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Modeling the Concentric Organization of Lattices and Path-Regular Networks and Its
Application to Complex Neuronal Networks Analysis

Luciano da Fontoura Costa
Institute of Physics at Sao Carlos, University of Sdo Paulo,
PO Bozx 369, Sao Carlos, Sdo Paulo, 13560-970 Brazil
(Dated: 21st Feb 2008)

The concentric organization of a complex network with respect to a reference node can provide
rich information about both the topology and the dynamics of complex networks. Particularly,
measurements such as the hierarchical number of nodes, the hierarchical degree and the intra-ring
degree have been recently shown (arXiv:0802.0421 and arXiv:0802.1272) to define important features
of non-linear dynamics taking place in complex networks. The current article reports theoretical
models capable of reproducing with high accuracy the concentric organization, expressed in terms
of the three just-mentioned measurements, of two important types of networks, namely orthogonal
lattices and path-regular structures. The potential of such models is illustrated with respect to
their application to systematic characterization of non-linear integrate-and-fire dynamics in those
two types of networks, more specifically the prediction of avalanches of spikes and their properties.

(Copyright L. da F. Costa, 21st Feb 2008).

PACS numbers: 87.18.Sn, 05.40Fb, 89.70.Hj, 89.75.Hc, 89.75.Kd

‘This is the foundation of the city: a net which serves
as passage and as support.” (Invisible Cities, 1. Calvino)

I. INTRODUCTION

Given a complex network (e.g. [1-5]), its structural
properties can be quantified and analysed by taking sev-
eral measurements and investigating their specific distri-
butions and relationships [5]. In case the network un-
derlies specific types of dynamics, the obtained measure-
ments can also be related to specific dynamical features,
an approach which underlies the so-called structure-
dynamics paradigm (e.g. [3, 4]).

Though complex networks can be characterized while
taking into account statistics (e.g. mean and standard
deviation) of the considered measurements, defining the
global analysis approach [5], it is often important to re-
sort also to local structural or dynamical features. Two
main approaches are possible: node- and edge-based. For
instance, in the former case, the consideration of the in-
dividual node degrees or clustering coefficients can al-
low the identification of deviating connectivity patterns,
such as hubs (see also [6]). Many are the node-based
measurements which have been proposed and used for
the characterization and classification of complex net-
works (e.g. [5]). Edge-based measurements are much less
common. Interestingly, edge-based measurements can be
immediately obtained by the line graph method of trans-
forming complex networks (e.g. [7, 8]) and taking the
traditional node-based measurements, but this approach
has also been rarely applied.

One node-based family of measurements, called hier-
archical or concentric (e.g. [9-12]), is particularly inter-
esting because it allows the characterization of the con-
nectivity surrounding each node in terms of a progressive
range of topological scales, giving rise to a multiscale ap-

proach. More specifically, given a network I' and one
of its nodes i, a series of concentric levels or rings can
be defined corresponding to the set Cy(i) of immediate
neighbors of node ¢ (level 1), the set C3(i) of the imme-
diate neighbors of C;(i), and so forth until the network
is completely covered. Once such concentric levels have
been determined, it becomes possible to obtain a whole
series of hierarchical measurements [9-12], including the
hierarchical number of nodes, the hierarchical degree and
the intra-ring degree at each level h. The hierarchical
number of nodes at level h of a network with respect to
a given reference node corresponds to the number of el-
ements in the set Cp, (7). The hierarchical degree at level
h of a node 7 has been defined [9] as the number of edges
extending between levels h and h+1 (this concept can be
immediately extended to directed networks). The intra-
ring degree at level h of a node i is the number of edges
connecting pairs of nodes within level h. The potential
of such measurements, as well as of additional concen-
tric features, has been illustrated with respect to several
theoretical and real-world investigations (e.g. [9-12]).

More recently [13-15], it was shown that important
types of non-linear dynamics, such as integrate-and-fire
(e.g. [16]) neuronal activation in presence of facilitation
(e.g. [17]), are intrinsically underlain by the concentric or-
ganization of the respective networks. More specifically,
it has been shown [13] that the important dynamical phe-
nomena of avalanches of activation [15] and activation
confinement within communities [14, 18] are intrinsically
defined by the hierarchical number of nodes, hierarchical
degrees and intra-ring degrees. Such a finding motivated
the introduction of equivalent models of the structure of
the network under analysis, allowing the estimation of
important dynamical features while considering only a
handful of equivalent nodes, which were enough to cap-
ture the intrinsic dynamical features underlying the non-
linear phenomena of avalanches and activation confine-



ment.

Such results motivate further attention to be given to
the concentric organization of complex networks. Be-
cause important structural and dynamical properties of
the network under analysis are ultimately related to its
hierarchical number of nodes, hierarchical degrees and
intra-ring degrees, it would be particularly interesting to
develop theoretical models of the concentric organization
of specific types of complex networks which could allow
systematic analytical investigations of the structure and
dynamics of networks without resorting to computational
simulations involving several realizations of each network
type. This represents precisely to the main objective of
the current work. More specifically, we develop analyti-
cal models of the hierarchical organization — expressed
in terms of the hierarchical number of nodes, hierarchical
degrees and intra-ring degrees — for two particularly rel-
evant theoretical models of complex networks, namely or-
thogonal lattices and the path-regular complex networks
introduced recently as a member of the larger family of
knitted networks [19, 20].

