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Abstract

We study a XY model which consists of a spin chain coupled to heat baths.
We give a repeated quantum interaction Hamiltonian describing this model. We
compute the explicit form of the associated Lindblad generator in the case of the
spin chain coupled to one, two and several heat baths. We further study the
properties of quantum master equation such as approach to equilibrium, local
equilibrium states, entropy production and quantum detailed balance condition.

1 Introduction

The object of the quantum theory of open systems is to study the interaction of a
quantum systems with very large ones. There are two different approaches which have
usually been considered by physicists as well as mathematicians: The Hamiltonian and
the Markovian approaches.

The Hamiltonian approach consists of studying the reversible evolution of a small
system in interaction with an exterior system and its main tools are: modular theory,
W ∗-dynamical system, Liouvillean...

The Markovian approach consists of studying the irreversible evolution of these sys-
tems in interaction picture. The interaction between the two systems is described by
a quantum stochastic differential equation (quantum Langevin equation), a Lindblad
generator (or Lindbladian) which is the generator of quantum Markovian semigroup...

It is well-known that any quantum Markovian semigroup dilate a quantum stochastic
differential equation in the sense of Hudson-Parthasarathy (cf [HP]). Moreover, its Lind-
blad generator is used for guessing the quantum master equation which allow to study
the physical properties of a quantum system in interaction with a quantum field: quan-
tum decoherence, approach to equilibrium, quantum detailed balance condition ...(cf [L],
[Dav], [F],...). In the literature, in order to explicit the form of a Lindblad generator, we
use the weak coupling limit which describes the passage from the Hamiltonian approach
to the Markovian one.
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Recently, in [AP] the authors consider the setup of a small system having repeated
interactions, for a short duration h, with elements of a sequence of identical quantum
systems. They prove that for a good choice of the repeated quantum interaction Hamil-
tonian, we get the explicit form for the associated Lindblad generator.

Here, we study a XY model which consists of a spin chain coupled to several heat
baths. The heat bath is modeled by an infinite chain of identical spins. The full system
is described by the means of a repeated quantum interaction Hamiltonian H defined
on the Hilbert space HS ⊗ η, where HS = ⊗N

k=1 C2 and η = C2. After computing the
Lindblad generator, we study the properties of the associated master equation when we
discuss the case of the spin chain coupled to heat baths at the same inverse temperature
β and the case of distinct temperatures.

This paper is organized as follows. In Section 2 we compute the Lindblad generator
describing the spin chain coupled to one and two heat baths at inverse temperatures β

and β ′. In Section 3 we study the Markovian properties of the spin chain coupled to two
heat baths. We give the explicit form of the stationary state ρβ of the associated master
equation in the case of β = β ′, this is proved in Subsection 3.1. The property of approach
to equilibrium is studied in Section 3.2. The explicit form of the local equilibrium states
is treated in Subsection 3.3. In Subsection 3.4 we compute the entropy production. If
β = β ′, we show that a quantum detailed balance condition is satisfied with respect to
ρβ , this is given in Section 3.5. Finally, in Section 4 we study the case of a spin chain
coupled to r (2 ≤ r ≤ N) heat baths.

2 A Lindblad generator for a spin chain

In this section, we give a repeated quantum interaction model associated to a spin chain
coupled to one and two heat baths. We modelize the heat bath by an infinite chain of
spins. We fuhrer give the GNS representation associated to the spin chain coupled to
one piece (spin) of the heat bath (cf [AJ]). Finally, from [AP] we obtain the associated
Lindblad generator.

2.1 Repeated quantum interaction model

In this subsection, we present one of main results of repeated quantum interaction
models. We refer the interested reader to [AP] for more details.

Let us consider a small system H0 coupled with a piece of environment H. The
interaction between the two systems is described by an Hamiltonian H which is defined
on H0⊗H and depending of time h. The associated unitary evolution during the interval
[0, h] of times is

L = e−ihH .

After the first interaction, we repeat this time coupling the same H0 with a new copy
of H. Therefore, the sequence of the repeated quantum interactions is described by the
space

H0 ⊗
⊗

N∗

H.
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The unitary evolution of the small system in interaction picture with the n-th copy of
H, denoted by Hn, is the operator Ln which acts as L on H0 ⊗ Hn and acts as the
identity on copy of H different to Hn. The discrete evolution equation describing this
model is defined on H0 ⊗

⊗
N∗ H as follows

{
Vn+1 = Ln+1Vn

V0 = I
(1)

Let {Xi}ı∈Λ∪{0} be an orthonormal basis of H with X0 = Ω and let us consider the
coefficients (Li

j)i,j∈Λ∪{0} which are operators on H0 of the matrix representation of L in
the basis {Xi}i∈Λ∪{0}. Then a natural basis of B(H) is given by the family of operators
{ai

j , i, j ∈ Λ ∪ {0}} where

ai
j(Xk) = δikXj, for all , i, j, k ∈ Λ ∪ {0}.

It is useful to notice that
L =

∑

i,j∈Λ∪{0}
L

i
j ⊗ ai

j .

Now let us put Ψ = ⊗N∗Ω. Then from [AP], we have

〈Ψ, V ∗
n (X × I)Vn〉 = Ln(X), for all X ∈ B(H0),

where L(X) =
∑

i∈Λ∪{0} L0∗
i XL0

i is a completely positive map.

The following result is deduced from [AP].

Theorem 2.1 Suppose that there exist operators L0
0, L0

i , i ∈ Λ such that:

i) L0
0 = I + hL0

0 + o(h)

ii) L0
i =

√
hL0

i + o(
√

h).

Then there exists a self-adjoint operator H0 on H0 such that

lim
h→0

L(X) − X

h
= L(X), ∀X ∈ B(H0),

with

L(X) = i[H0, X] +
1

2

∑

i∈Λ

(2L0∗
i XL0

i − XL0∗
i L0

i − L0∗
i L0

i X).

