for sample survey estimation. However, our strategy to produce point
estimates or interval estimates is slightly different. We do not rely on particular
rules for combining complete-data inferences or rely on imputations which are
Bayesianly proper (Schafer 2001). We use a hierarchical modeling in order to
take into account in the coverage of the interval estimates the uncertainty due
to sampling and total-nonresponse and to incomplete knowledge of the censored
wealth. Under the assumption that the proper parametric class for the data gen-
erating process (DGP) is known, the uncertainty on the value of the censored
wealth boils down to uncertainty on the parameters values and to the remaining
model uncertainty due to imperfect observation conditional on the knowledge
of the parameters. The first model is the model for the quantities interesting
to the decision maker (Geweke 2005) which are here taken to be the various in-
equality indices on the finite French population. The remaining models, which
are standard, are instrumental in the sense that it is not our goal to produce
inference on the posterior predictive distribution of the wealth of the sampled
households or on the posterior distribution of the parameters, though they could
be obtained simultaneously with the numerical procedure. In order to gather in-
formation on the components of total wealth, our DGP is multivariate. It allows
to account for example for unobserved heterogeneity. From that point of view,
our approach is similar to that of Heeringa et al. (2002), where a multivariate
model is used in the context of the American Health and Retirement Survey
(HRS). Inference is based on a single path of a Gibbs sampler Markov chain
that updates the sampled data, parameters and an error term accounting for
sampling error. The only mathematical tool is the Ergodic theorem. The model
is discussed in Section Bl the non-rectangular censoring is presented in Section
In Section Bl we give details on the Gibbs sampler and discuss our strategy
to produce point and interval estimates. Results are presented in Section Bl and
it is followed by a discussion in Section



2 The Modeling Assumptions

We denote by U the finite population of size N composed of all the French
households and S C U the sample, where we number the elements of S from 1
to m. Due to total nonresponse, S corresponds to a subset of the initial sample
drawn from particular bases of dwellings. The initial sample is stratified and
drawn with unequal probabilities where dwellings composed, at the time of the
census, of self employed, executives, retired people and of people living in rich
neighborhoods have been over-sampled. It implies that probability of selection
is related to the wealth but, in principle, the selection is exogeneous. We assume
below that the selection mechanism corresponding to the total nonresponse is
also exogeneous and that in the models we have included the adequate covariates
to be able to ignore the selection mechanism (Little and Rubin 2002).

The target quantities or quantities of interest are taken to be inequality
indices on the total wealth of the French: the Gini, Theil or Atkinson’s indices,
quantiles or inter-quantile ratios. They are functions of the distribution of the
total wealth ¢ for households £ from 1 to N. Recall that, for example, the Gini

is defined by
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where r(k) is the rank of ¢;. A design based estimate is then
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where wy, is the weight of household k, #(k) = > . gw;I {t; <t} and I{-}
denotes the indicator function. In practice, at INSEE, a normal approximation
for the design based estimate is used in order to obtain interval estimates. Also,
since the variance of the estimate requires in principle as well the data in U \ S,
a variance estimate is used. G being nonlinear in the weights, the estimate
of the variance of G is approximated by that of its linearized version. The
variance estimate should take into account the complex design of the sample
and the total nonresponse and raking (Deville et al. 1993). The procedure
is well explained in Dell et al. 2002. It is however difficult to justify all the
approximations rigorously. We do not aim to enter in these details and start off

from the approximation:
GrG+\V(G)E

where the error term E is a standard centered Gaussian random variable and

the variance estimate is denoted by V' (G’)

Since the total wealth is censored, we are not able to apply the above tools
to estimate the target quantities. We rely a priori on a two stage model. But,
since for practical issues we have adopted the Bayesian point of view, we have
added an additional ladder to the hierarchy of models:



1. The model (I) for the quantities of interest like the Gini, conditional on
the relevant data from the sampled household.

2. The model (DGP) for the components of the wealth for sampled house-
holds. It is a multivariate model for owned macro-components of the
total wealth among: the financial wealth W', the value of the principal
dwelling W?2, of the other real estate including secondary dwellings rented
or for leisure and parking lots W3, the professional wealth W* and the
remainder (durable goods, artwork, private collections and jewelry) W5,
conditional on the value of covariates XL, k=1,...m,l=1,...,5and on
the parameters in a certain parametric class of models.