Though ubiquitous in traditional dynamical systems,
regular lattices such as orthogonal and hexagonal grids
have rarely been considered in complex network re-
search. Yet, these networks are particularly important
because they exhibit completely regular node degrees.
In addition, they are completely deterministic instead
of stochastic (such as Erdés-Rényi networks). In this
work we restrict our attention to thoroidal (periodic) or-
thogonal grids with degree 4. The other type of com-
plex network model considered here, namely the path-
regular networks, has been introduced recently [19, 20]
as a special type of knitted network. Basically, a path
regular network, henceforth abbreviated as PN, is ob-
tained by starting with N isolated nodes and perform-
ing M paths encompassing all these nodes (recall that a
path never repeats a node or an edge). As a consequence
most nodes exhibit identical degrees equal to 2M (i.e.
each path contributes with 2 edges for each node). In
addition to being intrinsically related to the somewhat
overlooked path-organization of networks, PN structures
have been found (e.g. [20-22]) to yield particularly uni-
form values of almost every possible measurements, not
only between nodes but also between different realiza-
tions with the same size and average degree. PN networks
are also natural candidates for modeling real-world struc-
tures underlain by paths, such as neuronal networks, as
well as transportation and communication systems. The
PN model was later modified [13] in order to obtain all
nodes with identical degrees. This can be easily achieved
by connecting the extremities of each of the M paths and
not allowing a path to go through an edge belonging to a
previous path. This type of network, henceforth abbre-
viated as P1I, is considered henceforth in this article.

In order to illustrate the potential of the analytical
models reported in this work, we apply them to the char-
acterization, through the respective equivalent models,
of avalanches of spikes in of integrate-and-fire complex

neuronal networks. Two types of dynamics are consid-
ered, involving the distribution of the axon activation as
well as the more biologically-realistic situation of fixed
action potentials. In both cases, respective criteria are
presented allowing the prediction of the strength of the
avalanches.

This work is organized as follows. It starts by briefly
reviewing the basic concepts in complex network con-
centric characterization, as well as introducing the regu-
lar lattices and path-regular networks, and proceeds by
developing the analytical models of the regular lattices
and path-regular networks and showing the adherence of
the predictions obtained by using such models against
real measurements obtained by considering ensembles of
whole networks. The potential of the developed models is
then illustrated with respect to the study of avalanches in
lattice and path-regular complex neuronal networks with
integrate-and-fire dynamics.

II. CONCENTRIC CHARACTERIZATION OF
COMPLEX NETWORKS: BASIC CONCEPTS

A complex undirected and unweighted network I' can
be completely represented in terms of its adjacency ma-
triz K, of dimension N x N. Each edge between two
nodes ¢ and j, i,5 € {1,2,...N}, implies K(j,i) =
K(i,j) = 1. The absence of connection between those
to nodes is expressed as K(j,i) = K(i,j) = 1. Two
nodes are adjacent whenever they share an edge. Two
edges are adjacent if they share a node. A sequence of
adjacent edges is a walk. A walk which never repeats a
node or edge is called a path. Given a node i, the nodes
which are adjacent to it are henceforth called its immedi-
ate neighbors. The set of immediate neighbors of a node
i is abbreviated as Cy(7); the set of immediate neighbors
of the nodes in C (%) defines the new set Cs (i), and so on.
The set Cj, (i) is herein called the concentric (or hierar-
chical) level (or ring) of the network I' with respect to the
reference node i. The whole set of concentric levels, from
h =0 (i.e. the original node 7) up to a maximum level H
is called the hierarchical organization of the complex net-
work ~y with respect to node i. The number of nodes in
Cr(i) (i-e. the cardinality of this set, herein represented
as |Cp(i)]) is called the hierarchical number of nodes at
level h with respect to i. The number of edges extending
between the concentric levels h and h + 1 is called the
hierarchical degree of node i at level h. The number of
edges connecting pairs of nodes inside a given level h is
the intra-ring degree of node i at level h. An example of
a network and respective hierarchical measurements can
be found in Section IV, Figures 1 and Figures 2.



III. ORTHOGONAL LATTICES AND THE
PATH-REGULAR NETWORKS

In an infinte orthogonal lattice, each node is connected
to its four adjacent neighbors. A finite orthogonal lat-
tice with periodic (or thoroidal) boundary conditions of
dimension L x L includes a total of N = L? nodes and
E = 2N edges. The average degree therefore is given as
(k) = 2E/N = 4, with null standard deviation, imply-
ing all nodes to have the same degree. Figure 1 depicts
a 5 x b finite orthogonal lattice with periodic boundary
conditions.

