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Abstract

A non-overlapping domain decomposition method for elasticity equations based on
an optimal control formulation is presented. The existence of a solution is proved
and the convergence of a subsequence of the approximate solutions to a solution of
the continuous problem is shown. The implementation based on lagrangian method
is discussed. Finally, numerical results showing the efficiency of our approach and
confirming the convergence result are given.

Key words: Convergence, Domain decomposition, Elasticity equations, Optimal
control formulation.

1 Introduction

Domain decomposition methods is divided into two classes, those that use
overlapping domain, and those that use non-overlapping domains, which we re-
fer to as substructuring. Various substructuring methods with non-overlapping
can be encountered in literature and fruitful references can be found from [17].
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A study of elasticity equations by domain decomposition method was treated
from [4,5,11,15]. In [15], the authors have presented the techniques for the
algebraic approximation of Dirichlet to Neumann maps for linear elasticity.
This techniques are based on the local condensation of the degree of freedom
belonging to a small area-defined inside the sub-domain- on a small patch
defined on the interface. In [11], the domain decomposition method with La-
grange multipliers is introduced by reformulating the preconditioned system
of the FETT algorithm as a saddle point problem with both primal and dual
variables as unknowns.

In this paper, we consider a linear elasticity material which occupies an open
bounded domain Q@ C R? where the boundary is denoted by I' = 99Q. The
linear elasticity problem [12] is given, for i = 1,2, by

2. 0o(u) ,
—ZTZ‘]—JCZ 1n Q

Jj=1

u; =0 on I

where u = (uq,uz) is the displacement vector, f = (f1, f2) the volume force
vector, o0;; is the stress tensor. The traction vector ¢ is defined by for i = 1, 2,

2
t; = > _ 045(u)n; where n is the outward normal unitary vector of the domain
j=1

2 along boundary I'. The strain tensor ¢;; is given by
1/0 U; 0 Uj
ij = 5 2
=i 2<8x]+8xl> ( )

These tensors are related by

with G and v are the shear modulus and Poisson ratio, respectively, and 9;; is
the Kronecker delta tensor.

We wish to determine the solution of (1) by a domain decomposition method.
To this end and for simplicity we consider here only the case where (2 is
partitioned into two open subdomains Q) and Q) such that Q = QO UQE).
The interface between two domains is denoted 7 so that v = QM) N Q@) Let
[ =00NT and Ty = Q@ NT. Let us denote by fl-(k) = filqw, for k =1,2.
We consider the problems defined over the subdomains



B 2 aai]’(u(l)) _ fi(l) ‘w Q(l) B 2 M _ fi(Q) in Q(g)
=0 onTy, (4 =0 only (5
2 2
Z Uij(u(l))”§l) =); on vy Z Oij (U(Q))”?) = —1; on 7y
Jj=1 Jj=1

where n” is the outward normal unitary vector of the subdomain Q) along
the interface v, for i = 1, 2.

In this work, we are interesting to combine the optimization techniques and
non-overlapping domain decomposition to solve problem (1). This combina-
tion is obtained as a constrained minimization problem for which the cost
functional is the L?(y)-norm of the difference between the dependent vari-
ables u), u® across the common boundaries v and the constraints are the
problems (4) and (5). At this stage its must be noted that a similar idea of
this combination was already used for Laplace operator in [6,7], for coupled
stokes flows [10], for nonlinear sedimentary basin problem [9]. Here, we extend
this idea for the study of elasticity equations. Furthermore, we prove the con-
vergence of approximate optimal solutions to continuous one and we give an
algorithm based on gradient conjugate with variable steeps.

The paper is organized as follows. In section 2 we provide an optimal control
formulation equivalent to the model problem (1). In section 3, we prove the
existence of optimal solution. The existence of the discrete optimal control
problem, obtained by finite element approximation, is given in section 4. The
convergence of approximate solutions to the continuous one is shown in sec-
tion 5. Section 6 deals with the description of our optimization algorithm, in
section 7, we report some numerical result.

2 Optimal control formulation

Define the following convex set :

Ko ={t = (Y1,2) € (L*(1)* / IIWellr2e) < Co,  for k= 1,2}

where Cj is a nonnegative given constant.



