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A l'origine liés aux applications en biologie, en médecine et en démographie, les modèles de durée sont à présent d'usage courant en économie, en finance ou en fiabilité. Des travaux récents dans ce domaine ont montré l'intérêt de l'utilisation des réseaux bayésiens. Cet article décrit un réseau bayésien dynamique particulier que nous avons nommé modèle graphique de durée permettant de représenter des modèles de durée s'adaptant à des systèmes multi-états ayant des lois de temps de séjour quelconques et éventuellement une dépendance contextuelle.

ABSTRACT. Originally devoted to specific applications such as biology, medicine and demography, the duration models are now widely used in economy, finance or reliability. Some recent works in reliability analysis have been proved relevant the use of bayesian networks. In this paper, we describe a specific dynamic bayesian network, named graphical duration model (GDM), to represent generic duration model adapted to multi-state systems featuring complex sojourntime distributions and context dependencies.

Introduction

Les modèles de durée en temps discret sont adaptés dès que le ou les phénomènes d'intérêts se modélisent comme des variables aléatoires entières positives. Plus généralement, il s'agit à la fois de modéliser et d'estimer les lois décrivant -le temps qui s'écoule entre deux événements : durée de vie d'un individu ou d'un système physique, durée entre le déclenchement d'une maladie et la guérison, durée d'un épisode de chômage, durée entre la demande d'un prêt et une défaillance de remboursement . . .

-le passage (ou transition) d'un événement à un autre : transition entre deux états de fonctionnement pour système de production industriel, transition entre les différents stades d'une maladie, changement comportemental d'un individu au cours d'une partie de poker . . . A l'origine liés aux applications en biologie, en médecine et en démographie, les modèles de durée sont à présent d'usage courant en économie, en finance ou encore en fiabilité. Bien que l'ensemble des résultats présentés dans la suite soient valables pour les modèles de durée en général, nous appliquerons notre approche au domaine de la fiabilité. Il existe de nombreux travaux à ce sujet dans la littérature. Dans la plupart des applications, le but est de modéliser la dynamique d'un système multi-états. Cette problématique peut être en partie résolue par l'utilisation de modèles de Markov. L'inconvénient de cette approche vient de la contrainte imposée sur les temps de séjour dans les états du système qui sont nécessairement exponentiellement distribués. Ce problème peut être contourné par l'utilisation de modèles semi-markoviens [START_REF] Limnios | Semi-Markov Processes and Reliability[END_REF] qui permettent de prendre en compte n'importe quelle loi de temps de séjour. D'autre part, il est également intéressant de modéliser l'impact du contexte sur les transitions entre les états du système. Une manière classique de réaliser cela consiste à utiliser un modèle de Cox ou de manière plus générale un modèle proportionnel [START_REF] Kay | Proportional Hazard Regression Models and the Analysis of Censored Survival Data[END_REF]. Néanmoins à notre connaissance, peu d'approches semblent aborder ces trois préoccupations (modèle multi-états, temps de séjour quelconques et prise en compte du contexte) en même temps. Par ailleurs, des travaux récents dans le domaine de la fiabilité ont montré l'intérêt de l'utilisation des réseaux bayésiens (RB). Citons, par exemple, les travaux de Boudali et al. (2005) qui montrent comment modéliser la fiabilité d'un système complexe à l'aide de réseaux bayésiens. [START_REF] Weber | Reliability modelling with dynamic bayesian networks[END_REF] expliquent comment utiliser des réseaux bayésiens dynamiques (RBD) pour étudier la fiabilité d'un système multi-états dépendant d'un certain contexte.

Dans cet article, nous construisons et étudions un modèle général permettant de représenter des modèles de durée génériques pouvant s'adapter à des systèmes multiétats, ayant des lois de temps de séjour quelconques et éventuellement une dépendance contextuelle. Pour ce faire, nous proposons un réseau bayésien dynamique particulier que nous avons nommé modèle graphique de durée (MGD). Cet article se décline en 4 parties. La section 2 décrit très brièvement le formalisme des réseaux bayésiens dynamiques à deux tranches de temps. La section 3 introduit ensuite les modèles graphiques de durée en définissant leur structure et leurs paramètres. La sec-tion 4 décrit une méthode itérative permettant de calculer efficacement les grandeurs d'intérêts liées aux modèles de durée. Pour finir, nous illustrons notre méthodologie dans la section 5 avec un exemple de calcul de fiabilité sur un système jouet à trois états dépendant d'une variable contextuelle et caractérisé par des temps de séjour non exponentiellement distribués.