The knitted family of complex networks was intro-
duced recently [19, 20] in order to represent networks
defined by paths, instead of star connectivity. Two main
types of such networks have been proposed so far: path-
transformed BA networks (PA) and path-regular net-
works (PN). The former is obtained by path-star trans-
forming BA networks, so that the edges in each star is
transformed into a respective path. As a consequence
of such a construction procedure, such networks exhibit
a scale-free distribution of shortest-path lengths. The
second category of knitted networks, namely the path-
regular (PN) structures, is substantially simpler and can
be obtained as follows: (i) start with N isolated nodes;
(ii) perform M path-walks encompassing all nodes. By
emphpath walk it is meant a walk where no edge or node
are repeated. PN networks have been found to exhibit
particularly uniform connectivity, yielding similar val-
ues for several measurements taken amongst nodes or
amongst different realizations of the same configuration
(e.g. [20-22]). More recently [13], a version of the PN
networks, henceforth abbreviated as PI, was proposed
which is still more uniform than the PN structures. This
type of network is obtained by incorporating two addi-
tional conditions on the PN generation, namely: (a) the
extremities of each of the M path-walks are connected;
and (b) the path-walks are not allowed to cover edges or
nodes belonging to the previous path-walks. As a con-
sequence of such additional constraints, the PI networks
result with all nodes having identical degree equal to 2M .

It is interesting to make a brief discussion of the pos-
sible relationships between the orthogonal lattice and a
PI network with the same number of nodes and degree.
Though both these structures would be undistinguish-
able as far as the node degree is concerned (all nodes
have degree equal to 4), almost any other possible mea-
surements result quite distinct distributions, reflecting
the fact that the node degree provides but a degener-
ate (incomplete) characterization of the network overall
connectivity. One particularly relevant aspect in which
the orthogonal lattice and PI networks differ one another
concerns the number of paths of several lengths between
any two adjacent nodes. It is also interesting to observe
that, while the connectivity of orthogonal lattices is de-
terministic, the connections in a PI (or PN) network are
stochastic, yielding diverse structures for different real-
izations of the same parametric configuration (recall that

the PI network has just two parameters, its size N and
the number of incorporated path-walks M).

IV. ANALYTICAL MODEL OF THE
CONCENTRIC ORGANIZATION OF
ORTHOGONAL LATTICES

Because of the orthogonal symmetry of this discrete
structure, identical hierarchical organizations are ob-
tained with respect to any of its nodes. In this section
we develop an analytical expression for the hierarchical
number of nodes, hierarchical degree and intra-ring de-
gree of infinite and finite orthogonal lattice of any size
N = L2

We start by considering the infinite case. Starting at
any node 4, we have ng(i) = |Co(i)| = 1 nodes; nq(i) =
|C1(2)] = 4 nodes; na(i) = |C2(i)] = 8 nodes; ng(i) =
C3(i) = 12; nya(i) = |Cy(3)| = 16; and so on up to the last
concentric level H. More generally, it can be shown that
np(i) = |Ch(i)] = 4h. Similarly, we have that k(i) =
2np(i) + 4 and ap (i) =0 for h=0,1,..., H.

The case of finite orthogonal lattices is more properly
analysed by considering separately the cases in which L
is even or odd. In the former situation, i.e. L even, the
hierarchical number of nodes and hierarchical degrees are
symmetric with respect to h = |L/2], while the intra-
ring degrees are all zero. More specifically, in the case of
finite orthogonal lattices with L even, we have

1 ith=0
o) an ifh=1,2...|L/2] -1
m) =3 ) ih=|L/2] 41, H
oL —2 ifh=|L/2
4 ifh=0
k(i) = 4 2 T4 A =12 |L/2] —1

ki-n (i) if h=|L/2],...
0 ifth=H

JH 1

an(i) = 0,for any h

The finite orthogonal lattice for L odd yields a some-
what more complex situation. Though the hierarchi-
cal number of nodes is still symmetric with respect to
h = |L/2], the hierarchical degrees are not, while the
intra-ring degrees are no longer null. Figure 1 illustrates
the periodic orthogonal lattice with dimension 5 x 5 (a)
and its respective concentric organization (b).

Figure 2 shows the hierarchical number of nodes ky (i),
the hierarchical degrees kp(7), and the intra-ring degrees
kr (i) of the finite 5 x 5 orthogonal lattice in Figure 1.

Interestingly, the intra-ring degrees are no longer zero,
but increase towards a plateau equal to 4 for h > |L2].
The hierarchical number of nodes, hierarchical degrees
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FIG. 2: The hierarchical number of nodes ny, (¢), the hierarchi-
cal degree kp, (i) and the intra-ring degree a (), with respect
to node 13, of the orthogonal lattice in Fig. 1.
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V. ANALYTICAL MODEL OF THE
CONCENTRIC ORGANIZATION OF
PATH-REGULAR NETWORKS

Because of stochastic symmetry, similar concentric or-
and intra-ring degrees of a finite thoroidal lattice with L ganizations are obtained for a PI network considering any
odd can be calculated as follows of its nodes as reference. In order to obtain an analytical



model of the concentric organization of the PI networks,
we start by developing a recursive mean field formulation
taking into account the concentric organization with re-
spect to any node 7. Henceforth, we represent the average
degree of the PI network as (k) and, because similar re-
sults are obtained for any reference node ¢, we omit the
reference node identification (e.g. ny (i) becomes np,).