Proof Let X ∈ B(H0). Then we have

L(X) =
∑

i∈Λ∪{0}
U0∗

i XU0
i

= X + h(L0∗
0 X + XL0

0 +
∑

i∈Λ

L0∗
i XLi) + o(h). (2)

Note that the operator L is unitary. This gives

L
0∗
0 L

0
0 +

∑

i∈Λ

L
0∗
i L

0
i = I.
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This implies that

I + h
(
L0∗

0 + L0
0 +

∑

i∈Λ

L0∗
i L0

i

)
+ o(h) = I.

Hence we obtain
L0∗

0 + L0
0 = −

∑

i∈Λ

L0∗
i L0

i + o(1).

It follows that

L0
0 +

1

2

∑

i∈Λ

L0∗
i L0

i = −
(
L0

0 +
1

2

∑

i∈Λ

L0∗
i L0

i

)∗
+ o(1).

Then there exists a self-adjoint operator H0 on H0 such that

L0
0 +

1

2

∑

i∈Λ

L0∗
i L0

i = −iH0 + o(1). (3)

Thus if we replace (3) in (2), then the operator L is written as

L(X) = X + h
{
i[H0, X] +

1

2

∑

i∈Λ

(2L0∗
i XL0

i − XL0∗
i L0

i − L0∗
i L0

i X)
}

+ o(h). (4)

This proves the above theorem. �

2.2 Spin chains coupled to one heat bath

The system we consider here consists of N spins, each of them described by the 2-
dimensional Hilbert space η = C2. Thus the Hilbert space of the spin chain is HS =
⊗N

k=1 C2. The Hamiltonian of the system is given by

HS = B

N∑

k=1

σ(k)
z +

N−1∑

k=1

(Jxσ
(k)
x ⊗ σ(k+1)

x + Jyσ
(k)
y ⊗ σ(k+1)

y ),

where

σx =

(
0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)

and B is a real number describing the influence of an external magnetic field in z-
direction, while the interaction between nearest neighbors is described by Jx, Jy ∈ R.

In the following, we treat only the case that Jx = Jy = 1 and we assume that the
scalar B is equal to 1.

Now, let us consider a heat bath which is modeled by an infinite chain of 2-level
atoms (spins). The quantum repeated interaction Hamiltonian of the system coupled
at the first spin to this heat bath is written as

H = HS ⊗ I + I ⊗ HR +
1√
h

(σ(1)
x ⊗ σx + σ(1)

y ⊗ σy),

with HR = σz.
Put
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σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, n+ =

(
1 0
0 0

)
, n− =

(
0 0
0 1

)
.

Let us consider the orthonormal basis {Ω, X} of C2, with

Ω =

(
1
0

)
, X =

(
0
1

)
.

Then in this basis we have

H =

(
HS + I 2√

h
σ

(1)
−

2√
h

σ
(1)
+ HS − I

)

and the unitary evolution during the interval [0, h] of times is given by

L =

(
I − ihI − ihHS − 2h σ

(1)
− σ

(1)
+ + o(h2) −2i

√
hσ

(1)
− + o(h3/2)

−2i
√

h σ
(1)
+ + o(h3/2) I + ihI − ihHS − 2h σ

(1)
+ σ

(1)
− + o(h2)

)
.

Let us define the scalar product on M2(C) by

〈A, B〉β = Tr(ρβ A∗B), ∀A, B ∈ M2(C),

with

ρβ =
e−βσz

Tr(e−βσz)
=

(
β0 0
0 β1

)

is the equilibrium state at inverse temperature β of a single spin.
Put

X0 = I, X1 =
1√
β0

(
0 0
1 0

)
, X2 =

1√
β1

(
0 1
0 0

)
, X3 =

1√
β0β1

(
β1 0
0 −β0

)
.

It is clear that {X0, X1, X2, X3} form an orthonormal basis of M2(C) equipped by the
scalar product 〈 , 〉β.

The GNS representation of (C2, ρβ) is the triple (π, H̃, ΩR) where

• ΩR = I,

• H̃ = M2(C),

• π : M2(C) → B(H̃), such that π(M)A = MA, ∀M, A ∈ M2(C).

Now we prove the following.

Theorem 2.2 The Lindblad generator of the repeated quantum interaction model as-
sociated to the spin chain coupled to one heat bath at positive temperature β−1 is given
by

L1(X) = i [HS, X] + 2β0 [2σ
(1)
− Xσ

(1)
+ − {n(1)

− , X}]
+ 2β1 [2σ

(1)
+ Xσ

(1)
− − {n(1)

+ , X}],

for all X ∈ B(HS).
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Proof Set L̃ = π(L). In the basis {X0, X1, X2, X3} we have

L̃0
0 = I − ihHS + ih(β1 − β0)I − 2h β0 σ

(1)
− σ

(1)
+ − 2h β1 σ

(1)
+ σ

(1)
− + o(h2),

L̃0
1 = −2i

√
β0

√
h σ

(1)
+ + o(h3/2),

L̃0
2 = −2i

√
β1

√
h σ

(1)
− + o(h3/2),

L̃0
3 = o(h).

Set

H0 = HS + (β0 − β1)I,

L0
0 = −iH0 − 2β0 σ

(1)
+ σ

(1)
− − 2β1σ

(1)
− σ

(1)
+ ,

L0
1 = −2i

√
β0 σ

(1)
− ,

L0
2 = −2i

√
β1 σ

(1)
+ .

Then it is clear that

L0
0 = −iH0 −

1

2

2∑

i=1

L0
i L

0∗
i .