Réseaux bayésiens dynamiques

Rappelons tout d'abord que les réseaux bayésiens [START_REF] Pearl | Fusion, propagation, and structuring in belief networks[END_REF] sont des modèles graphiques probabilistes permettant de représenter de façon intuitive et parcimonieuse la loi d'une suite de variables aléatoires X = (X 1 , . . . , X n ). Formellement un RB, noté M, est définie par un couple G, (L n ) 1≤n≤N . G = (X, E) est un graphe orienté sans circuit où chaque noeud i est associé à la v.a X i prenant ses valeurs dans X i , et où chaque arc orienté (i, j) ∈ E indique une relation de dépendance entre les v.a. X i et X j . (L n ) 1≤n≤N est une suite de lois de probabilité conditionnelle (LPC) telle que chaque L n représente la loi de probabilité de la v.a. X n conditionnellement à ses parents X pa n , pa n désignant les indices des v.a. "parentes" de X n dans G.

Enfin, les relations d'indépendance conditionnelle introduites par les arcs du graphe permettent de factoriser la distribution jointe de la suite de v.a. X de la manière suivante :

P (X) = P (X 1 , . . . , X N ) = N n=1 P (X n |X pa n ).
[1]

Par ailleurs, des outils ont été développés pour apprendre automatiquement les paramètres du graphe et ceux des LPC à partir de données complètes ou non, ou encore si des connaissance a priori sont disponibles (e.g. avis d'experts) [START_REF] Neapolitan | Learning Bayesian Networks[END_REF]) [START_REF] Naïm | Réseaux bayésiens, Collection Algorithmes[END_REF]. D'autre part, des algorithmes d'inférence ont été proposés, comme par exemple la méthode de l'arbre de jonction [START_REF] Lauritzen | Local Computations with Probabilities on Graphical Structures and Their Application to Expert Systems[END_REF], permettant de calculer la loi de probabilité d'un sous-ensemble quelconque de v.a. représentées par le RB.

Inspiré du formalisme des RB "classiques" , le cadre des réseaux bayésiens dynamiques (RBD) [START_REF] Murphy | Dynamic Bayesian Networks : Representation, Inference and Learning[END_REF] a permis d'unifier de nombreuses approches issues de la modélisation des séries temporelles telles que les HMM, le filtrage de Kalman, . . . Un RBD a pour objectif de modéliser la distribution de probabilité d'une suite de v.a. (X t ) 1≤t≤T = (X 1,t , . . . , X N,t ) 1≤t≤T sur une séquence de longueur T ∈ N * . Dans ce papier, nous nous focalisons sur une classe de RBD particulier, à savoir les RB à 2 tranches de temps (RB-2D). Ces derniers sont définis par un couple de RB (M 1 , M → ). M 1 a pour but de décrire la loi initiale des variables par P (X 1 ) = N n=1 P (X n,1 |X pa n,1 ). Notons qu'ici chaque v.a. est indexée par un couple (n, t) où n est appelé l'indice propre et t l'indice séquentiel. Par conséquent, pa n,1 est l'ensemble des couples d'indices associé aux parents de la v.a. X n,1 dans de le graphe de M 1 . D'autre part, M → est un RB décrivant la loi de transition de l'état du processus à l'instant t conditionnellement à son état à l'instant t -1, i.e. la loi de X t |X t-1 . Comme pour la distribution initiale, cette dernière se factorise dans M → par P (X t |X t-1 ) = N n=1 P (X n,t |X pa n,t ) où pa n,t désigne les couples d'indices des v.a. parentes de X n,t dans le graphe de M → . Remarquons que la dépendance temporelle étant d'ordre 1, les v.a. parentes de X n,t ne peuvent se trouver que dans les tranches t et t -1.

La distribution jointe de la suite de v.a. (X t ) 1≤t≤T s'obtient en "déroulant" simplement le RB-2D sur une séquence de longueur T :