Starting with any of its nodes i, we have ng = 1; kg =
(k) and a9 = 0. At the next concentric level, one node
will be found attached to each of the edges emanating
from the reference node i, so that ny = (k). Now, each
of these (k) nodes in the first concentric level h = 1 of the
network will have (k) —1 free edges (recall that one of the
edges was already used to connect to 7). These (k) — 1
edges can be used to implement intra-ring connections
within A = 1 or for connecting to the subsequent level h =
2. Let us represent the remainder of nodes not yet used
while at a level h as Ry, so that Ry = N—(k)—1 (i.e. the
total of nodes minus the reference node and the (k) nodes
belonging to h = 1). Each of the available & — 1 edges
of each of the (k) nodes at h = 1 will have a probability
of staying inside that level given as p, = np/Rp—1 =
ny/(Rp +np). Therefore, the intra-ring degree of level h
can be estimated as being equal to ap = 0.5 (k) * ((k) —
1) #pp, leaving a total of kp, = (k)* (k—1)*(1—pp) edges
for implementing connections with the next hierarchical
level.

Unlike the situation from level h = 0 to 1, the number
of nodes which will be incorporated into level h = 2 is
not equal to the number of edges between levels h = 1
and h = 2 (i.e. the hierarchical degree k1) because more
than one of such edges may connect to a same node at
the next layer h = 2. The number of nodes which will be
incorporated into level h = 2 can be estimated as being
equal to ng = n(ni, F1, R1), where n() is the function
defined below and Ej, = kp,/np.

n(nn, En, Rp) =

Rh ith SEh
= { Ry, {1 - (1 _ g—')"'} if Ry > E

This function is obtained by considering that the first
of the ny nodes at level h will connect to Ej nodes,
the second of the nodes at level h will connect to
(Rn, — Ep)/Rp, nodes, and so forth.

The above basic reasoning can now be extended with
respect to level h = 2, and so on, until all the N nodes are
incorporated into the network. Therefore, the complete
procedure for obtaining the concentric organization in
terms of the hierarchical number of nodes, hierarchical
degree and intra-ring degree, is given as follows

ng=1; ap=0; Ro=N—1; ko= (k); Eo=(k);
h=1,;
while njp—1 >0 and Rjp_1 >0

np =nMnn-1,En_1,Rp_1);

Ry =Rp-1—np;

if Ry, >0
ap = 05(</€> np — khfl)nh/Rhfl;
kn = ((k) np, — kn—1)Rn/Rh—1;

if np >0
Ey = kn/nn;
end
end
h=h+1;

end

The above algorithm has been verified to be capable
of reproducing with impressive accuracy the hierarchical
number of nodes, hierarchical degrees and intra-ring de-
grees of PI networks. Figure 3 illustrates the predicted
and actual (averaged over 500 realizations) values of these
three measurements with respect to PI networks of dif-
ferent size and average degree.

VI. APPLICATION EXAMPLE: ANALYTICAL
INVESTIGATION OF INTEGRATE-AND-FIRE
AVALANCHES

Complex neuronal networks with integrate-and-fire dy-
namics have been found [13, 15] to exhibit avalanches
of spikes under specific circumstances (e.g. type of net-
work, size, average degree). Interestingly, such a critical
phenomenon has bee explained [13] as a consequence of
the concentric organization of the respective networks.
More specifically, given any network, it is possible to ob-
tain its equivalent model by estimating the hierarchical
number of nodes, hierarchical degrees and intra-ring de-
grees. Once such measurements are obtained, the equiv-
alent model is immediately given as shown in Figure 4,
i.e. each equivalent node represents the respective ny (%)
original nodes (these values are taken as the threshold
of the respective equivalent nodes), the weights of the
connections between successive concentric levels corre-
spond to the respective hierarchical degrees kp, (), while
the weights of the self-connections are given by the intra-
ring degrees ap ().

It has been verified that such a mean-field model yields
accurate predictions of the respective dynamics, includ-
ing avalanches and confinement. In other words, most
of the relevant structural features of the original network
are captured by the equivalent model, except the inher-
ent variability of degrees between nodes (see also [14],
where the equivalent model was enhanced to incorpo-
rate groups of nodes with distinct degrees). Therefore, it
becomes possible to investigate important dynamical fea-
tures of complex networks by considering their respective
equivalent concentric models. In particular, the analyti-
cal models of the concentric organization of the orthogo-
nal lattice and PI networks developed in this article can
be immediately applied in order to obtain the respective
equivalent models, paving the way for comprehensive in-
vestigations of the structure-dynamics relationship.
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FIG. 3: The predicted and real values (asterisks) of the hierarchical number of nodes ny (%), the hierarchical degree k(i) and
the intra-ring degree a (i) considering PI networks with several sizes and average degrees.