For the numerical approximation of the problem (1), we propose the following
optimal control formulation

Minimize J(u®M (v),u® (1)) for all ¢ € K,

(PO){ where J(u® (1), ul (1)) = ;Z (- u?) do (6)

and uM(¢), u® (1)) are respectively the solution of (4) and (5).

We have the following result

Proposition 1 Assume that f and Q2 are smooth enough. Then the problem
(1) is equivalent to (6).

Proof.
Let wu, be the solution of (1) and let us denote by ul®) = u|gw, for k = 1,2.
2

Assume that f and ) are smooth enough, such that ;. = Z Oij (u(l))ngl) is
j=1

in L?(7), for i = 1,2. One can choose the constant Cy, defining Ky, such that
e = (Pre,v02¢) € Ko this means that max (|¥cllz2) 5 [V2ellz2i)) < Co.
This implies that (u(Y(¢,), u{® (1b.)) is a solution of (6).

Conversely, let (ul” (1), u'? (1*)) be a solution of (6) for ¥* € Ky, then we
have J(ul” (1), ul? () < J(u® (), u® (1)) for all ¢ € Ky. In particular,
we have 0 < J(ul" (1), u® (1)) < J(uD (), u® () = 0, this involves

uVin QO
that u, = is a solution of (1) and achieves the equivalence
W in Q@

result.

3 Existence of optimal solution

We first give some notations and definitions which can be useful in the follow-
ing. We define the spaces, for 1 =1, 2,

H;p(QW) = {v € (H'(QY))* /v

1—\1:0}



where (H'(Q2?))? is the Sobolev space equipped with the norm |-, o) de-

fined by
%
, Nllo oo = (ﬂ/ |ur]? da:) .
)

2 2
H; p(Q®) are equipped with the following norm V] g0 = <Z Vo2 Q@) :

=

2
2 2
oo = (3 (Fol o + ¥l

=1

For ¢ € K, we consider the weak formulation of equation (4) and (5) given,
for k=1,2, by

Find u(k ("Lp) € Hk D(Q(k)) Yv = ('Ul, Ug) € Hk,D(Q(k))
: 2 (7)
a® (u®, v Z o () ey () =3 [ fFoide+ (~1)F Y [ wivdo.
/ / . /

1,)= 1Q(k) ile(k) =1

We define the space of admissible solutions U,4 by :

Uzg = { (W (), u? () solution of (7) / ¥ € Ky}

The optimal control problem (6) can be rewritten as:

(PO)  Minimize J((u™ (1), u® (1)) for all (uD (), u? (1)) € U
We define the convergence of the sequence (), = ((¥1,n,%2n))n in Koy to
¥ = (Y1,¢2) € Ko by

Yy — W = Yp, — Y, weakly in L*(y), for k=1,2. (8)

We can then equip U,q with the topology defined by the following convergence:
let ((uM,u(?))), be a sequence of U,y and (uV), u®) € U,y then:

o _. @ : 1001
ud,u?) — (W u®) = Uiy = ug weakly in H(Q0) (9)
ul®) = u? weakly in H(Q®), for k=1,2.
We have then the following result.

Theorem 2 The problem (PO) is well posed and admits a solution in U,g.



Proof.

For all ¢ in K, the result of the existence and unicity of the solution of (7) is
ensured by the Lax-Milgram theorem, this involves that the problem (PO) is
well posed. The proof of the existence of a solution of (PO) is now reduced to
show that U,y is compact for the topology defined by (9) and that J is lower
semi-continuous on U,g.

In order to show that U,g is compact, we consider ((u{l), u(?)),, a sequence of
Uaa, i.e. u®) = u®)(),,) is the solution of (7) for 1, € Kj. Since for all n and
k=1,2, we have ||ty r2¢) < Co, we can extract from (1), a subsequence
denoted again (,),, such that ¢, converges weakly in L?(7) to ¢ and ¢* =
(1/11,1/12) is in K. The sequence ((u(),u®)), converges weakly to (ul”, u{?)
and (ul", ul”) is such that (vl u'?) = (u® ("), u@ (")) € Uyq. Indeed, for
all n, u(k’) u™ (1) € Hy, p(Q®) is the solution of

2 2
() =Y [ D vde+ (-1)" 2/%@1 do Yo € Hy,p(Q"M)(10)
z':lQ(k)