P ((X t ) 1≤t≤T ) = P (X 1 ) T t=2 P (X t |X t-1 ) [2] = N n=1 P (X n,1 |X pa n,1 ) T t=2 N n=1 P (X n,t |X pa n,t ).
Par ailleurs, la relation [2] montre que les processus engendrés par un RB-2D vérifie la propriété de Markov, à savoir que le futur et indépendant du passé conditionnellement au présent, i.e. X t-1 ⊥ ⊥ X t+1 |X t . D'autre part, cette relation montre également qu'il est possible de considérer les RB-2D comme des RB classiques "déroulés". Ces derniers héritent ainsi des propriétés des RB classiques mais aussi de leurs inconvénients. L'exemple le plus simple concerne les algorithmes d'inférence des RB qui peuvent être utilisés pour des RB-2D "déroulés", mais avec des problèmes de complexité dès que T devient important. Pour tenter de résoudre ce problème, des algorithmes d'inférence spécifiques aux RB-2D ont été proposés [START_REF] Zweig | A forward-backward algorithm for inference in Bayesian networks and an empirical comparison with HMMs[END_REF] [START_REF] Murphy | Dynamic Bayesian Networks : Representation, Inference and Learning[END_REF].

Modèles Graphiques de Durée

Dans les paragraphes suivants, nous proposons d'étendre les modèles à variables de durée introduits par [START_REF] Murphy | Dynamic Bayesian Networks : Representation, Inference and Learning[END_REF] afin de construire un modèle discret et fini (i.e. chaque LPC est définie sur un domaine discret et fini) permettant de représenter l'évolution un système dynamique au cours du temps. Ce modèle particulier est appelé modèle graphique de durées (MGD). Dans la suite, nous décrirons sa structure graphique puis ses LPC.

Structure du modèle

La structure graphique d'un MGD est donné en figure 1 sous forme d'un RB-2D. Le modèle repose sur deux composantes principales. D'une part, la suite (X t ) 1≤t≤T représentant l'état du système sur une séquence de longueur T . D'autre part, la suite (X D t ) 1≤t≤T représentant à chaque instant t la durée restante avant un changement d'état du système. Autrement dit, X D t est la v.a. associée au temps de séjour dans l'état courant. On dit que X D t est la variable de durée à l'instant t. En outre, la variable optionnelle Z t permet éventuellement de prendre en compte le contexte du système étudié, on parle alors de covariable. Comme le montre la structure du MGD, Z t influe potentiellement sur l'état du système et sur la durée avant transition. En pratique, la distribution de Z t pourra, selon l'application étudiée, être représentée plus en détails par un modèle graphique spécifique dont au moins une des variables posséderait un arc vers X t et/ou X D t . Enfin, la v.a. binaire J t (i.e. à valeurs dans {0, 1}) est introduite pour contrôler explicitement les changements d'états (i.e. les transitions). Lorsque cette variable indicatrice est actionnée à l'instant t -1 (i.e. J t-1 = 1), le système change d'état à l'instant t. En revanche, tant que J t = 0, le système reste dans le même état.

Nous nous intéressons à présent aux relations d'indépendance conditionnelle associées à la structure graphique d'un MGD. Remarquons tout d'abord que le processus (X t ) décrivant l'état du système ne vérifie pas la propriété de Markov puisque d'après le graphe X t-1 ⊥ ⊥ X t+1 |X t . Même constatation à propos du processus (X D t ). En revanche, la structure graphique du MGD montre que

Z t-1 , X t-1 , X D t-1 , J t-1 , Z t ⊥ ⊥ J t , Z t+1 , X t+1 , X D t+1 | X t , X D t . [3]
Par conséquent dans un MGD, c'est le processus (X t , X D t ) qui est markovien, on parle alors de processus semi-markovien pour (X t ) et (X D t ) pris séparément. Le processus engendré par un MGD est donc une généralisation des modèles semi-markoviens discrets récemment étudiés par [START_REF] Barbu | Discrete time semi-Markov processes for reliability and survival analysis[END_REF]. Cette approche permet en effet de modéliser un processus ayant pour chaque état une distribution de son temps de séjour quelconque tout en tenant éventuellement compte d'un contexte particulier.

Description des LPC

Nous abordons dans les paragraphes suivants la description des LPC intervenant dans un MGD. De par la nature discrète et finie de ce modèle, chaque LPC peut se mettre sous la forme d'une matrice stochastique 1 . Nous verrons dans la partie 4 que cela a l'avantage de simplifier l'écriture des calculs d'inférence.

Contexte

Considérons L contextes différents de sorte que la v.a. Z t soit à valeurs dans l'ensemble Z = {1, . . . , , . . . , L}. La loi de Z t est donnée par le vecteur ω t , c'est à dire pour tout ∈ Z, P (Z t = ) = ω t, . La variable de contexte Z t n'ayant pas de parent dans le graphe d'un MGD, on parlera alors de loi a priori pour Z t .

