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Abstract
Shape memory alloys (SMAs) are good candidates for being used as passive
dampers, strain sensors, stiffness or shape drivers. In order to develop the use
of these alloys in structural vibration control, we present in this paper an
implementation of a phenomenological model based on the Rl model
(Raniecki et al 1992 Arch. Meh. 44 261–84) in a finite element code called

COMSOL© which allows one to build automatically many loading cases in
force or displacement. This implementation is used to simulate internal loops
in order to characterize the stiffness and the damping effect by an equivalent
complex Young’s modulus approach under static strain offsets. The results
clearly show the influence of the initial static strain offset and the amplitude
of vibration on the damping and stiffness properties.

1. Introduction

Shape memory alloys (SMAs) are widely studied as smart

materials because of their potentiality to be used as dampers,

absorbers or actuator elements. For damping applications, an

understanding of the material dynamic behavior is needed. One

uses the loss of stiffness linked to the martensite transformation

between the mother phase called austenite and the product

phase called martensite. The process of reorientation of

martensite platelets sometimes called pseudoplasticity can also

be used. In this case, the SMA elements are used as absorbers

mainly for seismic applications [2–4]. The best example

of structural control by SMAs can be found in the basilic

St Francois d’Assise in Italy.

For technological applications, the effect of a static strain

offset on the dynamic response of a system is investigated. In

order to evaluate the stiffness and damping evolutions during

the martensite transformation, a method based on an equivalent

complex Young’s modulus determination [5, 6] is initiated.

In the present paper, first a phenomenological model at

the macroscopic scale in the framework of the thermodynam-

ics of irreversible processes devoted to multi-axial pseudoelas-

ticity [1] initiated by Raniecki et al called the Rl model [1] is

recalled.

In the second part, this model is implemented in a

finite element code. The software COMSOL© has been

chosen because of its facilities for solving multiphysic coupled

problems which is the case for phase transitions linked to

dynamic loadings. In order to validate the implementation,

some tests are performed: plate in tension, plate in bi-tension,

plate under bending in its plane.

In the third part, the equivalent complex Young’s modulus

method is quickly described and the stiffness and damping

evolutions are investigated.

2. A thermomechanical model for the
pseudoelasticity

Modeling material behavior needs classically the choice of

a thermodynamic potential (free energy or free enthalpy

expression) and also a dissipation potential function or some

yield functions of the phase transformation (as is the scheme
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in plasticity). Hence, a Helmholtz free energy and two

yield functions, the first for the forward phase transformation

(A → M) and the second for the reverse phase transformation

(M → A), are chosen. The model initiated by Raniecki et al

[1] has been written in order to describe multi-axial loading.

The appropriate internal variable is the volume fraction of

martensite M: ξ ((1−ξ ) being the volume fraction of austenite

A).

The free energy function of the two phases (A + M) in the

representative elementary volume (REV) is chosen as

φ(ε, T , ξ ) = u1
0 − T s1

0 − ξ × π f
0(T )

+ 1
2
(ε − εtr) : L : (ε − εtr)

− Cv ln

(
T

T0

)

+ ξ(1 − ξ)φi t (1)

where π f
0(T ) represents the thermodynamic driving force

associated with the phase transformation in the stress free state:

π f
0(T ) = �u∗ − T�s∗ (2)

where �u∗ = u1
0 − u2

0 and �s∗ = s1
0 − s2

0 represent

the differences between the internal energy and entropy of

austenite and martensite respectively with:

ε: strain tensor (small deformation hypothesis),

εtr: phase transformation strain tensor,

ξ : volume fraction of martensite M ,

1 − ξ : volume fraction of austenite A,

T : temperature (K),

T0: reference temperature (K),

L: elastic stiffness tensor,

Cv : specific heat.

The exact form of �φ remains an open problem since

it strongly depends on the incompatibilities between the

martensite platelets themselves and between these platelets and

the mother phase A. The simplest expression which disappears

when the system is single phase is chosen as

�φ = ξ(1 − ξ)φi t(T ) (3)

where

φi t = u0 − T s0. (4)

Sometimes, u0 (s0) is called the internal configurational energy

(entropy). In a classical way, the Cauchy stress tensor can be

obtained as

σ = ρ
∂φ

∂ε
= L(ε − εtr). (5)

For the phase transformation strain tensor, an expression

not far from the plasticity is chosen:

εtr =
3

2

dev(σ )

σ
γ ξ (6)

dev(σ ) represents the deviatoric stress tensor with the natural

definition:

dev(σ ) = σ − 1
3
tr(σ )Id (7)

⇒ tr(dev(σ )) = 0 (8)

with σ = ( 3
2
dev(σ ) : dev(σ ))1/2. (9)

This choice means that the phase transformation does not

depend on an isotropic loading such as pressure. It emerges

that the phase transformation is isochoric (like the plastic trans-

formation).