(D) a() (i) ax(1)

FIG. 4: The equivalent model of a complex network is com-
pletely specified by the respective hierarchical number of
nodes, hierarchical degrees and intra-ring degrees.

In this section we apply the analytical models of the
orthogonal lattice and PI networks in order to investi-
gate in more depth their dynamics regarding the spik-
ing avalanche phenomenon considering two specific situ-
ations: (i) Distributed action potential, in the sense that,
at each spike, the each axon convey a fraction of the in-
ternal activation; and (ii) Fized action potential, i.e. each
axon conveys spikes with activation 1 (more biologically-
realistic). These two situations are addressed in the fol-
lowing respective subsections.

A. Distributed Action Potential

Here we consider that, at each spike, the activation
S(i) stored inside each cell 4 is distributed equally be-
tween the outgoing axons. So, once a neuron i associ-
ated to a respective node with outdegree koy: (i) spikes,
each of its kot (i) axons will carry activation equal to
S(4)/kout(i). The internal activation is never allowed to
exceed its respective threshold T'(7). We herein assume
identical thresholds T'(i) = T for every neuron i.

Because the complex neuronal network is assumed to
constitute a connected component, in the sense that any
node can be reached from any other node, given enough
time all neurons will be activated. However, such an acti-
vation can proceed either gradually or abruptly. The lat-
ter situation is often characterized by avalanches [13, 15].
The important aspects in the activation of the respective
complex neuronal network are the transfer of activation
between concentric levels, as well as the portion of activa-
tion that remains at each level. For instance, in case the
network has several concentric levels with similar number
of nodes, it will take longer to activate all levels, and the
activation will also be more gradual. In the case of net-
works involving few concentric levels, it becomes possi-



ble, under specific circumstances, that one or more levels
with the largest quantities of nodes are activated almost
simultaneously. In these cases, it can be shown that the
sharpness and height of the avalanches, are related to the
two following ratios:

S O 1
nh+1(i) kh(l) + khfl(i) + ah(i) T
TZ(i) _ nh(z) khfl(i) i
nhfl(i) kh(l) + khfl(i) + ah(i) T

where h refers to the concentric levels containing the
largest number of nodes. Ratio r1 quantifies the effi-
ciency in which the activation from level h affects the
equivalent node in level h+1; the ratio r2 quantifies such
an efficiency with respect to the transfer of activation to
the equivalent level h — 1. Therefore, the larger these
ratios, the higher the chances of avalanches (recall that
in the equivalent model, the threshold of each equivalent
node corresponds to the respective hierarchical number
of nodes). In particular, avalanches should be observed
for r1,72 > 1. It should be observed that these activa-
tion ratios specify not only the chances of avalanches, but
also their relative sharpness, in the sense that avalanches
obtained for larger ratio values tend to be more abrupt
along time. At the same time, sharper avalanches also
tend to imply larger amplitudes.

The hierarchical number of nodes, hierarchical degrees
and intra-ring degrees of PI networks with different sizes
(ie. N = 50,100,500 and 1000) and average degrees
(i.e. (k) = 46810 and 12) were obtained by using the
respective analytical model developed in Section V, and
the ratios r1 and r2 for the level with the largest number
of nodes were calculated as above. Figure 5 shows the
obtained scatterplot of r1 x r2. Several interesting fea-
tures can be observed in this figure. First, the cases for
fixed average degree defined level-sets along the diagonal
from the lower-left to the higher-right side of the scatter-
plot. As all cases for (k) = 4and6, irrespectively of the
network size N, fall within the rectangle from the origin
up to the critical point (1, 1), such configurations are un-
likely to produce avalanches. The networks with (k) =8
present a transient behavior, being near the transition
of the critical region, so that avalanches are expected to
be sporadically verified for such an average degree, es-
pecially for N = 50. All other configurations are likely
to exhibit avalanches. The cases for (k) = 12 are ex-
pected to imply particularly sharp avalanches. The con-
figurations with N = 50 and (k) = 10 and 12, as well
as N = 500 and (k) = 12, yielded the highest products
r1r2. Interestingly, no clear order of the values of N can
be observed along the level-sets. Recall that the prop-
erties of the avalanches will be determined not only by
the activation ratios obtained for the most critical level
(i.e. that with the largest number of nodes) as in the
above discussion, but must also consider the ratios at
other levels with significant number of nodes.

094 % i .
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FIG. 5: The scatterplot of r1 x r2 for the most critical level
obtained for several configurations of PI networks yielded by
the analytical model of the concentric organization reported
in this article. The numbers above each point, as well as the
respective colors, indicate the network sizes.