État du système

On suppose que le système possède K états et donc que X t est à valeurs dans X = {1, . . . , k, . . . , K}. Définissons tout d'abord la LPC associée à X 1 , i.e. la distribution de l'état initial du système conditionnellement au contexte, par la matrice

V possédant L lignes et K colonnes. Pour tout ∈ Z et tout k ∈ X , on a V ,k = P (X 1 = k état initial | Z 1 = contexte
). La loi initiale du système pour le -ème contexte, i.e. la loi de X 1 |Z 1 = , est donc donnée par le vecteur de K éléments situé à la -ème ligne de V , notée V ,• .

Il reste ensuite à définir la LPC caractérisant les transitions d'un état à un autre. Deux cas sont à considérer : 1) Si une transition a été amorcée à l'instant t -1, i.e. si J t-1 = 1, on a alors

P ( X t = k état courant | X t-1 = k état précédent , J t-1 = 1 transition amorcée , Z t = ) = A k , ,k , [4]
où chaque A •, ,• est une matrice carrée de K lignes correspondant à la matrice de transition propre du système dans le -ème contexte. On note alors A la matrice de KL lignes et K colonnes résultant du regroupement en ligne des matrices A •, ,• . Précisons également que ces dernières sont supposées homogènes, i.e. indépendantes du temps. Par conséquent, A k , ,k exprime simplement la probabilité que le système aille dans l'état k alors qu'il était dans l'état k et qu'il se trouve dans le -ème contexte.

2) En revanche, tant qu'il n'y a pas de transition signalée, i.e. J t-1 = 0, le système reste dans son état précédent. Dans ce cas et quel que soit le contexte, la matrice de transition est égale à la matrice identité , notée I. Ainsi, pour tous k, k ∈ X et tout ∈ Z, 

P (X t = k|X t-1 = k , J t-1 = 0 pas de transition , Z t = ) = I k ,k = 1I(k = k), [ 5 
P (X t |X t-1 , J t-1 = j, Z t ) = I si j = 0, A si j = 1.

Temps de séjour

Il s'agit à présent de définir la LPC associée aux temps de séjour dans les différents états du système et selon ses différents contextes. On suppose que la v.a. X D t est à valeurs dans X D = {1, . . . , d, . . . , D}. Notons qu'il n'est pas naturel de définir une v.a. représentant une durée sur un ensemble borné. Il aurait en effet été plus convenable de définir X D t sur N * mais dès lors, le modèle ne serait plus fini. En pratique, il suffit de choisir une borne D suffisamment grande comparée à la dynamique du système étudié.

Comme précédemment, commençons par définir la distribution initiale des temps de séjour en posant pour tout

∈ Z, tout k ∈ X et tout d ∈ X D , P (X D 1 = d temps de séjour dans l'état k |Z 1 = , X 1 = k) = F 1 ,k,d ,
où F 1 est une matrice de KL lignes et D colonnes. F 1 ,k,d donne la probabilité de rester d unités de temps dans l'état initial k sachant que le système se trouve dans le contexte .

La LPC de X D t pour t ≥ 2 joue un rôle analogue, excepté qu'elle doit également maintenir à jour la durée restante avant la prochaine transition. Une fois encore, deux cas sont à étudier : 1) Lorsque le temps restant dans l'état précédent k est écoulé, i.e. X D t-1 = 1, une transition est déclenchée, i.e. J t-1 = 1, ayant pour conséquence un changement d'état. La distribution du temps de séjour dans le nouvel état courant est alors donnée pour tout ∈ Z, tous k, k ∈ X et tout d ∈ X D , par

P (X D t = d temps de séjour dans l'état k | X t-1 = k état précédent , X D t-1 = 1, J t-1 = 1 transition déclenchée , Z t = , X t = k nouvel état courant ) = F → k , ,k,d , [6]
où F → est une matrice de K 2 L lignes et D colonnes. Tout comme F 1 , à chaque ligne de la matrice F → est associée une loi de temps de séjour dépendant du contexte, de l'état courant, mais également de l'état précédent. A ce propos, notons que si l'arc optionnel entre X D t et X t-1 est supprimé, F → ne dépend plus de l'état précédent et par conséquent

F → = F 1 .
2) Dans le cas où il reste du temps avant un changement d'état, i.e. si X D t-1 ≥ 2 ou de manière équivalente si J t-1 = 0, le système reste dans l'état précédent k et la durée restante est décrémentée de façon déterministe d'une unité. D'où, pour tout

∈ Z, tous k, k ∈ X et tous d, d ∈ X D , P (X D t = d durée restante courante |X t-1 = k , X D t-1 = d durée restante précédente , J t-1 = 0 pas de transition , Z t = , X t = k) = C d ,d , [7] où C est une matrice carrée de D lignes vérifiant pour tous d, d ∈ X D , C d ,d = 1I(d = d -1)1I(d ≥ 2).
Il est important de remarquer que le produit d'une matrice M possédant D colonnes par la matrice C a pour effet de décaler à gauche les colonnes de M en remplaçant la dernière par des zéros.