Therefore by using Theorem 2.1, the result of the above theorem holds. �

Remark Note that if N=1, then the Lindblad generator is written as

L1(X) = i [HS, X] + 2β0 [2σ−Xσ+ − {n−, X}]
+ 2β1 [2σ+Xσ− − {n+, X}],

for all X ∈ M2(C). This Lindbladian describes a two-levels atom in interaction with
a heat bath. It is easy to show that the associated master equation has the properties
of approach to equilibrium and the quantum detailed balance condition with respect to
thermodynamical state of the spin at inverse temperature β is satisfied. We refer the
interested reader to [D] for more details. Moreover at zero temperature, that is β = ∞,
we can prove in the same way at [D] that the associated quantum dynamical semigroup
converges towards the equilibrium.

2.3 Spin chains coupled to two heat baths

In this subsection, we suppose that the spin chain is coupled to two heat baths respec-
tively at the first and the N -th spin. Moreover, the two heat baths are supposed to
be respectively at inverse temperatures β and β ′. Therefore the associated repeated
quantum interaction Hamiltonian is of the form

H = HS ⊗ I + I ⊗ HR +
1√
h

(σ(1)
x ⊗ σ(L)

x + σ(1)
y ⊗ σ(L)

y + σ(N)
x ⊗ σ(R)

x + σ(N)
y ⊗ σ(R)

y ),

where (R), (L) indicate the left and the right heat bath.
The proof of the following theorem is similar as the one of Theorem 2.2.
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Theorem 2.3 The Lindblad generator associated to the spin chain coupled to two heat
baths at inverse temperatures β and β ′ is given by

L(X) = i [HS, X] + 2β0 [2σ
(1)
− Xσ

(1)
+ − {n(1)

− , X}]
+ 2β1 [2σ

(1)
+ Xσ

(1)
− − {n(1)

+ , X}]
+ 2β ′

0 [2σ
(N)
− Xσ

(N)
+ − {n(N)

− , X}]
+ 2β ′

1 [2σ
(N)
+ Xσ

(N)
− − {n(N)

+ , X}],
for all X ∈ B(HS).

3 Markovian properties of a spin chain coupled to

two heat baths

In this section, we describe the Markovian properties of the spin chain coupled to two
heat baths at inverse temperatures β and β ′. We start by giving the associated quantum
master equation. Moreover, we study the property of approach to equilibrium and we
compute the local states. Finally for β = β ′, we compute the entropy production and
we study the quantum detailed balance condition.

Note that, in order to study the two last physical properties, we need to know
explicitly the stationary state which is complicated to compute it in the case where
β 6= β ′.

3.1 Quantum master equation

For all density matrix ρ ∈ B(HS), the quantum master equation of the spin chain
coupled to two heat baths at inverse temperatures β and β ′ is defined as

L∗(ρ) = −i [HS , ρ] + 2β0 [2σ
(1)
+ ρ σ

(1)
− − {n(1)

− , ρ}]
+ 2β1 [2σ

(1)
− ρ σ

(1)
+ − {n(1)

+ , ρ}]
+ 2β ′

0 [2σ
(N)
+ ρ σ

(N)
− − {n(N)

− , ρ}]
+ 2β ′

1 [2σ
(N)
− ρ σ

(N)
+ − {n(N)

+ , ρ}].
Note that dim HS < ∞. Therefore there exists a stationary state for the above master
equation. Hence in order to prove the uniqueness of the equilibrium state we need the
following theorem (cf [F]).

Theorem 3.1 Let (Θt)t be a norm continuous quantum dynamical semigroup on B(K)
for some separable Hilbert space K whose generator L is given by

L(A) =
∑

j

V ∗
j AVj + KA + AK∗, (5)

where Vj ∈ B(H) and K = iH − 1
2

∑
j V ∗

j Vj, H = H∗ ∈ B(K) (L(I) = 0). Suppose that
(Θ∗

t )t has a stationary faithful state ρ. Then ρ is the unique stationary state for (Θ∗
t )t

if and only if
{H, V ∗

j , Vj}′ = CI.
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Put
ρβ = ρβ ⊗ ... ⊗ ρβ = ⊗N

i=1ρβ .

Now we prove the following.

Theorem 3.2 If β = β ′, then ρβ is the unique faithful stationary state for the quantum
dynamical semigroup (etL∗

)t≥0.

Proof Note that it is straightforward to show that

[σx ⊗ σx + σy ⊗ σy, ρβ ⊗ ρβ] = 0.

Therefore we get [HS, ρβ] = 0. Moreover, if we note by L∗
d the dissipative part of L∗,

then it is easy to show that L∗
d(ρ

β) = 0. Hence we have L∗(ρβ) = 0. Thus ρβ is a
stationary state for the above master equation.

Now let us consider an operator A such that

A ∈ {HS, σ
(1)
+ , σ

(1)
− , σ

(N)
− , σ

(N)
+ }′.

In particular we have
A ∈ {σ(1)

+ , σ
(1)
− , σ

(N)
− , σ

(N)
+ }′.

This gives
A = I(1) ⊗ A1 ⊗ I(N),

where A1 is an operator defined on ⊗N−1
k=2 C2. On the other hand, we have A commutes

with HS. Therefore we get

σ(1)
x ⊗ [A1, σ(2)

x ] ⊗ I(N) + σ(1)
y ⊗ [A1, σ(2)

y ] ⊗ I(N) +

I(1) ⊗ [A1, σ(N−1)
x ] ⊗ σ(N)

x + I(1) ⊗ [A1, σ(N−1)
y ] ⊗ σ(N)

y +

I(1) ⊗
[
A1,

N−1∑

k=2

σ(k)
z +

N−2∑

k=2

(σ(k)
x ⊗ σk+1)

x + σ(k)
y ⊗ σ(k+1)

y )
]
⊗ I(N) = 0.

Hence we obtain the following

[A1, σ(2)
x ] = [A1, σ(2)

y ] = [A1, σ(N−1)
x ] = [A1, σ(N−1)

y ] = 0.

