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Modeling the Concentric Organization of Lattices and Path-Regular Networks

Luciano da Fontoura Costa
Institute of Physics at São Carlos, University of São Paulo,

PO Box 369, São Carlos, São Paulo, 13560-970 Brazil
(Dated: 21st Feb 2008)

The concentric organization of a complex network with respect to a reference node can provide
rich information about both the topology and the dynamics of complex networks. Particularly,
measurements such as the hierarchical number of nodes, the hierarchical degree and the intra-ring
degree have been recently shown (arXiv:0802.0421 and arXiv:0802.1272) to define important features
of non-linear dynamics taking place in complex networks. The current article reports theoretical
models capable of reproducing with high accuracy the concentric organization, expressed in terms
of the three just-mentioned measurements, of two important types of networks, namely orthogonal
lattices and path-regular structures. The potential of such models is illustrated with respect to their
application to systematic characterization of non-linear dynamics in those two types of networks,
more specifically the prediction of avalanches of spikes and their properties. While the considered
orthogonal lattices were found not to exhibit avalanches, the path-regular networks imply avalanches
depending of their parametric configurations. Copyright L. da F. Costa (21st Feb 2008).

PACS numbers: 87.18.Sn, 05.40Fb, 89.70.Hj, 89.75.Hc, 89.75.Kd

‘This is the foundation of the city: a net which serves
as passage and as support.’ (Invisible Cities, I. Calvino)

I. INTRODUCTION

Given a complex network (e.g. [1–5]), its structural
properties can be quantified and analysed by taking sev-
eral measurements and investigating their specific distri-
butions and relationships [5]. In case the network un-
derlies specific types of dynamics, the obtained measure-
ments can also be related to specific dynamical features,
an approach which underlies the so-called structure-
dynamics paradigm (e.g. [3, 4]).

Though complex networks can be characterized while
taking into account statistics (e.g. mean and standard
deviation) of the obtained measurements, defining the
global analysis approach [5], it is often important to con-
sider local structural or dynamical features. Two main
approaches are possible: node- and edge-based. For in-
stance, in the former case, the consideration of the in-
dividual node degrees or clustering coefficients can allow
the identification of deviating connectivity patterns, such
as hubs (see also [6]). Many are the node-based mea-
surements which have been proposed and used for the
characterization and classification of complex networks.
Edge-based measurements are much less common. Inter-
estingly, edge-based measurements can be immediately
obtained by the line graph method of transforming com-
plex networks (e.g. [7, 8]) and taking the traditional node-
based measurements, but this approach has also been
rarely applied.

One node-based family of measurements, called hier-
archical or concentric (e.g. [9–12]), is particularly inter-
esting because it allows the characterization of the con-
nectivity surrounding each node in terms of a progressive
range of topological scales, giving rise to a multiscale ap-

proach. More specifically, given a network Γ and one
of its nodes i, a series of concentric levels or rings can
be defined corresponding to the set C1(i) of immediate
neighbors of node i (level 1), the set C2(i) of the imme-
diate neighbors of C1(i), and so forth until the network
is completely covered. Once such concentric levels have
been determined, it becomes possible to obtain a whole
series of hierarchical measurements [9–12], including the
hierarchical number of nodes, the hierarchical degree and
the intra-ring degree at each level h. The hierarchical
number of nodes at level h of a network with respect to
a given reference node corresponds to the number of ele-
ments in the set Ch(i). The hierarchical degree at level h
of a node i has been defined [12] as the number of edges
extending between levels h and h+1 (this concept can be
immediately extended to directed networks). The intra-
ring degree at level h of a node i is the number of edges
connecting pairs of nodes within level h. The potential
of such measurements, as well as of additional concen-
tric features, has been illustrated with respect to several
theoretical and real-world investigations (e.g. [9–12]).