Par conséquent d'après les équations [6] et [START_REF] Barbu | Discrete time semi-Markov processes for reliability and survival analysis[END_REF], la LPC de X D t , t ≥ 2 est définie pour tout j ∈ {0, 1} par

P (X D t |X t-1 , X D t-1 , J t-1 = j, Z t , X t ) = C si j = 0, F → si j = 1.
.

Notons enfin que l'hypothèse de temps discret sous-jacente à l'utilisation d'un DBN implique la manipulation de lois de temps de séjour elles mêmes définies sur une échelle temporelle discrète. A ce sujet, [START_REF] Bracquemond | A survey on discrete lifetime distributions[END_REF] présentent un état de l'art des principales lois de durées discrètes et explique comment décliner certaines lois continues usuelles (e.g. loi exponentielle, loi de Weibull) en lois discrètes.

Indicatrice de transition

Le rôle de la variable binaire J t consiste à contrôler explicitement les transitions du système. Autrement dit, quand J t = 1, une transition est déclenchée indiquant que le système va changer d'état à l'instant t + 1. En revanche, tant que J t = 0, le système reste dans son état courant. Naturellement, une transition se produit uniquement si la durée dans l'état courant est écoulée, i.e. X D t = 1. La LPC de J t est donc entièrement déterministe et définie pour tout

d ∈ X D et tout j ∈ {0, 1} par P (J t = j|X D t = d) = (1 -j)1I(d ≥ 2) + j1I(d = 1).

Remarques

D'après les paragraphes précédents, un MGD est caractérisé pour chaque contexte par les paramètres suivants : les lois initiales des états du système (V ,• ) ∈Z , les matrices de transition propres (A •, ,• ) ∈Z , les lois initiales des temps de séjour (F 1 ,•,• ) ∈Z , et optionnellement les lois des temps de séjour dépendant de l'état précédent (F → •, ,•,• ) ∈Z . Bien évidemment si des données séquentielles sont disponibles sur le phénomène étudié, ces paramètres pourront être estimés à partir d'une méthode d'apprentissage automatique. Le dernier paramètre à spécifier concerne la distribution de chacun des contextes ω t pour tout t ∈ {1, . . . , T }. Notons que cette distribution doit être fixée a priori et peut très bien changer au cours du temps selon le type du phénomène étudié.

Inférence dans un MGD

Nous avons évoqué dans l'introduction que dans le cadre des modèles de durée, l'étude d'un système dynamique se ramenait à l'estimation des lois décrivant ses transitions et ses lois de durée, et ce, à n'importe quel instant donné. Formellement, il s'agit donc de calculer pour tout t ∈ {1, . . . , T } les lois de probabilité suivantes :

α t = P (X t ), la distribution des états du système ; -Φ t = P (X D t |X t ), la distribution des temps de séjour restant selon l'état du système ;

-Λ t = P (X t |X t-1 ), t ≥ 2, la matrice de transition instantanée du système.

Par ailleurs, la relation d'indépendance conditionnelle [3] implique la nécessité de connaître la distribution Ψ t = P (X t , X D t ) avant tout calcul d'inférence à l'instant t + 1. Ψ t est donc une matrice de

K lignes et D colonnes vérifiant pour tout k ∈ X et tout d ∈ X D Ψ t,k,d = P (X t = k)P (X D t = d|X t = k) = α t,k Φ t,k,d . [8]
Le problème soulevé ici peut être résolu par un algorithme d'inférence générique adapté aux RB-2D. Citons par exemple l'algorithme de l'interface décrit par [START_REF] Murphy | Dynamic Bayesian Networks : Representation, Inference and Learning[END_REF]. Cependant lorsque la taille de la séquence T devient grande ou encore lorsque la borne des temps de séjour D augmente, les méthodes génériques deviennent très rapidement inutilisable.