3. The prior distribution (P) of the parameters ® of density 7(6).

For simplicity, we assume that every household has some financial wealth (eg.
money on a checking account) and some wealth in form of remainder. Therefore,
if we make groups according to the type of portfolio in the 5 above components
of wealth we have to distinguish 8 groups. We denote by Dy = (ng)l:17,,,75
the binary vector such that D}, = I {W/ >0} and define the function P which
associates to each Dy the number ¢ € 1,...,8 of the pattern. In the remaining,
we use capital letters for random variables and lowercase letters for realizations.
We also use bold characters for vectors.

The model is defined as follows. In the first stage (I) we set, for example for
the Gini,

—

G=Ctr,... tm) + V(G)(tl,...,tm)E, E~N(0,1)  (2.1)

with the Assumption (A):
E independent of (t1,...,tm) (A).

Concerning the model (DGP), we have the following model for pattern i:

Ty, = 215:1 Wliv
log(W}) =x} 8} + U}, when d} =1 and P (dg) =i (2.2)
Ui ~ N(O, Ez)

where ¥; is of size p; = 215:1 dﬁc for any & such that P (dg) = i. We make the
following restriction on the parameters:

Only the coefficient of the constant is group specific (fixed effect), the
remaining coefficients of 3! are equal for alli  (RP).

For the last model (P), we choose w(f) proportional to

_pitl

8
[Jdet(zi)~ = . (2.3)
i=1



In usual design based inference in survey sampling, the Gini index G has an
unknown but fixed value. Hence, Equation (II) is not usual since G is now
random. In some approaches to survey sampling though, the finite population
values correspond to draws in a super-population and it makes sense to assume
that the quantities of interest on the finite population are random. It is also
usual to revert the Gaussian approximation to obtain interval estimates. We
may also think about estimating G in terms of prediction.

We present in Table[Ml the kind of covariates we have introduced in the model
(DGP).

Table 1: Covariates for the model (DGP) other than the type of portfolio

Covariate / Component W w2 w3 wt ] w?

Life cycle
single and no child Vv V4 V4 Vv
age and age square V4 V4 V4 V4
position in the life cycle!

Social and Education
social/professional characteristics
higher educational degree

Income
level of the salary
social benefits received
rent received
other income received

Location of the residence

History of the wealth
donation received
donation given
recent increase/decrease of wealth
type of wealth of the parents

Surface and square of the surface

Professional wealth
wealth used professionally V4
firm owned V4

<
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Covariates can also improve a priori the coverage of the interval estimates,
up to a certain stage since increasing the size of the vector of parameters deteri-
orates the knowledge on the parameters. The main justification for introducing
the covariates is however to justify Assumption (A). Indeed, the survey sample
is drawn exogeneously and we have to condition by the corresponding observed
covariates in order to estimate the law of the data unconditional of the selection.
Total nonresponse is a second stage of selection for which the selection mecha-
nism is unknown and we assume that this mechanism is ignorable (Little and
Rubin 2002 and Gautier 2005) and that we condition by the adequate covariates
to decondition from selection.

The model (DGP), is such that, though we take into account observed het-
erogeneity in the form of portfolio allocation and through several covariates,



there might remain unobserved heterogeneity (eg. in the form of a missing co-
variate) like the preference for the risk and time that causes the residuals to be
dependent. In order to use product specific variables for the principal dwelling
we model the value of the good. In contrast in the other models, for which the
variables are sums of components collected in the survey, we model the amount
of the share that the household possesses and use household specific variables
only.

The vector of parameters 6 in R? corresponds to the Bil’s and the matrices
3; where, denoting by dim; the dimension of G;,

5 5
d=> (dim;—1)+8x5+ Zkk+1)
=1 k2

The prior is a product of usual priors in the context of Gaussian linear models
which are limits of normal/inverse-Wishart’s (see for example Little et Rubin
2002 and Schafer 2001). They are often called non-informative. They indeed
correspond to a proper objective choice for the prior for the coefficients 3.
The posterior, if the data were observed, is a bona-fide normal/inverse-Wishart
probability distribution.

3 Censoring

In the absence of scalar measurements, intervals are the main information for
identification and estimation. As already discussed, we aim to localize as much
as possible the missing Wy. For that purpose we use two summarizing questions
and the information on which household is eligible to the Solidarity Tax on
Wealth. The answers to the summarizing questions take the form of brackets
for the sum of the collected components of the financial wealth as well as brackets
for the total wealth. Recall that the total wealth includes the remainder which
is not collected per se in the detailed questionnaire. The information on which
household pays the Solidarity Tax on Wealth has been obtained by matching
with a data set from the tax department.The condition to pay the Solidarity
Tax on Wealth is to have a taxable wealth exceeding 720.000 €. This taxable
wealth corresponds to a different concept of wealth. Only part of the professional
wealth is taken into account. It is possible to deduct the professional wealth
used professionally with the exception that if one owns a share in a firm which
is too low then it is not deductible. It is possible to have a rebate of 20% on the
value of one’s principal dwelling. The artworks are not taxed either. Finally,
debts are deducted. It is possible to take into account most of the specificities
of this tax. For example, by chance, the few households that possessed a share
in a firm gave equal upper and lower bounds for its value. However, it is not
possible to distinguish the artworks within the remainder. Hence, we produce
lower and upper bounds on the taxable wealth which take the form of an extra
bracketing condition.