More recently [13–15], it was shown that important
types of non-linear dynamics, such as integrate-and-fire
(e.g. [16]) neuronal activation in presence of facilitation
(e.g. [17]), are intrinsically underlain by the concentric or-
ganization of the respective networks. More specifically,
it has been shown [13] that the important dynamical phe-
nomena of avalanches of activation [15] and activation
confinement within communities [14, 18] are intrinsically
defined by the hierarchical number of nodes, hierarchical
degrees and intra-ring degrees. Such a finding motivated
the introduction of equivalent models of the structure of
the network under analysis, allowing the estimation of
important dynamical features while considering only a
handful of equivalent nodes, which were enough to cap-
ture the intrinsic dynamical features underlying the non-
linear phenomena of avalanches and activation confine-



ment.
Such results motivate further attention to be given to

the concentric organization of complex networks. Be-
cause important structural and dynamical properties of
the network under analysis are ultimately related to its
hierarchical number of nodes, hierarchical degrees and
intra-ring degrees, it would be particularly interesting
to develop theoretical models of the concentric organi-
zation of specific types of complex networks which could
allow systematic analytical investigations of the structure
and dynamics of networks without resourting to compu-
tational simulations involving several realizations of each
network type. This represents precisely to the main ob-
jective of the current work. More specifically, we develop
analytical models of the hierarchical organization — ex-
pressed in terms of the hierarchical number of nodes, hier-
archical degrees and intra-ring degrees — for two partic-
ularly relevant theoretical models of complex networks,
namely orthogonal lattices and the path-regular complex
networks introduced recently as a member of the larger
family of knitted networks [19, 20].

Though ubiquitous in traditional dynamical systems,
regular lattices such as orthogonal and hexagonal grids
have rarely been considered in complex network re-
search. Yet, these networks are particularly important
because they exhibit completely regular node degrees.
In addition, theyr are completely deterministic instead
of stochastic (such as Erdős-Rényi networks). In this
work we restrict our attention to thoroidal (periodic) or-
thogonal grids with degree 4. The other type of com-
plex network model considered here, namely the path-
regular networks, has been introduced recently [19, 20]
as a special type of knitted network. Basically, a path
regular network, henceforth abbreviated as PN, is ob-
tained starting with N isolated nodes and performing M
paths encompassing all these nodes (recall that a path
never repeats a node or an edge). As a consequence
most nodes exhibit identical degrees equal to 2M (i.e.
each path contributes with 2 edges for each node). In
addition to being intrinsically related to the somewhat
overlooked path-organization of networks, PN structures
have been found (e.g. [20–22]) to yield particularly uni-
form values of almost every possible measurements, not
only between nodes but also between different realiza-
tions with the same size and average degree. PN networks
are also natural candidates for modeling real-world struc-
tures underlain by paths, such as neuronal networks, as
well as transportation and communication systems. The
PN model was later modified [13] in order to imply all
nodes with identical degree. This can be easily achieved
by connecting the extremities of each of the M paths and
not allowing a path to go through an edge belonging to a
previous path. This type of network, henceforth abbre-
viated as PI is considered henceforth in this article.

This work is organized as follows. It starts by briefly
reviewing the basic concepts in complex network con-
centric characterization, as well as introducing the regu-
lar lattices and path-regular networks, and proceeds by

developing the analytical models of the regular lattices
and path-regular networks and showing the adherence of
the predictions obtained by using such models against
real measurements obtained by considering ensembles of
whole networks. The potential of the developed models
is illustrated with respect to the study of avalanches in
lattice and path-regular complex neuronal networks with
integrate-and-fire dynamics.