With the expression (6), one cannot take into account

the asymmetry between tension and compression. A more

convenient expression has been stated by Raniecki et al [7] and

will be implemented soon.

If one defines the phase transformation equivalent strain

εtr, as usual:

εtr =
(

2
3
dev(εtr) : dev(εtr)

)1/2
(10)

it can be written that

εtr = γ ξ. (11)

The thermodynamic driving force associated with the

progress of the phase transformation can be written as

π f(σ , ξ, T ) = −
∂φ

∂ξ
=

γ σ

ρ
+π f

0(T )− (1 − 2ξ)φi t (T ). (12)

A classical calculation delivers the expression for the

increment of dissipation dD which cannot be negative:

dD = π fdξ � 0. (13)

Thus, the present inequality precludes the forward phase

transformation (A → M) only if π f � 0 and the reverse

one if π f � 0. One has to note that π f = 0 implies the

equilibrium condition. In order to specify the kinetic equations

driving the phase transformation, we assume the existence of

two functions ψα(π f, ξ )(α = 1, 2) such that an active process

of parent phase decomposition (A → M : dξ > 0) can only

proceed when ψ1 = const, (dψ1 = 0) and an active process

of martensite decomposition (M → A : dξ < 0) can only

proceed if ψ2 = const, (dψ2 = 0). These yield functions are

chosen as

ψ1 = π f − k(1)(ξ ) (14)

ψ2 = −π f + k(2)(ξ ). (15)

The expressions for kα(ξ ) are built to give kinetics in

agreement with the measurements of metallurgists such as

Koistinen and Marbuger [8]:

k(1)(ξ ) = −A1 ln(1 − ξ) (16)

k(2)(ξ ) = A2 ln(ξ ). (17)

Thanks to the derivation, the kinetic laws for forward

and reverse phase transformations are obtained (for isothermal

external conditions (Ṫ = 0)):

ξ̇A→M (σ̇ , ξ ) =

γ σ̇

ρ

A1

1−ξ
− 2φi t(T )

(18)

ξ̇M→A(σ̇ , ξ ) =

γ σ̇

ρ

A2

ξ
− 2φi t(T )

. (19)

Moreover, the calculations deliver a relation between the

two classical Von Mises invariants σ and ε:
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Table 1. Both displacement and force formulations.

Displacement control Force control

Von Mises equivalent strain and stress ε and σ

ε = ( 2

3
dev(ε) : dev(ε))1/2 σ = ( 3

2
dev(σ ) : dev(σ ))1/2

Relation between σ and ε

ε = 2(1+υ)

3E
σ + γ ξ σ = 3E

2(1+υ)
(ε − γ ξ)

Thermodynamic driving force πf

πf(ε, ξ, T ) =
3γ E

2ρ(1+ν)
ε + π 0

f (T ) πf(σ , ξ, T ) =
γ

ρ
σ + π 0

f (T )

−(1 − 2ξ)φi t(T ) − 3γ 2 E

2ρ(1+ν)
ξ −(1 − 2ξ)φi t(T )

Forward phase transformation ξ̇1

ξ̇1(ε̇, ξ, T ) = 3γ E ε̇

2ρ(1+υ)(
A1

1−ξ
−2φit (T ))+3γ 2 E

ξ̇1(σ̇ , ξ, T ) =
γ σ̇
ρ

A1
1−ξ

−2φit (T )

Reverse phase transformation ξ̇2

ξ̇2(ε̇, ξ, T ) = 3γ E ε̇

2ρ(1+υ)(
A2
ξ −2φit (T ))+3γ 2 E

ξ̇2(σ̇ , ξ, T ) =
γ σ̇
ρ

A2
ξ −2φit (T )

σ =
3E

2(1 + υ)
(ε − γ · ξ) (20)

with

ε =
(

2
3
dev(ε) : dev(ε)

)1/2
. (21)

The relation (20) allows us to write the thermodynamic

driving force as a function of the strain invariant ε, ξ , T and

the kinetic laws as functions of ε̇ and ξ :

πf(ε, ξ, T ) =
3γ E

2ρ(1 + ν)
ε + π0

f (T )

− (1 − 2ξ)φi t (T ) −
3γ 2E

2ρ(1 + ν)
ξ (22)

and

ξ̇A→M

(

ε̇, ξ, T
)

=
3γ E ε̇

2ρ(1 + υ)
(

A1

1−ξ
− 2φi t(T )

)

+ 3γ 2 E

(23)

ξ̇M→A(ε̇, ξ, T ) =
3γ E ε̇

2ρ(1 + υ)
(

A2

ξ
− 2φi t(T )

)

+ 3γ 2 E
.