When an household pays the tax, the upper bound for the taxable wealth
W +0.8% W2 + W2 + min(Wg, NDEDyaxx) + Wy — DEBT,, (3.1)

is greater than 720.000 €, where NDE Dyax . is an upper bound of the nonde-
ductible professional wealth obtained using the detailed information and D E BT},
the total debts which is deductible. We assume that households always subtract
the deductible amounts.
When an household does not pay the tax, the lower bound for the taxable
wealth
Wi + 0.8 W2 + W2 + NDEDyyin, — DEBT, (3.2)

is lower than 720.000 €, where NDEDyi,  is a lower bound of the nonde-
ductible professional wealth obtained using the detailed information.

The above conditions involving several variables allow, by manipulation of
lower and upper bounds, to shorten the initial intervals for each component and
to obtain intervals for the remainder. The censoring takes form of a hyper-
rectangle. The final summarizing condition for the total wealth and the eligibil-
ity to the Solidarity Tax on Wealth imply censored domains which are subsets
of these hyper-rectangles.

Note that further external information has also been used in order to specify
upper bounds on the a priori unbounded total wealth. This choice is question-
able but these upper bounds are very loose. The motivation is that, since design
based inference is the initial goal and each sampled household has a weight that
is the inverse of the probability of selection? and the data is collected once and
for all, we want to have reasonable ”representativity” of the samples®. The av-
erage weight is around 2.000. Suppose a billionaire is drawn, then it is assumed
to represent 2.000 households. In turn, if we were able to draw at random a
second time the sample, it is very likely that no billionaire would be drawn. It
might result in inequalities which are often too low and sometimes too high.
Probably due to the over-sampling of households suspected to be wealthy, an
household with a share in a firm of the order of 25.000.000 € has been drawn.
We have introduced upper bounds on the total wealth based on Cordier et al.
(2006) and published information on the highest French professional wealth.
We have bounded by 50.000.000 € the total wealth of the apparently wealthiest
household and by 10.000.000 € the total wealth of the others. Such restric-
tion might cause under coverage of the interval estimates. Heeringa, Little and
Raghunatan (2002) have noted, using a similar modeling and the HRS survey,
that introducing such restrictions implies slightly lower means, Ginis or other
concentration indices. On the other hand its impact on more robust quantities
such as quantiles is minor.

21t is in fact estimated due to total nonresponse.
3The samples are simulated, as explained later



4 Numerical Procedure for Point and Interval
Estimates

4.1 The Gibbs sampler

We adopt the Bayesian point of view for practical reasons. From a frequentist
point of view, the first stage consists in the estimation of the parameters of the
multivariate linear Gaussian model with censored observations. Several methods
are at hand among which simulated based methods like the simulated maximum
likelihood, simulated scores or simulated method of moments (see Train 2003
for a lively and basic introduction) or a MC-ECM variant of the EM algorithm
(Little and Rubin 2002). Also, since the criterion function has in general several
local extrema, it is often useful to use a stochastic optimization method or at
least to try several initial starting points. It is also useful, as we will see below,
to simulate in the multivariate truncated normals in order to finally infer on the
finite population inequality indices. The GHK simulator (Geweke 2005) in the
non-rectangular context is not standard and also requires proper importance
sampling weighting which in the context of our hierarchical modeling does not
seem feasible. Accept-reject with instrumental distribution the unconditional
distribution is known to be very ineffective, especially as the dimension increases.
Robert (1995) for example suggests the use of the Gibbs sampler (Arnold 1993).
The total procedure is extremely intensive from a computational viewpoint.
Moreover, we need to modify slightly the procedure if we want to take into
account the uncertainty on the parameters due to the finite distance.