II. CONCENTRIC CHARACTERIZATION OF
COMPLEX NETWORKS: BASIC CONCEPTS

A complex undirected and unweighted network Γ can
be completely represented in terms of its adjacency ma-
trix K, of dimension N × N . Each edge between two
nodes i and j, i, j ∈ {1, 2, . . .N}, implies K(j, i) =
K(i, j) = 1. The absence of connection between those
to nodes is expressed as K(j, i) = K(i, j) = 1. Two
nodes are adjacent whenever they share an edge. Two
edges are adjacent if they share a node. A sequence of
adjacent edges is a walk. A walk which never repeats a
node or edge is called a path. Given a node i, the nodes
which are adjacent to it are henceforth called its immedi-
ate neighbors. The set of immediate neighbors of a node
i is abbreviated as C1(i); the set of immediate neighbors
of the nodes in C1(i) defines the new set C2(i), and so on.
The set Ch(i) is herein called the concentric (or hierar-
chical) level (or ring) of the network Γ with respect to the
reference node i. The whole set of concentric levels, from
h = 0 (i.e. the original node i) up to a maximum level H
is called the hierarchical organization of the complex net-
work γ with respect to node i. The number of nodes in
Ch(i) (i.e. the cardinality of this set, herein represented
as |Ch(i)|) is called the hierarchical number of nodes at
level h with respect to i. The number of edges extending
between the concentric levels h and h + 1 is called the
hierarchical degree of node i at level h. The number of
edges connecting pairs of nodes inside a given level h is
the intra-ring degree of node i at level h. An example of
a network and respective hierarchical measurements can
be found in Section IV, Figures 1 and Figures 2.

III. ORTHOGONAL LATTICES AND THE
PATH-REGULAR NETWORKS

In an infinte orthogonal lattice, each node is connected
to its four adjacent neighbors. A finite orthogonal lat-
tice with periodic (or thoroidal) boundary conditions of
dimension L × L includes a total of N = L2 nodes and
E = 2N edges. The average degree therefore is given as
〈k〉 = 2E/N = 4, with null standard deviation, imply-
ing all nodes to have the same degree. Figure 1 depicts
a 5 × 5 finite orthogonal lattice with periodic boundary
conditions.

The knitted family of complex networks was intro-
duced recently [19, 20] in order to represent networks



defined by paths, instead of star connectivity. Two main
types of such networks have been proposed so far: path-
transformed BA networks (PA) and path-regular net-
works (PN). The former is obtained by path-star trans-
forming BA networks, so that the edges in each star is
transformed into a respective path. As a consequence
of such a construction procedure, such networks exhibit
a scale-free distribution of shortest-path lengths. The
second category of knitted networks, namely the path-
regular (PN) structures, is substantially simpler and can
be obtained as follows: (i) start with N isolated nodes;
(ii) perform M path-walks encompassing all nodes. By
emphpath walk it is meant a walk where no edge or node
are repeated. PN networks have been found to exhibit
particularly uniform connectivity, yielding similar val-
ues for several measurements taken amongst nodes or
amongst different realizations of the same configuration
(e.g. [20–22]). More recently [13], a version of the PN
networks, henceforth abbreviated as PI, was proposed
which is still more uniform than the PN structures. This
type of network is obtained by incorporating two addi-
tional conditions on the PN generation, namely: (a) the
extremities of each of the M path-walks are connected;
and (b) the path-walks are not allowed to cover edges or
nodes belonging to the previous path-walks. As a con-
sequence of such additional constraints, the PI networks
result with all nodes having identical degree equal to 2M .

It is interesting to make a brief discussion of the pos-
sible relationships between the orthogonal lattice and a
PI network with the same number of nodes and degree.
Though both these structures would be undistinguish-
able as far as the node degree is concerned (all nodes
have degree equal to 4), almost any other possible mea-
surements result quite distinct distributions, reflecting
the fact that the node degree provides but a degener-
ate (incomplete) characterization of the network overall
connectivity. One particularly relevant aspect in which
the orthogonal lattice and PI networks differ one another
concerns the number of paths of several lengths between
any two adjacent nodes. It is also interesting to observe
that, while the connectivity of orthogonal lattices is de-
terministic, the connections in a PI (or PN) network are
stochastic, yielding diverse structures for different real-
izations of the same parametric configuration (recall that
the PI network has just two parameters, its size N and
the number of incorporated path-walks M).

IV. ANALYTICAL MODEL OF THE
CONCENTRIC ORGANIZATION OF

ORTHOGONAL LATTICES

Because of the orthogonal symmetry of this discrete
structure, identical hierarchical organizations are ob-
tained with respect to any of its nodes. In this section
we develop an analytical expression for the hierarchical
number of nodes, hierarchical degree and intra-ring de-

gree of infinite and finite orthogonal lattice of any size
N = L2.