This implies that
A1 = I(2) ⊗ A2 ⊗ I(N−1),

where A2 is an operator on ⊗N−2
k=3 C2.

Repeating this argument until one arrives that A = λI. Thus we obtain

{HS, σ
(1)
+ , σ

(1)
− , σ

(N)
+ , σ

(N)
− }′ = CI.

Therefore by Theorem 3.1 we can conclude. �
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3.2 Approach to equilibrium

The aim of this section is to prove that the quantum dynamical semigroup associated to
the spin chain coupled to two heat baths has the property of approach to equilibrium.

The following theorem is introduced in [B].

Theorem 3.3 Let L be a generator of a norm continuous quantum dynamical semigroup
(Θt)t on B(K) which has the form given in (5) and where the number of induces j is
finite. Assume that the following hypothesis hold:

i) There exists a stationary state ρ for the quantum dynamical semigroup (Θ∗
t )t,

ii) The linear span of all Vj is self-adjoint,

iii) If A ∈ B(K) such that Θt(A
∗A) = (ΘtA

∗)(ΘtA), for all t ≥ 0, then A = CI.

Then the state ρ is faithful and the quantum dynamical semigroup (Θ∗
t )t has the property

of approach to equilibrium, that is

lim
t→∞

Tr(Θ∗
t ξA) = Tr(ρA), for all normal state ξ and for all A ∈ B(K).

Under the hypothesis of the above theorem, ρ is the unique stationary state for the
quantum dynamical semigroup (Θ∗

t )t. In fact, let us consider an element A in B(K)
such that [H, A] = [Vj , A] = [V ∗

j , A] = 0 for all j. Thus from hypothesis ii), [Vj, A] = 0
implies that [V ∗

j , A] = 0. Hence we obtain

L(A) = L(A∗) = L(A∗A) = 0.

It follows that ΘtA
∗ = A∗, ΘtA = A and Θt(A

∗A) = A∗A for all t ≥ 0. Then we
get Θt(A

∗A) = (ΘtA
∗)(ΘtA), for all t ≥ 0. Finally, from the hypothesis iii), we have

A = λI. Note that ρ is a faithful state. Therefore by Theorem 3.1 we can conclude.
Now as a corollary of Theorem 3.3, we prove the following.

Theorem 3.4 The quantum dynamical semigroup {T ∗
t = etL∗

, t ∈ R+} associated to
the spin chain coupled to two heat baths at inverse temperatures β and β ′ has the property
of approach to equilibrium to a unique stationary faithful state ρβ, β′

.

Proof Note that dim HS < ∞. Then there exists a stationary state for the quantum
dynamical semigroup (T ∗

t )t. This implies that assumption i) of the above theorem is

satisfied. Moreover, it is clear that the linear span {σ(1)
− , σ

(1)
+ , σ

(N)
− , σ

(N)
+ } is self-adjoint.

Now set A ∈ B(HS) such that

Tt(A
∗A) = (TtA

∗)(TtA), ∀ t ≥ 0. (6)

By using the properties of the semigroups we can deduce that

Ts((TtA)∗(TtA)) = Ts((TtA
∗)(TtA))

= Ts(Tt(A
∗A))

= Ts+t(A
∗A)

= (Ts+tA
∗)(Ts+tA)

= (Ts(TtA)∗)(Ts(TtA)),

9



for all s ≥ 0. Therefore for all t ≥ 0 the operator TtA satisfies relation (6).
Note that by taking the derivative in (6) with respect to t, we have

LTt(A
∗A) = (LTtA

∗)(TtA) + (TtA
∗)(LTtA).

But we have TtA
∗ = (TtA)∗. Hence we obtain

L((TtA
∗)(TtA)) = (L(TtA)∗)(TtA) + (TtA

∗)(LTtA), ∀t ≥ 0. (7)

In particular, for t = 0 we have

L(A∗A) = (LA∗)A + A∗(LA). (8)

In the other hand we have the following

L(A∗A) − (LA∗)A − A∗(LA) = 4β0[σ
(1)
+ , A]∗ [σ

(1)
+ , A] + 4β1[σ

(1)
− , A]∗ [σ

(1)
− , A]

+ 4β ′
0[σ

(N)
+ , A]∗ [σ

(N)
+ , A] + 4β ′

1[σ
(N)
− , A]∗ [σ

(N)
− , A].

Hence if A satisfies relation (6), then the operator A satisfies

A ∈ {σ(1)
− , σ

(1)
+ , σ

(N)
− , σ

(N)
+ }′.

This gives
A = I(1) ⊗ Ã ⊗ I(N),

where Ã is an operator on ⊗N−1
k=2 C

2. Besides from relation (7), the operator T ∗
t A satisfies

also (8). Therefore TtA has to be of the same form as A, that is

TtA = I(1) ⊗ S̃t ⊗ I(N),

with S̃t is an operator on ⊗N−1
k=2 C

2. Furthermore by taking the derivative of TtA with
respect to t at t = 0 we obtain

L(A) = i
[
HS, A

]

= i σ(1)
x ⊗

[
σ(2)

x , Ã
]
⊗ I(N) + i σ(1)

y ⊗
[
σ(2)

y , Ã
]
⊗ I(N)

+ i I(1) ⊗
[N−2∑

k=2

(σ(k)
x ⊗ σ(k+1)

x + σ(k)
y ⊗ σ(k+1)

y ), Ã
]
⊗ I(N) (9)

+ i I(1) ⊗
[
σ(N−1)

x , Ã
]
⊗ σ(N)

x + i I(1) ⊗
[
σ(N−1)

y , Ã
]
⊗ σ(N)

y

= I(1) ⊗ B̃ ⊗ I(N),

where B̃ = d
dt

S̃t

∣∣
t=0

. Then from equality (9) we have

[σ(2)
x , Ã] = [σ(2)

y , Ã] = [σ(N−1)
x , Ã] = [σ(N−1)

y , Ã] = 0.