Taking v = u*) in (10) and using the inequality Hzﬂi,nHLoo(,y) < Cy, for 1 =
1,2, and the Korn’s inequality, we obtain that [[u®||; o < 3, where 3 is a

nonnegative constant 1ndependent of n. Thus we can extract a subsequence
denoted again (u ,(f))n, such that u!®) is weakly convergent to u{®) in H'(Q®),
for i = 1,2. Since Q®) is smooth enough, the trace operator from HY QW)
to L2(I'y) is compact, this implies that u{* € Hy, p(Q®). Tt remains to show

that ufkk) is solution of

2 2
a®(uM),0) =3 / FP v da + (—1)F Z/W vido Yo € Hy,p(Q™)(11)
i=1¢)(k) =15

JB g,
This is obtained by using the weak convergence of i u—x in L2(Q®),
Tj J

for 7,7 = 1,2, and by passing to the limit in equatlon (10). Consequently
W, u?) = WO @), u®(¥*)) € Usg. This achieves the proof of the com-
pactness of U, for the topology defined by the convergence (9).

To show the continuity of the functional J in U4, let us consider a sequence
(uM, u?)), C U,q which is convergent to (uV),u®) € U,y. We have

n n

1 2
Tl ) — T u®) =23 (/ () =) do = [ul? —uf?y d“)



1
2
2
where [, ( (1) 1) +u ( ) u?,i) da)

2
and L; , = ( / (2) Z(-l) — u§2)) da) . Since u®) is uniformly bounded

y
in (H'(Q®))? with respect to n, we have that L, is uniformly bounded. The

use of the compactness of the trace operator from H'(Q®) to L?(v) gives
lim L, = 0. Thus lim J(ul!,uf?) — J(u,u?) = 0. This end the proof.

4 Approximation of the problem

In this section, we use the linear finite element method for the approximation
of (PO). We show the existence of the solution of the discrete problem and we
study the convergence of a subsequence of these solutions to a solution of the
continuous problem. Finally, to confirm the convergence result, we give some
numerical results.

For the seek of simplicity, we reduce our study, in this section, to the case
where the boundary part v is assumed to be defined as follows:

v =A{(bx) [ we[0,a]} (12)

where a > 0 and b are two given constants.

In the following, we need additional regularity assumptions on Ky, namely:

Ko ={ = (¢1,42) € (C°())* / hw(b, ) — hy(b, 2")| < C' |z — ']
Vo, o' € [0,a] and |[¢g||pey) < Coy for k=1,2}

(13)

where C' and () are nonnegative given constants. The convergence of a se-

quence (¢Vn)n = (Y10, Y2n))n in Ko to ¢ = (¢1,13) € Ky is defined in this
case by

Yy — ) <= Ui u(b,.) — Yi(b,.) uniformly in [0,a], for k =1,2 (14)
Remark 3 Note that the existence result shown in section 3, remains valid in

Ky with the above convergence. In this case, the compactness of Ky is ensured
by the use of Ascoli-Arzela theorem’s (see [2]).



4.1 Discretization of the problem

Let us consider an uniform partition (a;)," of the interval [0, a], such that:

O=aqy<a <...<an_-1=a, a;—a,_1=h fori=1,..., N—1.

We define the discrete space associated to Ky by

Ky =A{tn = Wi, th2n) € (CV))? / Yien(bs Miaios.a € Pr([aio1, ai])
i=1,...,N—1, |2alba)vunbas) < oo y—1  N—1

a;—a;—1

C
and [[tg ][ Lo(y) < bl h+ Cy, for k=1,2}
with the same constants C' and Cj, as in the definition of K.