We start by considering the infinite case. Starting at
any node i, we have n0(i) = |C0(i)| = 1 nodes; n1(i) =
|C1(i)| = 4 nodes; n2(i) = |C2(i)| = 8 nodes; n3(i) =
C3(i) = 12; n4(i) = |C4(i)| = 16; and so on up to the last
concentric level H . More generally, it can be shown that
nh(i) = |Ch(i)| = 4h. Similarly, we have that kh(i) =
2nh(i) + 4 and ah(i) = 0 for h = 0, 1, . . . , H.

The case of finite orthogonal lattices is more properly
analysed by considering separately the cases in which L
is even or odd. In the former situation, i.e. L even, the
hierarchical number of nodes and hierarchical degrees are
symmetric with respect to h = �L/2�, while the intra-
ring degrees are all zero. More specifically, in the case of
finite orthogonal lattices with L even, we have

nh(i) =

⎧⎪⎨
⎪⎩

1 if h = 0
4h if h = 1, 2, . . . , �L/2� − 1
nH−h(i) if h = �L/2�+ 1, . . . , H
2L − 2 if h = �L/2�

kh(i) =

⎧⎪⎨
⎪⎩

4 if h = 0
2nh(i) + 4 if h = 1, 2, . . . , �L/2� − 1
kH−h−1(i) if h = �L/2�, . . . , H − 1
0 if h = H

ah(i) = 0, for any h

The finite orthogonal lattice for L odd yields a some-
what more complex situation. Though the hierarchi-
cal number of nodes is still symmetric with respect to
h = �L/2�, the hierarchical degrees are not, while the
intra-ring degrees are no longer null. Figure 1 illustrates
the periodic orthogonal lattice with dimension 5 × 5 (a)
and its respective concentric organization (b).

Figure 2 shows the hierarchical number of nodes kh(i),
the hierarchical degrees kh(i), and the intra-ring degrees
kh(i) of the finite 5 × 5 orthogonal lattice in Figure 1.

Interestingly, the intra-ring degrees are no longer zero,
but increase towards a plateau equal to 4 for h ≥ �L2�.
The hierarchical number of nodes, hierarchical degrees
and intra-ring degrees of a finite thoroidal lattice with L
odd can be calculated as follows



(a)

(b)

FIG. 1: The 5 orthogonal lattice (a) and its respective con-
centric (or hierarchical) organization (b) involving 5 levels.

nh(i) =

⎧⎪⎨
⎪⎩

1 if h = 0
4h if h = 1, 2, . . . , �L/2� − 1
nH−h+1(i) if h = �L/2�+ 1, . . . , H
2L − 2 if h = �L/2�

kh(i) =

⎧⎪⎨
⎪⎩

4 if h = 0
2nh(i) + 4 if h = 1, 2, . . . , �L/2� − 1
kH−h−1(i) + 4 if h = �L/2�, . . . , H − 1
0 if h = H

ah(i) =

⎧⎨
⎩

0 if h = 0, 1, . . . , �L/2� − 1
2 if h = �L/2�
4 if h = �L/2�+ 1, . . . , H

FIG. 2: The hierarchical number of nodes nh(i), the hierarchi-
cal degree kh(i) and the intra-ring degree ah(i), with respect
to node 13, of the orthogonal lattice in Fig. 1.

V. ANALYTICAL MODEL OF THE
CONCENTRIC ORGANIZATION OF

PATH-REGULAR NETWORKS

Because of stochastic symmetry, similar concentric or-
ganizations are obtained for a PI network considering any
of its nodes as reference. In order to obtain an analytical
model of the concentric organization of the PI networks,
we start by developing a recursive mean field formulation
taking into account the concentric organization with re-
spect to any node i. Henceforth, we represent the average
degree of the PI network as 〈k〉 and, because similar re-
sults are obtained for any reference node i, we omit the
reference node identification (e.g. nh(i) becomes nh).