This implies that
Ã = I(2) ⊗ Ã1 ⊗ I(N−1)
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and
A = I(1) ⊗ I(2) ⊗ Ã1 ⊗ I(N−1) ⊗ I(N).

Note that TtA satisfies relation (6) for all t ≥ 0. Hence by the same argument as before,
TtA is written as

TtA = I(1) ⊗ I(2) ⊗ R̃t ⊗ I(N−1) ⊗ I(N),

where R̃t is an operator on ⊗N−2
k=3 C2. Repeating this reasoning until one obtains the

result that is only possible if A is a multiple of the identity. This ends the proof. �

3.3 Local equilibrium states

Here we suppose that the spin chain is coupled to two heat baths at inverse temperatures
β and β ′. Let us recall that there exists a unique stationary state ρβ,β′

of the associated
quantum dynamical semigroup. For i ∈ {1, ..., N}, we denote by ρ(i) the local state
associated to the i-th spin which is given by

Tr(ρ(i)A(i)) = Tr(ρβ,β′

(I ⊗ A(i) ⊗ I)),

where A(i) is an operator acting on the i-th copy of C2 in the chain ⊗N
k=1C

2.
In this section, we treat the cases of the spin chain when it is made up of 2, 3 and 4

spins.

- For N = 2, we have

ρβ,β′

= (
ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) − 1

8
(β0 − β ′

0)
2σz ⊗ σz

+
(β0 − β ′

0)

4

[
n+ ⊗ n− − n− ⊗ n+

]
+ i

(β0 − β ′
0

4

[
σ+ ⊗ σ− − σ− ⊗ σ+

]
.

Therefore we get

ρ(1) =
ρβ + ρβ′

2
+

1

2
(
ρβ − ρβ′

2
),

ρ(2) =
ρβ + ρβ′

2
+

1

2
(
ρβ′ − ρβ

2
).

11



- For N = 3, the equilibrium state ρβ, β′

is given by

ρβ, β′

= (
ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) − 3

4
(
ρβ − ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ − ρβ′

2
)

+
3

4

[
(
ρβ − ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) − (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ − ρβ′

2
)
]

+
β0 − β ′

0

8

[
(ρβ ⊗ n− ⊗ n+ − ρβ ⊗ n+ ⊗ n−) + (n− ⊗ n+ ⊗ ρβ′ − n+ ⊗ n− ⊗ ρβ′)

]

+ i
β0 − β ′

0

8

[
σ+ ⊗ σ− ⊗ (

ρβ + ρβ′

2
) − σ− ⊗ σ+ ⊗ (

ρβ + ρβ′

2
)
]

+ i
β0 − β ′

0

8

[
(
ρβ + ρβ′

2
) ⊗ σ+ ⊗ σ− − (

ρβ + ρβ′

2
) ⊗ σ− ⊗ σ+

]

+ i
β0 − β ′

0

8

[
ρβ ⊗ σ+ ⊗ σ− − ρβ ⊗ σ− ⊗ σ+

]

+ i
β0 − β ′

0

8

[
σ+ ⊗ σ− ⊗ ρβ′ − σ− ⊗ σ+ ⊗ ρβ′

]

− (β0 − β ′
0)

2

16

[
σ+ ⊗ I ⊗ σ− + σ− ⊗ I ⊗ σ+

]
.

Thus the local states are given by

ρ(1) =
ρβ + ρβ′

2
+

1

2
(
ρβ − ρβ′

2
),

ρ(2) =
ρβ + ρβ′

2
=

ρ(1) + ρ(3)

2
,

ρ(3) =
ρβ + ρβ′

2
+

1

2
(
ρβ′ − ρβ

2
).

12



- For N = 4, we have

ρβ, β′

= (
ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
)

−7

8
(
ρβ − ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ − ρβ′

2
)

+
1

2

[
(
ρβ − ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
)

−(
ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ − ρβ′

2
)
]

−1

8
ρβ ⊗ (

ρβ − ρβ′

2
) ⊗ (

ρβ − ρβ′

2
) ⊗ ρβ′

−(β0 − β ′
0)

2

32

[
n− ⊗ (

ρβ + ρβ′

2
) ⊗ I ⊗ n+ + n+ ⊗ I ⊗ (

ρβ + ρβ′

2
) ⊗ n−

]

−(β0 − β ′
0)

2

16

[
(
ρβ + ρβ′

2
) ⊗ n+ ⊗ n+ ⊗ n− + (

ρβ + ρβ′

2
) ⊗ n− ⊗ n− ⊗ n+

]

−(β0 − β ′
0)

2

16

[
n− ⊗ n+ ⊗ n+ ⊗ (

ρβ + ρβ′

2
) + n+ ⊗ n− ⊗ n− ⊗ (

ρβ + ρβ′

2
)
]

+
(β0 − β ′

0)
2

16

[
n− ⊗ (

ρβ + ρβ′

2
) ⊗ n+ ⊗ n− + n+ ⊗ n− ⊗ (

ρβ + ρβ′

2
) ⊗ n+

]

+
(β0 − β ′

0)
2

32

[
ρβ ⊗ n− ⊗ n+ ⊗ n− + n+ ⊗ n+ ⊗ n− ⊗ ρβ

]

+
(β0 − β ′

0)
2

32

[
ρβ′ ⊗ n− ⊗ n+ ⊗ n+ + n− ⊗ n+ ⊗ n− ⊗ ρβ′

]

+
(β0 − β ′

0)
2

32
(β0 + β ′

0) n+ ⊗ n+ ⊗ n− ⊗ n+

+
(β0 − β ′

0)
2

32
(β1 + β ′

1) n− ⊗ n+ ⊗ n− ⊗ n−

+
3(β0 − β ′

0)
2

32

[
n+ ⊗ n− ⊗ n− ⊗ n+ + n− ⊗ n+ ⊗ n+ ⊗ n−

]