Let H(S2) be the finite dimensional space given by

H(QW) = {v, € C(QW) [ vp|x € PI(K), YK € T,}

where 7}, is a regular triangulation of Q®), for k = 1, 2. Let
Hi p(Q®) = {op € (HOQW))? / vplr, = 0}

be the finite dimensional spaces associated respectively to Hy p(22%)).
For ¢y, € K}, we consider the following discrete problem of (6), for k = 1, 2:

Find u{” (vy) € H p(Q®) Yoy, € HE (W)

2 2
A o) = S [ oyl zsw) =3 [ 8 vnde + (-1)

ij=1

15
/¢i,h Ui h dU( )
3

2

Q(k) =16k i=1

where fz(l,z) is an approximation of fi(k) such that

fl(’,? is uniformly bounded and converges to fl-(k) almost every where.(16)

The discrete space of the admissible solutions is given by

Uty = {(us? (n) u? (n)) solution of (15) / 4, € Kl}



We approach the cost functional by the following discrete one :

T ), () = 5 3 [ (@)~ uB0)))” do

i=1

and we state our discrete optimization problem as follows

,, inf Jh(ug), uﬁf))
(POM){ (! w?)eut,
where ugf) = uglk) (¢p,) is solution of (15), fork=1,2.

Note that the set K can be identified with the following subset of R*Y

Ko = {{X} = (X1,07 ooy Xavo1, Xog, - -, X2,N—1) GRQN/
-Ch<X,;,—X;1<Ch,i=1,...,N—-1,1=1,2
and | X;,| < Sh+Co, i=0,...,N -1, l=1,2}.

We denote by Mqow (h) and M, (h) the set of nodes lying respectively on
Q® and 5. Let m® be the number of elements of Mqu) (h), and define
NT® = N +m®_ for k =1,2. Let us now introduce in H(Q®) the canon-

NT
ical basis (pz(k))izlk such that pgl) = p(2) = p;, for all ¢ € M,(h). For the

)

vector P*) = | 5’“),p§’“’, . ,pg\’;)T(k)], we define the following matrix [P*)] =
P® 0 (k) ~ (k) 0] £, (k)
" Then wuy” can be written u;’ = [P®]{uy’} where {uy’} =
0 P
t[ugkl), ugkg, e ,ui’f}wm,ué’?, ugk%, e ,uélf])VT(k)] is the vector of the components
of uﬁf) in the basis P®*). Let us denote by
op" opy” %) DP® 0
(k) _ Ox oz ' Ox (k)1
D Pk — o b and [DPW] =
617(1 : 817(2 : apNT(k> 0 D p®)
5 o - by

the gradient of u,(lk), Du%k) can be written in term of [D P(k)] and {ugpk )} by

8u(k) au(k’) au(k) au(k)
Duglk)zt( 1,h OUyp Ougp Ougy

) 5 ) , — D (k) (k)
83:’8@/’895’334) [P]{UT}

The tensors € and o can be read {e} = * (e11, €22, 2¢12) and {o} = ' (011, 022, 012)



{€} can be written in term of D ugk)

1000 ou®

h

feb=1(0001 || ,0t0
0110/ | %,

If we denote by [D] the above matrix, we have

{e} = [D| Dy = [D] [DPH] {uf}

Using equation (3), we can write {o} in term of {¢} as follows {c} = [£] {€} thus {0} =
[€][D] [DP®] {u} where [€] is a 3 x 3 symmetric matrix. Using the above
notations we have

2

> [ o)) = or) (ﬁ/ '[DPW)[DljE] D] [DP(“]@) {ui},

53=16 k) (k)

(k)

and Z A Ulhdl" = YHor} (p® M d:v).
[ [ oo

Setting now the matrix A% = / UDPW)D]E] [D) [D PP)] dz, the vectors

Q k)
{BWY = / PO 9 dz and {GF (X)) = (G4(X)2T™ with
Qk)
k 2
a®)( SEY Y Xl] / ), do (17)
l:lje 'y 5

it is easy to see that problem (15) can be rewritten, for k£ = 1,2, as

Find {ul¥(X)} € R2VT" such that
AW {u® (X)) = {BW} + {GP(X)}

We can identify the set U”, with the following subset of RNT®

U = {({uP}, {u?}) solution of (18) / {X} € Ko}

10



Then the discrete cost functional reads :

Tn(u? u?) = J({u}, {u}) =

N[ —

where (.,.) is the inner product in R27" and the matrix [R] is defined by

RO
0R
Whel"e R - (TZJ)ISZ,]SQNTU“) iS glven by
7/"\2']‘ = /png do if Z,j € M,y(h)
Tij = Y
0 otherwise .