Starting with any of its nodes i, we have n0 = 1; k0 =
〈k〉 and a0 = 0. At the next concentric level, one node
will be found attached to each of the edges emanating
from the reference node i, so that n1 = 〈k〉. Now, each
of these 〈k〉 nodes in the first concentric level h = 1 of the
network will have 〈k〉−1 free edges (recall that one of the
edges was already used to connect to i). These 〈k〉 − 1
edges can be used to implement intra-ring connections
within h = 1 or for connecting to the subsequent level h =
2. Let us represent the remainder of nodes not yet used
while at a level h as Rh, so that R1 = N−〈k〉−1 (i.e. the
total of nodes minus the reference node and the 〈k〉 nodes



belonging to h = 1). Each of the available k − 1 edges
of each of the 〈k〉 nodes at h = 1 will have a probability
of staying inside that level given as ph = nh/Rh−1 =
nh/(Rh + nh). Therefore, the intra-ring degree of level h
can be estimated as being equal to ah = 0.5 〈k〉 ∗ (〈k〉 −
1)∗ph, leaving a total of kh = 〈k〉∗(k−1)∗(1−ph) edges
for implementing connections with the next hierarchical
level.

Unlike the situation from level h = 0 to 1, the number
of nodes which will be incorporated into level h = 2 is
not equal to the number of edges between levels h = 1
and h = 2 (i.e. the hierarchical degree k1) because more
than one of such edges may connect to a same node at
the next layer h = 2. The number of nodes which will be
incorporated into level h = 2 can be estimated as being
equal to n2 = η(n1, E1, R1), where η() is the function
defined below and Eh = kh/nh.

η(nh, Eh, Rh) =

=

{
Rh if Rh ≤ Eh

Rh

[
1 −

(
1 − Eh

Rh

)nh
]

if Rh > Eh

This function is obtained by considering that the first
of the nh nodes at level h will connect to Eh nodes,
the second of the nodes at level h will connect to
(Rh − Eh)/Rh nodes, and so forth.

The above basic reasoning can now be extended with
respect to level h = 2, and so on, until all the N nodes are
incorporated into the network. Therefore, the complete
procedure for obtaining the concentric organization in
terms of the hierarchical number of nodes, hierarchical
degree and intra-ring degree, is given as follows

n0 = 1; a0 = 0; R0 = N − 1; k0 = 〈k〉; E0 = 〈k〉;
h = 1;
while nh−1 > 0 and Rh−1 > 0

nh = η(nh−1, Eh−1, Rh−1);
Rh = Rh−1 − nh;
if Rh > 0

ah = 0.5(〈k〉nh − kh−1)nh/Rh−1;
kh = (〈k〉nh − kh−1)Rh/Rh−1;
if nh > 0

Eh = kh/nh;
end

end
h = h + 1;

end

The above algorithm has been verified to be capable
of reproducing with impressive accuracy the hierarchical
number of nodes, hierarchical degrees and intra-ring de-
grees of PI networks. Figure 3 illustrates the predicted
and actual (averaged over 500 realizations) values of these
three measurements with respect to PI networks of dif-
ferent size and average degree.

VI. APPLICATION EXAMPLE: ANALYTICAL
INVESTIGATION OF INTEGRATE-AND-FIRE

AVALANCHES

Complex neuronal networks with integrate-and-fire dy-
namics have been found [13, 15] to exhibit avalanches
of spikes under specific circumstances (e.g. type of net-
work, size, average degree). Interestingly, such a critical
phenomenon has bee explained [13] as a consequence of
the concentric organization of the respective networks.
More specifically, given any network, it is possible to ob-
tain its equivalent model by estimating the hierarchical
number of nodes, hierarchical degrees and intra-ring de-
grees. Once such measurements are obtained, the equiv-
alent model is immediately given as shown in Figure 4,
i.e. each equivalent node represents the respective nh(i)
original nodes (these values are taken as the threshold
of the respective equivalent nodes), the weights of the
connections between successive concentric levels corre-
spond to the respective hierarchical degrees kh(i), while
the weights of the self-connections are given by the intra-
ring degrees ah(i).