−(β0 − β ′
0)

2

16

[
n+ ⊗ n+ ⊗ n− ⊗ n− + n− ⊗ n− ⊗ n+ ⊗ n+

]

+i
(β0 − β ′

0)

32
(
ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ σ+ ⊗ σ−

−i
(β0 − β ′

0)

32
(
ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
) ⊗ σ− ⊗ σ+

+i
(β0 − β ′

0)

32
σ+ ⊗ σ− ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
)

−i
(β0 − β ′

0)

32
σ− ⊗ σ+ ⊗ (

ρβ + ρβ′

2
) ⊗ (

ρβ + ρβ′

2
)

+i
(β0 − β ′

0)

16

[
ρβ ⊗ ρβ′ ⊗ σ+ ⊗ σ− − ρβ ⊗ ρβ′ ⊗ σ− ⊗ σ+

]

+i
(β0 − β ′

0)

16

[
σ+ ⊗ σ− ⊗ ρβ ⊗ ρβ′ − σ− ⊗ σ+ ⊗ ρβ ⊗ ρβ′

]

+i
(β0 − β ′

0)

8

[
σ+ ⊗ σ− ⊗ (

ρβ + ρβ′

2
) ⊗ ρβ′ − σ− ⊗ σ+ ⊗ (

ρβ + ρβ′

2
) ⊗ ρβ′

]

+i
(β0 − β ′

0)

8

[
ρβ ⊗ (

ρβ + ρβ′

2
) ⊗ σ+ ⊗ σ− − ρβ ⊗ (

ρβ + ρβ′

2
) ⊗ σ− ⊗ σ+

]
13



+i
3(β0 − β ′

0)

32
(
ρβ + ρβ′

2
) ⊗ σ+ ⊗ σ− ⊗ (

ρβ + ρβ′

2
)

−i
3(β0 − β ′

0)

32
(
ρβ + ρβ′

2
) ⊗ σ− ⊗ σ+ ⊗ (

ρβ + ρβ′

2
)
]

−i
(β0 − β ′

0)
2

32

[
n+ ⊗ n−σ+ ⊗ σ− − n+ ⊗ n− ⊗ σ− ⊗ σ+

]

+i
(β0 − β ′

0)
2

32

[
n− ⊗ n+ ⊗ σ+ ⊗ σ− − n− ⊗ n+ ⊗ σ− ⊗ σ+

]

−i
(β0 − β ′

0)
2

32

[
σ+ ⊗ σ− ⊗ n+ ⊗ n− − σ− ⊗ σ+ ⊗ n+ ⊗ n−

]

−i
(β0 − β ′

0)
2

32

[
σ+ ⊗ σ− ⊗ n− ⊗ n+ − σ− ⊗ σ+ ⊗ n− ⊗ n+

]

+i
(β0 − β ′

0)
2

32

[
n+ ⊗ σ+ ⊗ σ− ⊗ n− − n+ ⊗ σ− ⊗ σ+ ⊗ n−

]

+i
(β0 − β ′

0)
2

32

[
n− ⊗ σ+ ⊗ σ− ⊗ n+ − n− ⊗ σ− ⊗ σ+ ⊗ n+

]

+
( 1

64
(β0 + β ′

0)
2 − 1

16
β2

0

)
(β0 − β ′

0)
[
σz ⊗ σ+ ⊗ I ⊗ σ− + σz ⊗ σ− ⊗ I ⊗ σ+

]

−
( 1

64
(β0 + β ′

0)
2 − 1

16
β ′2

0

)
(β0 − β ′

0)
[
σ+ ⊗ I ⊗ σ− ⊗ σz + σ− ⊗ I ⊗ σ+ ⊗ σz

]

−(β0 − β ′
0)

2

16

[
n− ⊗ σ+ ⊗ I ⊗ σ− + n− ⊗ σ− ⊗ I ⊗ σ+

]

−(β0 − β ′
0)

2

16

[
σ+ ⊗ I ⊗ σ− ⊗ n− + σ− ⊗ I ⊗ σ+ ⊗ n−

]

+
(β0 − β ′

0)
3

64

[
I ⊗ σ+ ⊗ σ− ⊗ I + I ⊗ σ− ⊗ σ+ ⊗ I

]

+
(β0 − β ′

0)
2

16

[
σ+ ⊗ σ− ⊗ σ+ ⊗ σ− + σ− ⊗ σ+ ⊗ σ− ⊗ σ+

]

−(β0 − β ′
0)

2

16

[
σ+ ⊗ σ− ⊗ σ− ⊗ σ+ + σ− ⊗ σ+ ⊗ σ+ ⊗ σ−

]
.

Hence we obtain

ρ(1) =
ρβ + ρβ′

2
+

1

2
(
ρβ − ρβ′

2
),

ρ(2) = ρ(3) =
ρβ + ρβ′

2
=

ρ(1) + ρ(4)

2
,

ρ(4) =
ρβ + ρβ′

2
+

1

2
(
ρβ′ − ρβ

2
).

Note that for N ≥ 5, it is very hard to find the stationary state ρβ, β′

. Moreover,
from the computation done in the cases of the spin chain when it is made up of 2, 3 and
4 atoms, we see that when N increase, the number of the off-diagonal terms increase
quickly in the explicit form of the matrix of the state ρβ, β′

in the canonical basis of HS.
Besides the off-diagonal terms do not contribute to the calculation of the partial trace
at any site. However the form of the diagonal terms given in the cases N =2, 3 and 4
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are similar enough that we believe that the following conjecture is true: For N ≥ 5, the
local states are given by

ρ(1) =
ρβ + ρβ′

2
+

1

2
(
ρβ − ρβ′

2
),

ρ(2) = ... = ρ(N−1) =
ρβ + ρβ′

2
=

ρ(1) + ρ(N)

2
,

ρ(N) =
ρβ + ρβ′

2
+

1

2
(
ρβ′ − ρβ

2
).