The matrix form of the optimization problem reads:

onf T({up'} {uf))
(PM){ (uy{uPyeu (19)

s/c A® (WP (X)) = (B} + {GW(X)} for k=1,2
4.2 FExistence of the solution of the discrete problem

It is easy to see that (PO") is equivalent to (PM), thus we show that (PM)
has a solution in U.

Theorem 4 The problem (PM) admits a solution on U, for all h > 0.

Proof.
Let us consider a minimizing sequence (({u(Tl)}n, {ug)}n))n of J in U, such
that

: W @y yy_ ©) (@)
im J({ugp’ o, {ur' 1)) (w(l)}gg))euJ(w ,w'?).

We have that for all n and k = 1,2, {u¥>}n = {ugfc)}(Xn) is the solution of
A®) {ugﬂ)(Xn)} = {B®} +{G™(X,)}. Using the fact that Ky is bounded and
closed (compact) in R, we can extract from ({X},), a subsequence denoted
again ({X},), which converges in R*" to {X*} € Ky. From the definition
of {G®M} in equation (17), we can show that the sequence ({G™(X,)}),

11

(IR ({uf’} = (1), ({uf'} = (ui'}))



converges to {G®)(X*)} in R2VTY | Let {u”} be the solution of A® {v} =
{B®} +{G®(X*)}, we show that the sequence ({u{"},), converges to {ul®}
in R2VT for k = 1, 2. Indeed, we have that

(A b i b = () = (B9 b = {ul})

oo (20)
+{({GP (X)), {uf}n — {u™})

and

(A® u®}, {uP}, = (@} = (B9}, {ud}, — {u}) :
+{({GOXMY, {uf} — (i)

Subtracting equation (21) from (20), and using the fact that the matrix A®)
is symmetric and positive definite, we obtain that there exists a nonnegative
constant a such that

o {1} — (Y2 r < [{GP(X,)} = {GB (X Y|z -
[ {u 3, — LY o

the result is obtained by passing to the limit in (22).

The main result of this theorem follows from the fact that J({u{"},, {u'P},.)
converges to J({ul"}, {u?}), which is obtained by passing to the limit in the
following equation

T o, {u@ 1)) = J({u}, {uf})
= (R ({ui = {u?})  ({uf}a = {0 }))
(R ({ut"} = {ui}), ({ut} = {u'})
= (R ({uf"} = {u}) , ({3 — {0 }0))
— (R ({ut"} = (f}), ({ui = {u?})
+([R] {u* b= @), ('} - {u@})
— (R ({ut"} = {(ui}), ({ut} = {ui})
= (R ({uf}n = (i }) = (i} = (), ((ul}e = {uP'}0))
+([R] ({uf} = (), (({ui b — {uf}) — (it} = ().

12



5 Convergence result

In this section, we are interested in showing the existence of a subsequence
of the solutions of the discrete problems which converges to a solution of the
continuous one. For this we introduce the following definitions:

Let (1) be a sequence such that v, € K[ for all h, we define the convergence
of (¢p)n to v € Ky as h — 0 by

Y — ) <= Y;p(b,.) — ;(b,.) uniformly in [0,a] fori=1,2.(23)

For a sequence ((uﬁl) (2 )))h such that (uh),ug)) € U, the convergence of
the sequence ((ug),ug))) to (u),u?) € Uy, as h — 0, is defined by

) in H1(QW
(U}(L ), U/EL?)) _ (U(l)’ ’U,(2)) Weakly in H (Q )

(
(
Our convergence result is based on the following lemma.

Lemma 5 (i) For any (uV,u®) € Uy, such that u® = u® () for € Ky,
there exists a sequence ((ug),ug)))h such that ugk) = u,(f)(z/}h) for ¢y, € Kb

and (u,1,”) — (u), u?).
(ii) Let ((ug),ug)))h be a sequence of U, such that uh = uh (wh) for iy,

€ Kl. Then there exists a subsequence of ((ug),uf))) denoted again by

((ug),ug)))h and an element (V) u®) € U,y such that u*) = u® () for
Y € Ky and (uh ,ué)) — (uM, u®),

(iii) If ((ug),uf)))h is a sequence such that (ug),ug ) e Ul
€ U,q such that (ué),ug)) — (u, u®),

Then Jh((uh ,ué)) J(u® u@) as h — 0.

d’ and (U(1)7U(2)>

Proof.