It has been verified that such a model yields accu-
rate predictions of the respective dynamics, including
avalanches and confinement. In other words, most of
the relevant structural features of the original network
are captured by the equivalent model, except the inher-
ent variability of degrees between nodes (see also [14],
where the equivalent model was enhanced to incorpo-
rate groups of nodes with distinct degrees). Therefore, it
becomes possible to investigate important dynamical fea-
tures of complex networks by considering their respective
equivalent concentric models. In particular, the analyti-
cal models of the concentric organization of the orthogo-
nal lattice and PI networks developed in this article can
be immediately applied in order to obtain the respective
equivalent models, paving the way for comprehensive in-
vestigations of the structure-dynamics relationship.

In this section we apply the analytical models of the
orghogonal lattice and PI networks in order to investi-
gate in more depth their dynamics regarding the spiking
avalanche phenomenon. More specifically, we investigate
the occurrence of avalanches by considering the two fol-
lowing activation ratios

r1 =
nc(i)
nc+1

kc(i)
kc(i) + kc−1(i) + ac(i)

r2 =
nc(i)
nc−1

kc−1(i)
kc(i) + kc−1(i) + ac(i)

where c refers to the concentric level containing the
largest number of nodes. Ratio r1 quantifies the effi-
ciency in which the activation from level c affects the
equivalent node in level h+1; the ratio r2 quantifies such
an efficiency with respect to the transfer of activation to
the equivalent level h − 1. Therefore, the larger these
ratios, the higher the chances of avalanches (recall that



FIG. 3: The predicted and real values (asterisks) of the hierarchical number of nodes nh(i), the hierarchical degree kh(i) and
the intra-ring degree ah(i) considering PI networks with several sizes and average degrees.

FIG. 4: The equivalent model of a complex network is com-
pletely specified by the respective hierarchical number of
nodes, hierarchical degrees and intra-ring degrees.

in the equivalent model, the threshold of each equivalent
node corresponds to the respective hierarchical number
of nodes). In particular, avalanches should be observed
for r1, r2 > 1. It should be observed that these activa-
tion ratios specify not only the chances of avalanches, but
also their relative sharpness, in the sense that avalanches
obtained for larger ratio values tend to be more abrupt
along time. At the same time, sharper avalanches also
tend to imply larger amplitudes.

Unlike in previous works [13–15, 23, 24], here we con-
sider integrate-and-fire dynamics with action potential

limitation, in the sense that the activation conveyed
by the axons are always equal to 1, which is more
biologically-realistic than the previously adopted distri-
bution of the activation. At the same time, each original
neuron j had its threshold set as T (j) = 5.

The hierarchical number of nodes, hierarchical degrees
and intra-ring degrees of PI networks with different sizes
(i.e. N = 50, 100, 500 and 1000) and average degrees (i.e.
〈k〉 = 46810 and 12) were obtained by using the respec-
tive analytical model developed in Section V, and the
ratios r1 and r2 calculated as above. Figure 5 shows the
obtained scatterplot of r1 × r2. Several interesting fea-
tures can be observed in this figure. First, the cases for
fixed average degree defined level-sets along the diagonal
from the lower-left to the higher-right side of the scatter-
plot. As all cases for 〈k〉 = 4and6, irrespectively of the
network size N , fall within the rectangle from the origin
up to the critical point (1, 1), such configurations are un-
likely to produce avalanches. The networks with 〈k〉 = 8
present a transient behavior, being near the transition
of the critical region, so that avalanches are expected to
be sporadically verified for such an average degree, es-
pecially for N = 50. All other configurations are likely
to exhibit avalanches. The cases for 〈k〉 = 12 are ex-



pected to imply particularly sharp avalanches. The con-
figurations with N = 50 and 〈k〉 = 10 and 12, as well
as N = 500 and 〈k〉 = 12, yielded the highest products
r1r2. Interestingly, no clear order of the values of N can
be observed along the level-sets.