(24)

These two alternative formulations allow us to solve the

problem when the input variables are the stress rate tensor σ̇

(output: displacement) or the displacement rate −̇→u (output:

stress state). An assessment of these formulations is given in

table 1:

3. Implementation in COMSOL©

COMSOL© is a modeling package for the simulation of any

physical process and can be described with partial differential

equations (PDEs). It features state-of-the-art solvers that

address complex problems quickly and accurately, while

its intuitive structure is designed to provide ease of use

and flexibility. This software is chosen for its ability to

build automatically some cycles and internal loops. The Rl

model described in section 2 has been implemented for 2D

Figure 1. Domain � and boundary conditions.

problems with plane stress assumptions. It can be applied to

a multiphysic coupled problem with a structural mechanics

module (for the mechanical behavior) and a PDE module (for

the kinetic transformations).

This section converts the ‘translation’ of the RL model

for plane stress problems into characteristic equations to be

implemented in COMSOL©.

3.1. Principle of virtual work

The principle of virtual work expressed in global stress

components states that the sum of virtual works from internal

strains are equal to the works from external loads. This

principle will be applied under the following assumptions:

• small disturbances,

• the inertial terms are not taken into account; i.e. the steady

state response is considered,

• due to the steady state response considerations, the

temperature variations are neglected, and thus an

isothermal behavior (T = T0) is considered; a

more convenient adiabatic behavior has been stated by

Lexcellent et al [9] and will be implemented in a future

work.

Let us consider a continuous domain �, loaded with force

F/Ŵt or displacement U0/Ŵu . f represents the volumic force

and n the outgoing perpendicular vector.

The total stored energy W from the external and internal

strains and loads is

W(u∗) = − 1
2

�

tr[σ .ε(u∗)] d�

+
�

f.u∗d� +
Ŵt

F.u∗d� (25)

where u∗ belongs to the whole of the kinematically admissible

fields defined by

Uad =
{

u∗ ∈ H1/u∗ = U0 on Ŵu
}

(26)

and

σ(n) = F on Ŵt. (27)

Thus, the principle of virtual work states that

dW = 0. (28)
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Figure 2. Diagram of the interactions between the three modules
‘PS1’, ‘PS2’ and ‘PDEs1’.

3.2. Implementation

In order to calculate W , the stress tensor σ , the solution of

the multiphysic problem, must be evaluated in the COMSOL©

scalar expressions. This can be done by considering both

equations (5) and (6):

σ = L(ε(u) − K (σ )γ ξ) (29)

where K is a tensor defined by

K (σ ) =
3

2

dev(σ )

σ
. (30)

The equation (29) appears as an implicit expression

for σ ,
(

σ = f
(

ε(u), σ
))

, which is incomprehensible for

COMSOL©. The value of Ki j depends on the boundary

conditions, loadings and finally the problem investigated.

In the case of force loadings (displacement loadings), a

tensor K̃ is obtained by the elastic resolution of Neumann’s

problem (Dirichlet’s problem). This elastic resolution is

typically done by a ‘structural mechanical module’ called

‘PS1’. If (σ̃ , ε̃) is the elastic solution obtained by this module,

the equation (29) becomes

σ = L(ε(u) − K̃γ ξ) (31)

where

K̃ =
3

2

dev(σ̃ )

σ̃
. (32)

In this way, the implicit problem (equation (29)) is

transformed into the explicit problem (equation (31)), which

is easily implemented in COMSOL©.

Finally, three modules are used to solve the multiphysic

problem:

• ‘structural mechanics 1’ (PS1): elastic resolution,

construction of the components K̃i j of K̃ ,

• ‘structural mechanics 2’ (PS2): nonlinear resolution,

construction of the multiphysic problem where the

solution is σ and u,

• ‘partial differential equation 1’ (PDEs1): nonlinear

coupling with PS2. Calculation of the increment or

decrement of ξ .

The diagram given in figure 2 shows the interactions

between these three modules. The computation of K̃ and ξ

(at each time of the process) gives εtr and allows the nonlinear

resolution of equation (28).