TABLE I: The activation ratios for the PI network with N =

50, (k) =4 and T = 0.5.

h |0 1 2 31415

r1(|0]0.57]0.72({1.05|1.27|1.18

r2|[0{2.06|1.50{1.35|0.86 |0.36
1l 4 |10 | 17| 4 1

Np

Figure 6 shows the scatterplot of r1 x 72 for the level
with the largest number of nodes obtained for 200 real-
izations of configurations defined by (k) = 46810 and 12
and N = 50 by considering the whole original networks.
As expected, we now have clouds of points instead of the
averages produced by the analytical models. Indeed, ob-
serve that the analytical averages in Figure 5 tend to ap-
pear near the middle of the corresponding clouds in Fig-
ure 6. Interestingly, the case for (k) = 6 exhibits a split,
with a few cases appearing near (rl = 1.3,72 = 0.65).

Figures 7 to 9 illustrate the spiking dynamics obtained
in complete PI networks with N = 50 and (k) = 4,8
and 12, with the activation source places at the neuron
number 1 and T = 0.5. More specifically, each of these
figures include the spikegram (a) showing the spikes for
each neuron along time, and the total number of spikes
(b) along time.

The case N = 50 and (k) = 4 shown in Figure 7 yielded
the following ratios r1 and r2 and hierarchical number of
nodes ny, for all its 6 concentric levels:

We concentrate attention on the concentric levels 2 and
3, which have the largest number of nodes. Because the
respective rations r1 and r2 are higher or close to 1, it is
expected that this configuration will yield a well-defined
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FIG. 6: The scatterplot of r1 x 72 obtained for the concentric
level with the largest number of nodes for N = 50 and several
average degrees considering the whole original PI networks.

avalanche, which is confirmed by the spikegram and total
number of spikes along time shown in Figure 7.
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FIG. 7: The spiking dynamics, illustrated in terms of the
spikegram (a) and total number of spikes along time (b) for
a PI configuration with N = 50 and (k) =4. T' = 0.5.

The PI configuration for N = 50 and (k) = 8, implied
the following ratios:

Two of the ratios for the levels with the highest num-
ber of nodes, namely 1 to 3, are substantially smaller
than 1 (0.43 and 0.59), which suggest a weaker avalanche.

TABLE II: The activation ratios for the PI network with N =

50, (k) =8, and T' = 0.5.

h ||0] 1 2 3 4

r11/0]0.43|1.59(1.11|1.54

r21(/0]2.15(2.04{0.59]0.01
11 8 |29 | 11 1

23

TABLE III: The activation ratios for the PI network with
N =50, (k) =12, and T = 0.5.

h |0 1 2 3
r1|[0]0.53|2.29]0.63
r2|(0]2.25|2.17]0.08
np|[1] 12 | 35| 2

This is confirmed in Figure 8, which shows an avalanche
characterized by a relatively gradual transition along the
transient regime, followed by saw oscillations (see [13]).
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FIG. 8: The spiking dynamics, illustrated in terms of the
spikegram (a) and total number of spikes along time (b) for
a PI configuration with N =50 and (k) =8. T'= 0.5.

The configuration for (k) = 12 was characterized by
the following ratios:

Again, the two most significant levels (i.e. 1 and 2,
containing respectively 12 and 35 nodes), implied one
ratio r1 substantially smaller than 1, predicting a loose
avalanche. Figure 9 shows this to be indeed the case.

The three examples above corroborate the effectiveness
of the analytical model for predicting the properties of
important dynamical phenomena such as the avalanches
of spikes.
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FIG. 9: The spiking dynamics, illustrated in terms of the
spikegram (a) and total number of spikes along time (b) for
a PI configuration with N = 50 and (k) = 12. T' = 0.5.

We now turn our attention to the orthogonal lattice
complex neuronal networks. Figure 10 shows the scat-
terplot of r1 x 2 for the level with the largest number of
nodes obtained for sizes N = 50, 100, 200, 500 and 1000.
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FIG. 10: The scatterplot of r1 x r2 for the level with the
largest number of nodes obtained for the orthogonal lattice
networks. All cases fall outside the critical region defined by
rl >1and r2 > 1.

Because all the respective points fall well outside the
critical region (i.e. r1 > 1 and r2 > 1), relatively weak
avalanches are expected in orthogonal lattice complex

h ||0] 1 2 13|45 6

r1(/0]0.75(0.83|1.04]/1.09|1.14| 1

r2 (0] 2 |1.5|1.30{1.09(0.76|0.67

npf|l] 4 | 8 |12 12| 8 | 4
h |0 1 213|415 6 | 7] 8|9 |10
r1{/0]0.75]0.83|0.88| 1 |[1.25|1.17|1.25|1.50| 2 | 1
r2 (0| 2 [1.50{1.25|1.17|1.13| 1 |0.88|0.83|0.75|0.5
nellll 4 | 8 |12 |16 |18 |16 |12 | 8 | 4 |1

neuronal networks. A more complete prediction of the
intensity and sharpness of the avalanches needs to con-
sider the activation ratios for other levels associated with
many original nodes.