FIG. 5: The scatterplot of r1×r2 obtained for several config-
urations of PI networks yielded by the analytical model of the
concentric organization reported in this article. The numbers
above each point, as well as the respective colors, indicate the
network sizes.

Figure 6 shows the scatterplot of r1 × r2 obtained for
200 realizations of configurations defined by 〈k〉 = 46810
and 12 and N = 50 by considering the whole original
networks. As expected, we now have clouds of points
instead of the averages produced by the analytical mod-
els. Indeed, observe that the analytical averages in
Figure 5 tend to appear near the middle of the corre-
sponding clouds in Figure 6. Interestingly, the case for
〈k〉 = 6 exhibits a split, with a few cases appearing near
(r1 = 1.3, r2 = 0.65).

Figures 7 to 9 illustrate the spiking dynamics obtained
in complete PI networks with N = 50 and 〈k〉 = 4, 8
and 12, with the activation source places at the neuron
number 1. More specifically, each of these figures include
the spikegram (a) showing the spikes for each neuron
along time, and the total number of spikes (b) along time.
The case 〈k〉 = 4 shown in Figure 7 failed to produce
any avalanche, as would be expected from its respective
position in Figure 5. The PI configuration for 〈k〉 = 8,
shown in Figure 8, implied an avalanche characterized by
a relatively gradual transition along the transient regime,
followed by saw oscillations (see [13]). The configuration
for 〈k〉 = 12 depicted in Figure 9 yielded a strong (see the
y−axis) and sharp avalanche, reflecting its high values of
r1 and r2 (see Fig. 5). These three examples corroborate
the effectiveness of the analytical model for predicting
the properties of important dynamical phenomena such

FIG. 6: The scatterplot of r1 × r2 obtained for N = 50 and
several average degrees considering the whole original PI net-
works.

as the avalanches of spikes.
We now turn our attention to the orthogonal lattice

complex neuronal networks. Figure 10 shows the scatter-
plot of r1×r2 obtained for the lattice networks with sizes
N = 50, 100, 200, 500and1000. Because all the respective
points fall well outside the critical region (i.e. r1 > 1 and
r2 > 1), no avalanches are expected in orthogonal lattice
complex neuronal networks. Indeed, several experimen-
tal investigations considering the several sizes completely
failed to show any avalanches.

VII. CONCLUDING REMARKS

Most of natural systems can be understood as being
underlain by a close relationship between their structure
and respective dynamics. Because complex dynamical
systems are often characterized by intricate structure and
dynamics, it becomes critical to devise effective means for
characterizing and modeling both these intrinsic compo-
nents. The current article has reported the development
of analytical models of the node-based concentric organi-
zation of orthogonal lattices and path-regular networks,
which provide a comprehensive characterization of the
topology of the connectivity in these two types of net-
works. Because of the deterministic nature of the con-
nectivity of orthogonal lattices, exact analytical models
of their respective concentric organization could be ob-
tained. On the other hand, because of the stochastic na-
ture of the connectivity in PI networks, a recursive mean
field model was developed instead. Both models have
been shown to be able to provide highly accurate pre-
dictions of the respective hierarchical number of nodes,
hierarchical degrees, and intra-ring degrees. The poten-



FIG. 7: The spiking dynamics, illustrated in terms of the
spikegram (a) and total number of spikes along time (b) for
a PI configuration with N = 50 and 〈k〉 = 4.

tial of such analytical results has been illustrated with
respect to the investigation of avalanches in integrate-
and-fire complex neuronal networks underlain by orthog-
onal lattice and PI connectivity.

The main contributions of this work are listed in the
following:

Development of analytical models of concen-
tric organization of orthogonal lattices networks:
Though rarely considered in complex networks investiga-
tions, orthogonal lattices are particularly interesting be-
cause they have deterministic connectivity and perfectly
identical node degrees. In this article we developed an
exact analytical model of the concentric organization of
orthogonal lattices, allowing the calculation of the respec-
tive hierarchical number of nodes, hierarchical degrees
and intra-ring degrees.