The Gibbs sampler easily adapts to the Bayesian modeling, see for example
McCulloch and Rossi (1994) for Bayesian inference for multinomial discrete
choice models. It is also popular in missing data problems (Little and Rubin
2002 and Schafer 2001) and the extension is called data augmentation. The only
difference with the usual Gibbs sampler is that the state space of the Markov
Chain is augmented in order to include the parameters. Also, in order to infer
on the quantities of interest, we augment the state space once more and include
the E’s. The Gibbs sampler relies on an exhaustive block decomposition of
the coordinates of the state space. These blocks are numerated according to a
specific order. Starting from an initial value vg, the Gibbs sampler simulates a
path from a Markov chain (vn)n>0. Given vy, a vector V11 decomposed in
the above system of blocks is simulated by iteratively updating the blocks and
sampling from the distribution of the block conditional on the values at stage
n of the future blocks and the value at stage n + 1 of the previously updated
blocks. Here V,, is taken to be

Vo= (0,W,,.... W E).

The sequence is such that we start by updating the covariance matrices, followed
by the ﬁil, then by the components of wealth one by one, household by household
and finish with the error term in model (I). The updating for the distribution
without truncation is for example explained in Little and Rubin (2002). Here,



we simulate the components of wealth in truncated univariate normals, which is
easy and efficient. We update the intervals of truncation for the current variable
at each stage of the sequence with the previously simulated components for the
same household.

The limit theorems for the Gibbs sampler are given in Tierney (2004) and
Roberts and Smith (1994). We can also check as in Roberts and Polson (1994),
minorizing the transition kernel using that we have introduced upper bounds for
the a priori unbounded amounts, that there is uniform exponential L! ergodicity.
Thus convergence of the laws of the marginals of the Markov chain to the target
joint posterior and posterior predictive and distribution* of E, which is the
invariant probability u, is very fast. The main result on Markov chains which
is useful for the inference here is the ergodic theorem. It states that for g in

Lt (p),

T—o0

T
lim % Z 9g(Va)=E,[g(V)] as. (4.1)

4.2 Posterior Predictions and Posterior Regions

Suppose that the decision maker wants the statistician to give him a single value
for each quantity of interest. A natural question is then to ask: ”What is the
optimal answer one can give?”. Once a loss function, say quadratic, is specified,
the optimal answer

G=E,[G(V)[W1€D1,.... Wi € D;;y, X1 =X1,..., Xn = Xm], (4.2)

among all answers G*, minimizes the posterior risk
E, [(G* GV Wi e, .., W € T, X1 = X1, ., Xon = xm} (4.3)

where the domains T} correspond to the domains of truncation in RP?®w) and
xj are the matrices of the covariates®. The expectation giving the posterior
prediction in [Z) could be approximated by a MCMC method (Robert and
Casella 2004): the empirical mean along one path using {I]). Since T is cho-
sen by the statistician, this approximation of the integral could be as good as
one wishes. As usual in MCMC methods we present in Section H results with
burn-in, i.e. where we have dropped the first B simulations. According to the
Cesaro lemma, ([T still holds starting the sum from n = B + 1 and replacing
T by T — B. Heuristically, it allows to wait for for the chain to stabilize close
to the steady state. It only changes the very last decimals here since we have
taken 7" = 20.000, which is very large as attested by Figure Bl and B = 1.000.
With the optimality as a goal, simple imputation is no good. The researcher ar-
bitrarily chooses one scenario for G among an infinity of possible scenarii. Also,
it is natural that predicting the quantities of interest is different from predicting
the unobserved wealth due to the nonlinearity of G in the wealth. Predicting

4Recall that it is always independent of the rest of the components.
5For example block diagonal with p P(Dy) TOWS.
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the unobserved wealth is doomed to introduce biases.

Suppose that the statistician has convinced the decision maker that it is
better to be given an interval estimate. We take in Section Bl symmetric 95%
posterior regions but we could have taken highest posterior regions® or poste-
rior regions of minimal length. The boundaries of the intervals [I,u] can be
obtained, without Central Limit Theorem and with a single path, by inverting
the functional:

E,[I{G(V) e [l,u]°}] <0.05 (4.4)

where the left hand-side could be well approximated for large T' by

lim % S I4G (va) € 1]} (4.5)

using ([EJ)). Again it is possible to use burn-in.

Remark 4.1 Unlike the original Bayesian multiple imputations (Little and Ru-
bin 2002 and Schafer 2001) we do not require proper Bayesian imputations, i.e.
independent sampling, nor rely on formulas to combine multiple imputations.
Multiple imputations here is only a tool to infer on the quantities of interest.

Such interval estimates take into account the uncertainty due to sampling and
total nonresponse, to imprecise knowledge of the value of the parameters among
a parametric class of models due to finite sample size and to the uncertainty
due to the imperfect measurement of the components of wealth conditional on
the knowledge of the parameters.