L'objectif est donc d'établir une méthode itérative ad hoc capable de calculer efficacement les distributions introduites précédemment en exploitant les parties déterministes de chacune des LPC impliquées . Pour ce faire, il est tout d'abord nécessaire d'écrire les expressions de ces dernières à t = 1. L'écriture des marginalisations à effectuer donne alors pour tout k

∈ X et tout d ∈ X D , α 1,k = ∈Z ω 1, V ,k ; Φ 1,k,d = ∈Z ω 1, F 1 ,k,d ; Ψ 1,k,d = α 1,k ∈Z ω 1, F 1 ,k,d .
[9]

Ensuite à partir des calculs précédents à t = 1, les distributions recherchées s'écrivent

pour tout t ≥ 2, tous k, k ∈ X et tout d ∈ X D , Λ t-1,k ,k = (1 -Φ t-1,k ,1 )I k ,k + Φ t-1,k ,1 ∈Z ω t, A k , ,k α t,k = k ∈X α t-1,k Λ t-1,k ,k ; Ψ t,k,d = 1I(d ≥ 2)Ψ t-1,k,d-1 + k ∈X Ψ t-1,k ,1 ∈Z ω t, A k , ,k F → k , ,k,d ; Φ t,k,d = (1/α t,k )Ψ t,k,d 1I(α t,k > 0) + 1I(α t,k = 0)1I(d = 1
).

[10]

Les équations [9] et [10] définissent donc un algorithme itératif réalisant les calculs souhaités de façon plus économique tant sur le plan du temps de calcul que d'espace de stockage utilisé.

Application au calcul de la fiabilité

Dans le cadre d'une étude de fiabilité, il est classique de partitionner l'ensemble des états du système X en deux ensembles X U et X D (i.e. X = X U ∪ X D avec X U ∩ X D = ∅), représentant respectivement ses états de bon fonctionnement et ses états de pannes. En temps discret, la fiabilité R(t) d'un système est définie comme la probabilité que le système soit resté dans un état de bon fonctionnement jusqu'à l'instant t, i.e. R(t) = P (X 1 ∈ X U , . . . , X t ∈ X U ). On montre alors que

R(t) = P (X 1 ∈ X U ) t τ =2 P (X τ ∈ X U |X τ -1 ∈ X U ) = α U 1 t τ =2 Λ U τ -1 où α U 1 et Λ U t représentent
respectivement les probabilités de se trouver dans un état de bon fonctionnement à l'instant initial et la matrice donnant les taux de transition entre deux états de bon fonctionnement à l'instant t. Ces deux quantités se calculent simplement en remplaçant l'ensemble X par X U dans les équations [9] et [10].

Illustrons notre approche à l'aide d'un MGD modélisant le comportement d'une machine de production à 3 états, i.e. X = {1, 2, 3}, avec X D = {3}. La machine en question dispose de deux cadences de fonctionnement, i.e. Z = {1, 2}, à savoir respectivement normale ou rapide. Enfin, on suppose que son mode de dégradation ne dépend que de la cadence choisie et de son état courant. Autrement dit, on se place ici dans le cas où il n'y a pas d'arc entre X t-1 et X D t . Les tables 1 donne les matrices de transition et les lois des temps de séjour en fonction de la cadence de production. Notons enfin que l'unité de temps utilisée est la semaine.

La figure 2 donne le résultat du calcul de la fiabilité sur une séquence de taille T = 150 semaines et pour différents pourcentages d'utilisation de la machine en cadence rapide sur une semaine. L'algorithme présenté en section 4 a été utilisé pour effectuer les estimations Cette figure illustre donc le comportement du système pour différentes politiques de fonctionnement. En pratique, ce genre de résultats peut avoir une grande utilité lors de la mise en place d'outils d'aide à la maintenance. 

Conclusion

Nous décrivons dans cet article une approche originale pour représenter une grande variété de modèles de durée en temps discret à partir de réseaux bayésiens dynamiques. Le modèle spécifique développé, dénommé modèle graphique de durée, a l'avantage de parfaitement s'adapter aux systèmes multi-états, ayant une dynamique

Figure 1 .

 1 Figure 1. RB-2D associé à un MGD. X t , X D t , J t et Z t sont respectivement les v.a. représentant l'état, la durée avant transition, l'indicateur de transition et le contexte courant du système. Les lignes pleines définissent la structure minimale d'un MGD. Les lignes en pointillés indiquent des éléments optionnels.

Figure 2 .

 2 Figure 2. Fiabilité en fonction du pourcentage d'utilisation de la machine en mode rapide par unité de temps.