In order to show (i), let (u", u?)) € U,q such that such that u®) = u®(¢)) for
€ Ky.Forh > 0and k = 1, 2, we construct the sequence (¢¥p,)p, = (V¥1.h, Yap)
as follows:

Y € C(v) such that 1y (b, .)
(i+3)h

/ Ur(b,T)dr for i=1,..., N — 2,
(i-1)h

a0 € Prfor i=1,..., N -1,

1
b.a:) = —
Yrnlb i) = 1

13

(
uﬁ} —u? weakly in H/(Q®) fori=1,2.

(24)



9
Yen(b,0) = E/ (b,7)dr and Wa(b,a) = /¢kbr

ot
It is easy to see that

W)k,h(ba ai) — ’Qbkﬁ(b, ai_1)| S Ch fOI Z = 17 ey N (25)

which leads, with some elementary calculations to the following estimate

C

Vkn — rllzeo(y) < Bl h. (26)

We deduce from this that

C
[k pll ooy < §h+00- (27)

Then 1, € Ko" and v, converges to ¢. Let ((ug), uy’ )) be in U, such that
u® = 4P (), this means that u'" € HP, 5 (QW) s the solution of

2
a(uh ,Up) Z / fm v dr + (1) Z/wi»h vy do Yoy, € H,f,D(Q(k)). (28)
=law =1y

Using equations (27) and (28), we can show that (uék)) » is uniformly bounded
in (H'(2"))? and thus we can extract a subsequence denoted again (ugk))h,
such that ul(lil) is weakly convergent to Vi(k) in HY(Q®), for i = 1,2. From
the compactness of the trace operator from H'(Q")) to L?(I'y) we have that
vk = v ®) VQ(k)) € Hyp(2®). To conclude that V*) = 4®) it suffices to
show that V*) is solution of the equation:

2 2
a(V® v) = > / fl vy dr + (—1)* Z/@/}, v do Yo € Hy,p(QW). (29)
] z:l

z:lﬂ(k)

Let v in Hy,p(QW), and denote by ®, = v € H!',(Q®) the piecewise
linear interpolant of v, we have:

2 2
a(u%k), (I)h) = Z / fl(h Z h dx —|— k Z/wl}h (I)i,h do (30)
) z:l

lle(k)

14



By passing to the limit in equation (30) as h — 0, we obtain that V*) is a
solution of equation (29). Indeed, we have

> [ (ou?) zi(@n) — oy (V) ey(0) = L+

i,j:19<k)

where [; = ) / (Uz‘j(ugk)) _ aij(V(k))) gij(v)

5=k

2
and I, = Y / 03 (u) (i;(®n) — £3(v))
L3=1g k)

From the weak convergence in H'(Q®)) of u to V) for i = 1,2, we have
that I converges to 0 as h — 0. By Vlrtue of the convergence result of
@, = v to v in (HY(Q®))2, as h — 0 (see [3]) and since u'" is uniformly
bounded in (H'(22%"))2, we get that I, converges to 0. In similar fashion using
the convergence (16) and (23), we can show that

Tim 3 / £ @, dr — / 9 0, dz

- (k) Qk)

2
= lim > / (£ = £ O g, d + / (@ —vi) fB dx | =0

= (k) Qk)

hIE}OZ (/ Vi Pipdro — /%‘ v; dU)
Y i
hm Z(/ k z‘(k))Usz‘f'/ zh_Uz)fz(h)dJ) =0

This achieve the proof of assertion (1i).

To show (ii), Let ((u;l ), ng ))) be a sequence of U, such that u(k) = ugk)(z/}h),
for v, € KSL. We have that for all h and @ = 1,2, ¢;, € T, Where T is the
space defined by

T={xeCw)/ xbz)—x(ba)<Clz—2'| Vr,2"€[0,d]
C
and [[x||z=¢) < 5 + CO}
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According to the Ascoli-Arzela theorem’s, we can extract a subsequence noted
again (1p,)n, such that 1; 5, converges in 7" to ¢; € T, for i = 1, 2. Furthermore,
by passing to the limit in equation (27), we have that ¢ = (11, 19) € Ky. Us-
ing the same techniques as in the proof of (i), we show that for k = 1,2, uzkh
converges weakly in H'(Q®) to ugk) = uz(-k) (¢) and that u®) is solution of
(15).