3.3. Case of plane stress

By considering the plane stress assumptions (corresponding to

a plate under ‘ad hoc’ loading conditions), the stress tensor is

clearly defined by

σ =

[
σ11 σ12 0

σ12 σ22 0

0 0 0

. (33)

Thus, the tensor K̃ can be given explicitly as

K̃ =
1

2σ̃

[
2σ̃11 − σ̃22 3σ̃12 0

3σ̃12 2σ̃22 − σ̃11 0

0 0 − (σ̃11 + σ̃22)

(34)

with

σ̃ =
(

σ̃ 2
11 + σ̃ 2

22 + 3σ̃ 2
12 − σ̃ 2

11σ̃
2
22

)1/2
. (35)

Figure 3. Force loading and boundary conditions for a plate in tension.
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Figure 4. Displacement loading and boundary conditions for a plate in tension.

The partition of the total strain into an elastic part and

phase transformation part is recalled:

ε = εel + εtr (36)

and the elastic strain tensor can be clarified as

εel =

[
ε11 − K̃11γ ξ ε12 − K̃12γ ξ 0

ε12 − K̃12γ ξ ε22 − K̃22γ ξ 0

0 0 εel
33

(37)

with

εel
33 = −

ν

1 − ν

(

εel
11 + εel

22

)

. (38)

4. Results

Before investigating the dynamic behavior of SMAs by the

equivalent complex Young’s modulus approach, many static

tests were performed in order to validate the implementation

presented in section 3.

One nonhomogeneous and two homogeneous tests are

presented: a plate in tension (with both cases of force and

displacement loadings), a plate in proportional bi-tension and

a plate in bending loaded in its plane. This last test shows the

ratio of martensite at each time of the process and each test

point A(x, y) in the plate.

4.1. Design of the plate

The static tests are performed for a rectangular plate. Its

dimensions are: length L = 80 mm, width l = 40 mm

and thickness e = 10 µm. The SMA used in the numerical

application is CuAlBe. Its characteristic phase transformation

temperatures derived from electrical resistance measurements

are: M0
f = 191 K, M0

S = 213 K, A0
S = 205 K, A0

F =

221 K. The material parameters are: E = 7.5 × 1010 Pa,

ρ = 8129 kg m−3, �u∗ = 2871.6 J m−3, �s∗ = 11 J m−3,

u0 = 100.3 J m−3, γ = 0.0295, α = 0.055, Cv = 490 J kg−1,

α0 = 17 × 10−6 K−1. These parameters have been identified

by performing classical tensile tests at different temperatures

in the range of pseudoelasticity, as described in [7].

4.2. Plate in tension

The plate is loaded (in force or displacement, figures 3 and 4)

for one cycle in order to observe the forward transformation

Figure 5. Force loading: σ versus ε and σ11 versus ε11 for a plate in
tension at T = 293 K.

(A → M) and the reverse transformation (M → A):

F : t �→ −Ḟ · (|t − t1| + t1) (39)

u : t �→ −u̇ · (|t − t1| + t1) (40)

where Ḟ and u̇ are the rates of loading and t1 the instant of the

end of the loading. t1 is chosen in order to observe a complete

forward transformation.

Note that the values of Ḟ = 1 N s−1 and u̇ = 1 µm s−1

are arbitrarily chosen as the problem is not time dependent, due

to the assumption of quasi-static behavior.

The Von Mises stress σ evolution versus ε is given in

figures 5 and 6 as well as the normal stress σ11 versus ε11. It

can be verified that the four steps of the material response are

present:

• step 1: elastic behavior of the austenite,

• step 2: forward transformation A → M ,

• step 3: elastic behavior of the martensite,

• step 4: reverse transformation M → A.

The two curves shown in those figures are the same

because the Rl model is an ‘as plasticity’ one or independent

time model. Thus, the typical pseudoelastic behavior is

obtained.

It can be interesting to represent fundamental quantities

of the model like the thermodynamic driving force πf (figure 7
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Figure 6. Displacement loading: σ versus ε and σ11 versus ε11 for a
plate in tension at T = 293 K.

Figure 7. Force loading: πf versus the time t .

Figure 8. Displacement loading: πf versus the time t .

and 8) and the volume fraction of martensite ξ (figure 9 and 10)

versus the time t .

When πf becomes positive, in the loading phase, the

forward transformation is beginning: ξ → 1. A variation of

the slope of πf is noticed. Indeed, the increment of πf versus

Figure 9. Force loading: ξ versus the time t .