Development of analytical models of concen-
tric organization of PI networks: The family of
knitted networks was recently introduced [19, 20] in or-
der to account for the possibility to defined theoreti-
cal models of connectivity founded on path, rather than
star-connectivity. This family of networks include the
path-transformed BA networks (PA) as well as the path-
regular networks (PN). The latter model, which can be
obtained by performing several path-walks encompassing

FIG. 8: The spiking dynamics, illustrated in terms of the
spikegram (a) and total number of spikes along time (b) for
a PI configuration with N = 50 and 〈k〉 = 8.

all network nodes, has been modified [13] more recently
in order to allow identical node degrees. The PN and
PI network models are particularly relevant because of
the strong regularity regarding measurements taken at
distinct nodes or distinct networks. In the current arti-
cle we developed a mean field analytical model of the PI
network, which allows accurate estimations of the con-
centric organization of the original networks in terms of
their hierarchical number of nodes, hierarchical degrees
and intra-ring degrees.

Application for structure-function investiga-
tions: Because several important features of the dynam-
ics unfolding in complex networks can be estimated from
their respective concentric organization (e.g. [13, 14]),
more specifically their respective equivalent models, the
development of analytical models of the concentric fea-
tures of the orthogonal lattice and path-regular networks
has paved the way for comprehensive and systematic in-
vestigations of both the structure and dynamics of such
networks.

Investigation of Avalanches: In order to illustrate
the potential of the analytical models developed in this
work, we applied then to characterize and predict the
dynamics of avalanches in orthogonal lattice and path-



FIG. 9: The spiking dynamics, illustrated in terms of the
spikegram (a) and total number of spikes along time (b) for
a PI configuration with N = 50 and 〈k〉 = 12.

regular complex neuronal networks with integrate-and-
fire dynamics. More specifically, the activation ratios
were obtained for several configurations (i.e. size and
average degree) of these networks. A rich phase space
r1 × r2 was obtained for the case of the PI networks,
characterized by level-sets of ratios with respect to their
average degree. While PI networks with relatively small
average degree were found not to produce avalanches, the
configurations with higher average degrees implied sharp
and strong avalanches. Such predictions have been cor-
roborated through experimental simulations considering
the whole networks. Interestingly, the orthogonal lattice
networks yielded activation ratios much smaller than 1,
implying that they do not produce avalanches.

Consideration of action potential integrate-and-
fire dynamics: Unlike previous works (e.g. [15, 23, 24]),
here we explicitly considered the integrate-and-fire dy-
namics to involve limitation of the action potential.
More specifically, instead of dividing the stored activation
amongst the outgoing axons, each axon had its activa-
tion intensity fixed to 1, representing a more biologically-
realistic dynamics. The obtained results confirmed pre-
liminary investigations that avalanches are also obtained

for fixed action potentials.

FIG. 10: The scatterplot of r1× r2 obtained for the orthogo-
nal lattice networks. All cases fall outside the critical region
defined by r1 > 1 and r2 > 1.

The importance of the developments reported in this
article can also be substantiated by the following several
possibilities for further investigations which have been
respectively allowed:

Extension to other types of networks: It would be
particularly interesting to extend the analytical models
to include other types of networks such as Erdős-Rény,
Barabási-Albert, and geographical (e.g. [1–5]). Such
models will need to take into account the intrinsic vari-
ability of node degree implied by such networks. Yet,
the orthogonal lattice and PI models can be used as a
comparison reference for other models. For instance, ge-
ographical networks are expected to exhibit structural
and dynamical properties similar to those of the orthog-
onal lattice networks.

Extension to other types of dynamics: We have
shown that the analytical models, allied with the re-
spective equivalent models, can effectively predict several
qualitative and quantitative aspects of non-linear dynam-
ics such as the integrate-and-fire activation. It remains
an interesting prospect to investigate how other types
of dynamics, such as linear and non-linear diffusion and
synchronization, can be modeled and predicted by using
the concentric models.
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