3.4 Entropy production

In this section, we treat the case of the spin chain coupled to two heat baths at the
same temperature β−1. Let us recall that from Theorem 3.2, there exists a unique
stationary faithful state ρβ for the associated quantum master equation in the case of
same temperature β = β ′. The definition of entropy production, that we give here, is
taken from [SL].

Let ρ be a state on HS and set ρ(t) = etL∗

(ρ). Then the relative entropy of ρ with
respect to ρβ is defined by

S(ρ(t)|ρβ) = Tr(ρ(t)(log ρβ − log ρ(t))).

Hence the entropy production is given by

σ(ρ) = − d

dt
S(ρ(t)|ρβ)

∣∣
t=0

= Tr(L∗(ρ)(log ρβ − log ρ)),

where Tr(L∗(ρ) log ρ) is given as

Tr(L∗(ρ) log ρ) =
∑

j

〈Ψj, L∗(ρ)Ψj〉 log ρj ,

〈Ψj, L∗(ρ)Ψj〉 log ρj =

{
−∞ if 〈Ψj , L∗(ρ)Ψj〉 6= 0 and ρj = 0
0 if 〈Ψj, L∗(ρ)Ψj〉 = 0.

Theorem 3.5 The entropy production associated to the spin chain coupled to two heat
baths at the same inverse temperature β is written as

σ(ρ) = 4β0

[∑

j, k

[
|〈Ψk, σ

(1)
+ Ψj〉|2 + |〈Ψk, σ

(N)
+ Ψj〉|2] (e2βρk − ρj)(log ρk − log ρj + 2β)

]
,

where ρ =
∑

j ρj |Ψj〉〈Ψj| is the spectral decomposition of ρ.

Proof Note that
L∗ = L∗

h + L∗
d,
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where L∗
h is the Hamiltonian part of L∗ and L∗

d = L∗(1)
d + L∗(N)

d is its dissipative part
with

L∗(1)
d (ρ) = 2β0 [2σ

(1)
+ ρ σ

(1)
− − {n(1)

− , ρ}]
+ 2β1 [2σ

(1)
− ρ σ

(1)
+ − {n(1)

+ , ρ}],
L∗(N)

d (ρ) = 2β ′
0 [2σ

(N)
+ ρ σ

(N)
− − {n(N)

− , ρ}]
+ 2β ′

1 [2σ
(N)
− ρ σ

(N)
+ − {n(N)

+ , ρ}].

Put

H(S) =

N∑

k=1

σ(k)
z .

It is easy to show that the equilibrium state ρβ is given by

ρβ =
1

Z
e−βH(S)

,

where Z = Tr(e−βH(S)
). Thus we obtain log ρβ = −βH(S) − log Z. On the other hand, a

straightforward computation shows that

Tr([HS, ρ] log ρ) = Tr(HS[ρ, log ρ]) = 0

and

Tr([HS, ρ] log ρβ) = −βTr([H(S), HS]ρ) = 0.

Therefore we get
Tr(L∗

h(ρ(log ρβ − log ρ))) = 0.

This gives

σ(ρ) = σ1(ρ) + σN (ρ) = −Tr(L∗
d(ρ) log ρ) − β Tr(L∗

d(ρ)H(S)), (10)

where σi(ρ) = −Tr(L∗(i)
d (ρ) log ρ) − β Tr(L∗(i)

d (ρ)H(S)) with i = 1, N.

Now let us compute the terms of the second member in (10). We have

Tr(L∗(1)
d (ρ) log ρ) = 4β0

[∑

j, k

〈Ψj, σ
(1)
− Ψk〉 〈Ψk, σ

(1)
+ Ψj〉 ρj log ρk

−
∑

j

〈Ψj, n
(1)
− Ψj〉 ρj log ρj

]

+ 4β1

[∑

j, k

〈Ψj, σ
(1)
+ Ψk〉 〈Ψk, σ

(1)
− Ψj〉 ρj log ρk

−
∑

j

〈Ψj, n
(1)
+ Ψj〉 ρj log ρj

]
,

Tr(L∗(1)
d (ρ)H(S)) = 8β0

∑

j

〈Ψj, n
(1)
− Ψj〉 ρj − 8β1

∑

j

〈Ψj, n
(1)
+ Ψj〉 ρj.
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Note that

〈Ψj , n
(1)
+ Ψj〉 = ||σ(1)

+ Ψj ||2 =
∑

k

|〈Ψk, σ
(1)
+ Ψj〉|2,

〈Ψj , n
(1)
− Ψj〉 = ||σ(1)

− Ψj ||2 =
∑

k

|〈Ψj, σ
(1)
+ Ψk〉|2.

Therefore we obtain

σ1(ρ) = 4β0

[∑

j, k

|〈Ψk, σ
(1)
+ Ψj〉|2 ρj(log ρj − log ρk − 2β)

]

+ 4β1

[∑

j, k

|〈Ψj, σ
(1)
+ Ψk〉|2ρj(log ρj − log ρk + 2β)

]
. (11)

If we substitute β1 by e2ββ0 in (11), then we get

σ1(ρ) = 4β0

[∑

j, k

|〈Ψk, σ
(1)
+ Ψj〉|2 (e2βρk − ρj)(log ρk − log ρj + 2β)

]
.

In the same way, we prove that

σN (ρ) = 4β0

[∑

j, k

|〈Ψk, σ
(N)
+ Ψj〉|2 (e2βρk − ρj)(log ρk − log ρj + 2β)

]
.