5 Presentation of the Results

We have applied the methodology of Section H to the data set and runned a
Gibbs sampler with 7" = 20.000 and B = 1.000. We have tried to diagnose
convergence by plotting the convergence of empirical averages required for the
inference. As expected due to exponential ergodicity, the convergence seems to
occur very quickly. We have plotted in Figure 1 the convergence of the empirical
averages for the Gini.

SHPD regions.
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Figure 1: Convergence of the empirical averages of the Gini, burn-in of the 1.000
first iterations

In Table Pl we collect the estimated posterior predictions and confidence regions.

Table 2: Posterior predictions and posterior regions (lower and upper bound of
a 95% symmetric region), T=20.000, burn-in of the 1.000 first iterations

Quantity of interest | Prediction | Lower bound | Upper bound
Mean (€) 205.003,98 192.879,50 217.647,24
Median (€) 111.459,26 105.672,32 117.563,45
P99 (€) 1.584.602,96 | 1.359.261,98 | 1.825.362,43
P95 (€) 690.793,96 636.924,50 746.759,31
P90 (€) 434.458,13 416.410,51 452.006,79
Q3 (€) 232.307,50 224.849,03 240.204,86
Ql (€) 16.998,67 15.117,08 19.149,60
P10 (€) 3.959,07 2.870,83 5.070,55
P95/D5 6,1972 5,7232 6,6808
P99/D5 14,2175 12,1667 16,4388
Q3/Q1 13,6847 12,2838 15,1034
D9/D1 109,9332 80,7615 140,5827
D9/D5 3,8981 3,7081 4,0858
Gini 0,6519 0,6328 0,6717
Theil 0,9044 0,8138 1,0001
Atkinson (e = 1.5) 0,9063 0,8838 0,9253
Atkinson (e = 2) 0,9742 0,9549 0,9920

We finally represent in Figure 2 histograms for the posterior distribution of some
of the target quantities of interest.
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Figure 2: Posterior distribution of the Gini, Theil and Atkinson indices,
T=20.000, burn-in of the 1.000 first iterations

6 Discussion

Our multivariate model is similar to the model specified in Heeringa et al.
(2002). Al well we consider different models for different types of portfolios.
There are still two differences. We introduce much more information on covari-
ates. This information is at least useful for selection issues. We also allow for
different covariance matrices in the different groups while they assume the co-
variance matrices are blocks extracted from a unique matrix which here would
be 5 x 5. It seems that it amounts to integrating with respect to components
which are not in the portfolio as if they existed but were not observed. We are
not able to justify this choice. Also, it is not clear that the posterior of the
unique latent covariance matrix is also normal/inverse-Wishart. One relative
disadvantage of our approach is that we have many parameters. That is why
we have considered only 5 "macro”-components and introduced the restriction
on the parameters (RP). It is possible to consider finer decompositions of the
total wealth introducing less covariates. Note that it is possible to avoid the
introduction of group specific coefficients by specifying one multivariate Tobit
model where the residuals of the 5 latent variables are correlated. These latent
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variables account for both the amount and the decision to invest in the com-
ponents. We believe that this is a severe restriction. We have also noted that,
since the composition of the portfolio is observed, we do not need to model the
choice mechanism and can condition on that information.

One of the main difficulty not treated in the paper is inconsistency implied

by the fact that brackets for the variables are not coherent with the brackets
involving several variables. It allowed to detect errors like confusion between old
Francs and Euros. Concerning the final question it turns out that it is very little
informative on the top of the distribution. This is troublesome for specification
issues when we want to use only this last question. It is troublesome as well
when we use the detailed components since we have a quite poor information
on the remainder. The remainder is a mixture of luxury and durable goods and
the bottom of the distribution for which the intervals are more informative is
likely to be mainly composed of durable goods. It is thus always important,
but difficult due to different selection mechanism especially due to nonresponse
and different perception of surveys, to gather information from sources exterior
to the survey. It is expected for the future French survey on Wealth to ask for
the right to use more auxiliary information from the tax declarations. Also, it
is possible that survey sampling use over sampling based on data from these
tax declarations. However, it is customary to inform the households that their
data will be matched and it sometimes increases the nonresponse rate when it is
matched with tax declarations. The threshold for the last bracket for the final
question on the total wealth was set to 450.000 € in order to be far from the
threshold of 720.000 € implying eligibility to the Solidarity Tax on Wealth and
mitigate nonresponse rates to this question.
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