The proof of the assertion (iii) uses mainly the same technique as in the proof
of continuity of J in Theorem 1. This ends the proof of the lemma.

We can now prove our main result of convergence stated in the following
theorem

Theorem 6 Let ((uf},{, u(2))) be a sequence such that (u i})” uizf)L) is solution

)

*,h
of (PO™) and and (u *1,)1, i,)l) € Ul,. Then, there exists a subsequence denoted

again ((uilf)“ u%{))h and an element (ugﬁ )l ) € Uuq such that

(ug u) — (), ul?)

furthermore (ufk )l )) is solution of (PO).

Proof.

Let (u™™,u®) be an element of U,g4, from the assertion (i) of Lemma 1, there

exists a sequence ((u,(Z ), uﬁl )))h such that (u,(l ), (2)) € Ul and

W, 0y — (@, )

According to the assertion (iii), we have that

Jh(ug),ug)) — JwW,u®) ash —0

Now, Let ((u i,)”u@)))h be a sequence such that is solution of (PO") and

(u il,)z,u* ') € Uh. From the assertion (ii) of Lemma 1, there exists a sub-

sequence denoted again ((uil,)l,uf%))h and an element (u&l),ug)) € U,q such

that

() — (.

According to the assertion (iii), we have that

T, uf)) — T u®) as h — 0

s *

16



however, we have that

J(Uilf)“ U*Q})L) < J(ugl),uf)) for all h (31)

The main result is then obtained by passing to the limit in equation (31), as
h — 0.

6 Optimization algorithm

We use the Lagrange multiplier rule to derive an optimality system of equa-
tions from which solutions of the optimization problem (PO) may be deter-
mined.

Let D A9 € H; p(QW), for i = 1,2, and ¢ € (L%*(y))? we define the La-
grangian

ﬁ(u(1)7u(2)7¢7A(1)7 )\(2)> _ J(%u(l)?u@)) _ / Uij(u(l)(x))gij()\(l)@)) dr
Q)

+ / FO(@)AD () da:+/¢(a:))\(l)(37) dx — / 035 (P (2))ei; (A () da

Q) Q2)

+ [ 1P@AO @) de — [ (@A (@) do

Q®)

Setting to zero the first variations with respect to the multipliers A\; ans As
yields the constraints (7). Setting to zero the first variations with respect to
u™® and u® yield the adjoint equations

aM (v, \V) = (uV —u® v), Vv e H p(QW) (32)
and

a® (v, \?) = —(u —u@ v), Yo € Hyp(QP) (33)
respectively.

Then the adjoint equations is given by

17



2 (@) 2 - (\(©2)
3 99507 _ 4 Q) 3 995(\7) _ 1 g
=1 8:5]- j=1 8,Tj
)\(1) =0 only (34) )\(2) =0 only (35)
2 2
>0 (A)ny = u —u® on 5 >0 (AP)n; = —(ul —u®) on 4
j=1 =1

Let J(¢) = J(1,u™,u®) where, for given 1,

ul 2 € (L*(v))* — H; p(QY) for i = 1,2
are defined as the solution of (4) and (5) respectively. Then, the minimization
problem is equivalent to the problem of determining ¢ € (L?(7))? such that
J (1) is minimNized. Now, the first derivative of J is defined through its action

on variations 1 by

dJ

G0 = —u® a0 ), e (L) (30)

{

where @V € Hy p(QW) and @@ € Hy p(Q2?) are the solution of

aM @V, v) = (P, v), Yv e Hy p(QW) (37)

and

a®(@? v) = —(4,v), Yo € Hyp(Q®?) (38)

respectively. Set v = A" in (37), v = A® in (38), v = @ in (32) and v = a®
n (33). Combning the results yields that

a7

W AL 2@ on 4, (39)

we now present our domain decomposition algorithm

Algorithm 1 k£ =0 and v is given
Fork=0,...