The configuration for N =49 and T' = 0.5 yielded the
following ratios:

The levels from 2 to 5 are the most critical ones. Ex-
cept for r1 obtained for h = 2 (i.e. 0.73) and 72 obtained
for h = 5, all the other ratios are larger than 1, sug-
gesting a well defined avalanche. Figure 11 depicts the
spikegram and total spikes along time obtained for this
configurations, which confirms the respective prediction.
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FIG. 11: The spiking dynamics, illustrated in terms of the
spikegram (a) and total number of spikes along time (b) for
the lattice configuration with N =49. T = 0.5.

The ortogonal lattices with N larger than 50 yielded
particularly interesting dynamics characterized by lack
of clear avalanches, which tended to be replaced by os-
cillations with increasing frequencies. We illustrate such
a behavior with respect to the orthogonal lattice with
N = 484 and T = 0.5, which implied the following ra-
tios:



The levels with the largest number of nodes extend
from h = 2 to h = 8, which have high respective ac-
tivation ratios r1 and 72. Figure 12 shows the respec-
tive spikegram and total number of spikes along time.
Interestingly, though most of the activation ratios are
larger than 1, the activation of the network proceeds
in terms of oscillations with increasing intensity. Sim-
ulations with substantially larger number of time steps
showed that this lattice configuration is actually under-
going an avalanche, but with a plateu involving intense
saw oscillations.
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FIG. 12: The spiking dynamics, illustrated in terms of the
spikegram (a) and total number of spikes along time (b) for
the lattice configuration with N = 484. T = 0.5.

B. Fixed Action Potential

The dynamics of integrate-and-fire complex neuronal
networks with the more biologically-realistic constraint
that the action potentials have fixed height implies in a
considerably different dynamics of overall activation of
the network. The main difference with respect to the
case treated in the previous subsection regards the fact
that the total internal activation is important only for
determining the spiking time, not affecting the intensity
of the activation being conveyed to the adjacent concen-
tric levels. That is so because every axon will convey the
fixed quantity 1, so that the activation from one level to
the next or previous ones depends only on the respective
hierarchical degrees, and not on the stored activation.

In this case, the likeliness and intensity (height and
sharpness) of the avalanches are related to the following
ratios

TABLE IV: The activation ratios for the PI network with
N =50, (k) =4, T =5.
h (0] 1 213|456
s11(0]0.22|0.27{0.35[0.40|0.38|0.38
$21(0(0.02|0.06{0.13{0.17|0.17|0.19
0
1

s3 0.80]0.55|0.45|0.27{0.12]0.07
np 4 110 |17 | 13| 4 1

TABLE V: The activation ratios for the PI network with N =
50, (k) =12, T = 5.

nlo]1]2]3
s1][0]0.57|1.75]0.65
s2][0]0.27]0.87]0.33
s3][0] 2.4 [1.66]0.09
np|lll 12 | 35 | 2
kn(i) 1

s1(i) = —Fnl) 1
np1 () T

. ap(i) 1

2(i) = -
20) = 0T

k(i — 1) 1
s3(i) = =D 1
s 1(2) T

where h is any of the concentric levels with significant
number of nodes. Ratio s1(i) quantifies the activation of
level h onto the next level h+1, s2(i) quantifies the acti-
vation of level h over itself, and s3(i) expresses the acti-
vation of level h onto the previous level h—1. In case any
of these ratios are larger than 1, it means that the activa-
tion will necessarily imply the firing of the level receiving
the activation. The activation rate s2 is not particularly
important in systems with few concentric levels, provided
the critical levels transfers effectively its activation to the
adjacent levels. All in all, strong avalanches are expected
whenever all or a substantial number of the levels, espe-
cially those associated to larger number of original nodes,
have the three ratios larger or near 1.

The PI configuration N = 50, (k) =
yielded:

The levels which are most influent on avalanche for-
mation are levels 2, 3 and 4, which contain 10, 17 and 13
nodes, respectively. Because the three activation ratios,
especially s1, are much smaller than 1, the activation is
expected to be transferred in a more gradual way, which
is confirmed by the respective spikegram and total num-
ber of spikes in terms of time shown in Figure 77.

The PI configuration with N = 50, (k) = 12 and T =5
implied the following activation ratios:

The most critical level is h = 2, with 35 associated
nodes. Because the three activation ratios are either
larger or close to 1, a well-defined avalanche would be ex-
pected were not for the relatively small values obtained

4and T =5
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FIG. 13: The spiking dynamics, illustrated in terms of the
spikegram (a) and total number of spikes along time (b) for
the PI configuration with N =50 and (k) =4. T = 5.

for h = 1. Figure 14 shows the respective spikegram and
total number of spikes along time, which confirms the
onset of an avalanche at nearly ¢ = 100, followed by saw
oscillations related to the small activation ratios obtained
for h = 1.

VII. CONCLUDING REMARKS

Most natural systems can be understood as being un-
derlain by a close relationship between their structure
and respective dynamics. Because complex dynamical
systems are often characterized by intricate structure and
dynamics, it becomes critical to devise effective means for
characterizing and modeling both these intrinsic compo-
nents.