This ends the proof of the above theorem. �

Remark : Note that as a corollary of the above theorem, we have σ(ρ) ≥ 0 for any
density matrix ρ.

3.5 Quantum detailed balance condition

In this section we suppose that the spin chain is coupled to two heat baths at same
inverse temperature β. Let us recall that

ρβ = ⊗N
k=1ρβ

is the only stationary faithful state of the quantum dynamical semigroup (T ∗
t )t.

The following definition is introduced in [AL].

Definition 1 Let Θ be a generator of a quantum dynamical semigroup written as

Θ = −i [H, .] + Θ0,

where H is a self-adjoint operator. We say that Θ satisfies a quantum detailed balance
condition with respect to a stationary state ρ if

i) [H, ρ] = 0,

ii) 〈Θ0(A), B〉ρ = 〈A, Θ0(B)〉ρ, for all A, B ∈ D(Θ0),
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with 〈A, B〉ρ = Tr(ρA∗B).

Now we prove the following.

Theorem 3.6 The generator L∗ of the quantum dynamical semigroup of the spin chain
coupled to two heat baths at same inverse temperature β satisfies a quantum detailed
balance condition with respect to the stationary state ρβ.

Proof Note that
L∗ = −i [HS , .] + L∗

d,

where L∗
d is the dissipative part. On the other hand, we have [HS, ρβ] = 0. This proves

that assumption i) of the above definition is satisfied. Furthermore it is easy to show
that L∗

d is a self-adjoint operator with respect to the scalar product 〈A, B〉ρβ . Thus the
above theorem holds. �

4 Spin chain coupled to several heat baths

Let us consider now a spin chain (N spins) coupled to r heat baths at inverse tempera-
tures β(k1), β(k2), ..., β(kr), where 2 ≤ r ≤ N for all j = 1, ..., r and kj is the kj-th site of
the chain ⊗N

i=1C
2. The quantum repeated interaction Hamiltonian is given by

H = HS ⊗ I + I ⊗ HR +
1√
h

r∑

j=1

(σ(kj)
x ⊗ σ(kj)

x + σ(kj)
y ⊗ σ(kj)

y ).

Therefore we prove in the same way as in subsection 2.2 that the associated Lindblad
generator is written as

L(X) = i [HS, X] + 2β
(k1)
0 [2σ

(k1)
− Xσ

(k1)
+ − {n(k1)

− , X}]
+ 2β

(k1)
1 [2σ

(k1)
+ Xσ

(k1)
− − {n(k1)

+ , X}]
+ 2β

(k2)
0 [2σ

(k2)
− Xσ

(k2)
+ − {n(k2)

− , X}]
+ 2β

(k2)
1 [2σ

(k2)
+ Xσ

(k2)
− − {n(k2)

+ , X}]
.

.

+ 2β
(kr)
0 [2σ

(kr)
− Xσ

(kr)
+ − {n(kr)

− , X}]
+ 2β

(kr)
1 [2σ

(kr)
+ Xσ

(kr)
− − {n(kr)

+ , X}],

for all X ∈ B(HS).
Actually we prove the following.

Theorem 4.1 If β(k1) = β(k2) = ... = β(kr) = β, then ρβ = ⊗N
i=1ρβ is the unique

stationary state of the quantum dynamical semigroup T ∗
t = etL∗

.

Proof The proof of this theorem is similar as the one of Theorem 3.2. �

The following theorem can be proved in the same way as Theorem 3.4.

18



Theorem 4.2 The quantum dynamical semigroup T ∗
t = etL∗

associated to the spin chain
coupled to r heat baths at inverse temperatures β(k1), β(k2), , ..., β(kr) has the property of
approach to equilibrium to a unique stationary state.

Now our purpose is to study the associated entropy production. Here we suppose
that β(k1) = β(k2) = ... = β(kr) = β. Let us put

σki
(ρ) = 4β0

[∑

j, m

[
|〈Ψm, σ

(ki)
+ Ψj〉|2(e2βρm − ρj)(log ρm − log ρj + 2β)

]
.

Then it is easy to show that σi(ρ) is the entropy production of the spin chain coupled
to the i-th heat bath at the ki-th spin.

Theorem 4.3 If β(k1), β(k2), , ..., β(kr), then the entropy production of the spin chain
coupled to r heat baths is given by

σ(ρ) =

r∑

i=1

σki
(ρ). (12)

Proof We prove in the same way as in Theorem 3.5 that the entropy production of the
spin chain coupled to r heat baths is given by

σ(ρ) = −Tr(L∗
d(ρ) log ρ) − β Tr(L∗

d(ρ)H(S))

=
r∑

i=1

[−Tr(L∗(ki)
d (ρ) log ρ) − β Tr(L∗(ki)

d (ρ)H(S))]

=

r∑

i=1

σki
(ρ),

where

L∗(ki)
d (ρ) = 2β

(ki)
0 [2σ

(ki)
− Xσ

(ki)
+ − {n(ki)

− , X}]
+ 2β

(ki)
1 [2σ

(ki)
+ Xσ

(ki)
− − {n(ki)

+ , X}].

But from the proof of Theorem 3.5, we have

σki
(ρ) = 4β0

[∑

j, m

[
|〈Ψm, σ

(ki)
+ Ψj〉|2(e2βρm − ρj)(log ρm − log ρj + 2β)

]
.

This proves our theorem. �

As a consequence of (12), we conclude the following.

Corollary 4.4 We have σ(ρ) ≥ 0 for any density matrix ρ. Moreover, σ(ρ) = 0 if and
only if σki

(ρ) = 0 for all i = 1, ..., r.

Note that if β(k1) = β(k2) = ... = β(kr) = β, then it is easy to show that the quantum
dynamical semigroup of the spin chain coupled to r heat baths satisfies a quantum
detailed balance condition with respect to the stationary state ρβ .
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