18



1
22: agij(u,(k)) f(l) in QM
= 9 '
Solve u(,i) =0 onl, (40)

2 9oy(AY)

=0 in QM
j;l 8 x]-
Solve AD=0 only (42)
2
> ou(\ny = ufy) —uff) ony
j=1
Compute VJ () = )\(kl;)(¢k) - Aflf)(¢,k)
Update
= IVIWRIL
IV I (1)
dr=VJWr) +v*d s
2 (@
3 00u(Ds) _ o o g
= 9
Solve Df,jj) =0 only (44)
2
>~ 0 (DY )n; = dig on
=1
Compute

Wy —u), DY — D)
|DYY — D)2

Vi1 =V — prd

End For

pr =

7 Numerical results

2 00;(DY)
3xj
Df,f) =0 onT, (45)

2
Zaij(Df,?))nj = —d; onvy
j=1

=0 in QO

Jj=1

In order to illustrate the performance of the numerical method described
above, we solve the linear elasticity problem (1), in two-dimensional domain
Q=1(0,1) x (0,1), with w = u* on I' and f = 0. We assume that the bound-
ary is split into two parts 'y = [0,0.5] x {0} U [0,0.5] x {1} U {0} x [0, 1] and

[y =10.5,1] x {0} U {1} x [0,1]U
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solution is given by

1—v 1

50 0Ty, uy(z,y) = —EUQ((]_ —v)(2? = 1) +vy?) (46)

" (z,y) = ooyna, 5" (x,y) =0 (47)

ui™(z,y) =

with g = 1.5 x 10'°, G = 3.35 x 10'° and v = 0.34.

This example consists to split the domain €2 into two rectangular subdomains
QW = (0.,0.5) x (0,1) and 2 = (0.5,1) x (0,1) with interface v = {0.5} x
[0, 1].

In this section we investigate the convergence of the proposed method by the
evaluation at every iteration the accuracy errors denoted for 7,5 = 1,2 by

G (uy) = 6, — w2y, G(t5) = 11£5) — 77 1220 (48)

The following stopping criterion is considered

IV T () I < nllV T (o) I (49)

where 7 is a small prescribed positive quantity. For all numerical experiments,
we take n = 10711,

The mesh of discretization is taken as h = 1/40. The initial guess ;¢ on vy has
been chosen as ;o = 100. When starting with this initial guess, which is not

too close to the exact traction, a sequence of displacements {(“E;))h}po and

{(u(,f)) h}k>0 of approximation functions for u) is obtained and this sequences

converge to the exact solution. We observe from Figure 1(a), (b) that the

wE

Gk (@)

(a) - (b) | (©)

Fig. 1. Computed norm of gradient (a), cost functional (b) and the accuracy errors
(c) given by (48) as a function of the number of iterations k.

norm of gradient and the cost decrease as a function of number of iterations.
Figure 1(c) and Figure 2(a) shows the evaluation of accuracy errors as function
of number of iterations. The discrepancy Huf(),pt — ugl) H%Q(w between the
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Tieration 0

W)
wM@)
T

Accuracy arorsS_KN(2)

05 h 01 02 03 04 05 06 07 08 09 1

L
10"

Nerationsk v v

Fig. 2. The accuracy errors (a) given by (48) as a function of the number of iterations
k, results of ugl) (b) and u§2) (¢) on interface

optimal z;-displacement and the exact one is equal to 3.35 x 107 and the
discrepancy ||t2?3pt — " 12 between the optimal z,-traction and the exact
one is equal to 2.92 x 107%. Figure 1(c) and Figure 2(a) shows the evaluation
of accuracy errors as function of number of iterations. Figure 2- 4 proves the

well convergence of the proposed optimal control algorithm.

w2 W}
L
u2@)

7
.
s
af H
w
3 1
l‘.
2 "
v
1 I
0

T e ™ e xw
= LE £ 44 e r
Koo o,

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 08 07 08 09 1

(a) | (b) | (©) |

Fig. 3. Results of u§2) (a), u§2) (b) and tgl) (c) on interface ~y
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Fig. 4. Results of tgl) (a), th) (b) and tg) (c) on interface =y

8 Conclusion

In this paper, the Problem of linear elasticity equations is formulated into an
optimal control problem. The linear finite element is used for the approxima-
tion of this problem. The convergence of the solutions of discrete problems
to a solution of the continuous one is proved. The numerical results obtained
were found to be good in agreement with the exact solution.
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