The current article has reported the development of an-
alytical models of the node-based concentric organization
of orthogonal lattices and path-regular networks, which
provide a comprehensive characterization of the topology
of the connectivity in these two types of networks. Be-
cause of the deterministic nature of the connectivity of
orthogonal lattices, exact analytical models of their re-
spective concentric organization could be obtained. On
the other hand, because of the stochastic nature of the

neuron

(b) total spikes

spikes

[ IR il” I
0 100 200 300 400 500

FIG. 14: The spiking dynamics, illustrated in terms of the
spikegram (a) and total number of spikes along time (b) for
the PI configuration with N =50 and (k) = 12. T = 5.

connectivity in PI networks, a recursive mean field model
was developed instead. Both models have been shown
to be able to provide highly accurate predictions of the
respective hierarchical number of nodes, hierarchical de-
grees, and intra-ring degrees. The potential of such an-
alytical results has been illustrated with respect to the
investigation of avalanches in integrate-and-fire complex
neuronal networks underlain by orthogonal lattice and PI
connectivity with respect to two types of action poten-
tials (i.e. activation carried by the axons).

The main contributions of this work are listed in the
following:

Development of analytical models of concen-
tric organization of orthogonal lattices networks:
Though rarely considered in complex networks investiga-
tions, orthogonal lattices are particularly interesting be-
cause they have deterministic connectivity and perfectly
identical node degrees. In this article we developed an
exact analytical model of the concentric organization of
orthogonal lattices, allowing the calculation of the respec-
tive hierarchical number of nodes, hierarchical degrees
and intra-ring degrees.

Development of analytical models of concen-
tric organization of PI networks: The family of
knitted networks was recently introduced [19, 20] in or-
der to account for the possibility to defined theoreti-



cal models of connectivity founded on path, rather than
star-connectivity. This family of networks include the
path-transformed BA networks (PA) as well as the path-
regular networks (PN). The latter model, which can be
obtained by performing several path-walks encompassing
all network nodes, has been modified [13] more recently
in order to allow identical node degrees. The PN and
PI network models are particularly relevant because of
the strong regularity regarding measurements taken at
distinct nodes or distinct networks. In the current arti-
cle we developed a mean field analytical model of the PI
network, which allows accurate estimations of the con-
centric organization of the original networks in terms of
their hierarchical number of nodes, hierarchical degrees
and intra-ring degrees.

Application for structure-function investiga-
tions: Because several important features of the dynam-
ics unfolding in complex networks can be estimated from
their respective concentric organization (e.g. [13, 14]),
more specifically their respective equivalent models, the
development of analytical models of the concentric fea-
tures of the orthogonal lattice and path-regular networks
has paved the way for comprehensive and systematic in-
vestigations of both the structure and dynamics of such
networks.

Investigation of Avalanches: In order to illustrate
the potential of the analytical models developed in this
work, we applied then to characterize and predict the
dynamics of avalanches in orthogonal lattice and path-
regular complex neuronal networks with integrate-and-
fire dynamics. More specifically, the activation ratios
were obtained for several configurations (i.e. size and
average degree) of these networks. A rich phase space
rl x r2 was obtained for the case of the PI networks,
characterized by level-sets of ratios with respect to their
average degree. While PI networks with relatively small
average degree were found not to produce avalanches, the
configurations with lower average degrees implied sharper
and stronger avalanches. Such predictions have been cor-
roborated through experimental simulations considering
the whole networks. Interestingly, the orthogonal lattice
networks yielded small activation ratios, implying weak
avalanches.

Consideration of fixed action potential
integrate-and-fire dynamics: In this work we
considered the integrate-and-fire dynamics with two
types of action potentials: distributed and fixes. The
former case, adopted in [13, 15], involves distributing the
spiking activation (fixed value 1) between the outgoing
axons. In the fixed action potentials, each axon had
its activation intensity fixed to 1, representing a more
biologically-realistic dynamics. The obtained results
confirmed preliminary investigations that avalanches are
also obtained for fixed action potentials.

The importance of the developments reported in this
article can also be substantiated by the following several
possibilities for further investigations which have been
respectively allowed:

Extension to other types of networks: It would be
particularly interesting to extend the analytical models
to include other types of networks such as Erdds-Rény,
Barabdsi-Albert, and geographical (e.g. [1-5]). Such
models will need to take into account the intrinsic vari-
ability of node degree implied by such networks. Yet,
the orthogonal lattice and PI models can be used as a
comparison reference for other models. For instance, ge-
ographical networks are expected to exhibit structural
and dynamical properties similar to those of the orthog-
onal lattice networks.

Extension to other types of dynamics: We have
shown that the analytical models, allied with the re-
spective equivalent models, can effectively predict several
qualitative and quantitative aspects of non-linear dynam-
ics such as the integrate-and-fire activation. It remains
an interesting prospect to investigate how other types
of dynamics, such as linear and non-linear diffusion and
synchronization, can be modeled and predicted by using
the concentric models.
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