Figure 10. Displacement loading: ξ versus the time t .

the time is given by

dπf

dt
(σ̇ , ξ̇ , T ) =

γ σ̇

ρ
+ 2ξ̇φi t(T ) (41)

for the force loading, and

dπf

dt
(ε̇, ξ̇ , T ) =

3Eγ ε̇

2ρ(1 + ν)
+ 2ξ̇φi t(T ) −

3Eγ

2ρ(1 + ν)
ξ̇ (42)

for the displacement loading.

Hence, when the forward transformation begins, the

dependent factors of ξ̇ affect the increment of πf respectively

in force and displacement loadings.

When πf becomes negative, in the unloading phase, the

reverse transformation is beginning (ξ → 0). As previously, a

variation of slope is observed. It can be noticed that the time

t is only one parameter which makes it possible to follow the

movement.

4.3. Plate in proportional bi-tension

A plate loaded in force in proportional bi-tension is now

studied (figure 11). Experimentally, this device allows one

to effect the training of SMAs as described in [10] and [11].

The coefficient K represents the coefficient of proportionality

between the force on the (0, x) axis and the force on the (0, y)

6



Figure 11. Force loading: plate in proportional bi-tension.

Figure 12. Force loading: plate in proportional bi-tension.

axis (K = σ22/σ11). Many simulations have been done with

K = 0, 0.5, 1, 1.5.

Hence, the Von Mises stress σ evolution versus ε is given

for different values of K on figure 12. The beginning point

(point A) of the forward transformation (A → M) is the same

for each simulation (each value of K ).

Due to equation (20), the curves are the same for each

value of K . An increase of σ is noticed when K increases

which is due to the relation between σ11 and σ :

σ = (1 + K 2 − K )1/2σ11. (43)

4.4. Plate in bending loaded in its plane

A plate in bending loaded in its plane (figure 13) is now

studied. This is a nonhomogeneous test. The aim of this

simulation is to observe different ratios of martensite inside

the plate. The volume fraction of martensite ξ depends on

the location in the plate. The following pictures show the

appearance of the martensite and thus the disappearance of the

austenite during the load phase (figures 14, 15 and 16).

It is noticed that the martensite appears around the

embedding; then is propagated successively to entirely

transform the plate.

The Von Mises stress σ evolution versus ε is given at a

point of the plate which transforms rather quickly (test point A,

figure 17). In the same way, the typical pseudoelastic behavior

is obtained.

4.4.1. Case of a lengthened plate. In their study, Rejzner et al

[12] have shown that the neutral fiber of a bending beam does

not transform (ξ = 0 at each time of the process).

Thus it is interesting to verify this result by using our

implementation. The only change to be made is to choose a

beam length sufficiently long with respect to its width. Thus,

the value of L = 500 mm is chosen (figure 18).

Let us recall that for a plate in bending loaded in its plane,

the stress tensor can be written as

σ =

[
σ11 σ12 0

σ12 0 0

0 0 0

(44)

Figure 13. Force loading: plate in bending loaded in its plane.
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Figure 14. ξ at t = 350 s.

Figure 15. ξ at t = 500 s.

and the elastic solution is

σ11 = y(x − L)
F

IGz

and σ12 =
F

2IGz

(
l2

4
− y2

)

(45)

where IGz is the quadratic moment of the cross-section around

the (0, z) axis.

For a beam, l ≪ L implies that σ12 is negligible compared

to σ11:
∥
∥
∥
∥

σ12

σ11

∥
∥
∥
∥

≪ 1. (46)

So, the stress tensor becomes

σ =

[
σ11 0 0

0 0 0

0 0 0

. (47)

The asymmetry between tension and compression is

neglected. Thus, the neutral fiber is localized at y = 0. The

equation (45) gives σ11(y = 0) = 0 and thus σ (y = 0) = 0.

In consequence, the neutral fiber must never transform. This

result is observable in figure 19, obtained at t = t1: in the

studied cross-section, all the arc width is transformed (ξ = 1)

except the neutral fiber (ξ = 0) at y = 0.

Figure 16. ξ at t = 750 s.

Figure 17. Plate in bending: σ versus ε at the test point A.

4.5. Internal loops

Internal loops are needed to simulate the dynamic behavior of

SMAs (section 5). An internal loop is a loading cycle where

the martensite transformation is not complete (ξ ∈ [0, 1]). The

criterion of transformation is defined by

πf(ε, σ ) = 0. (48)

Due to the relation between σ and ε, we have the following

system of equations:

0 =
γ σ

ρ
+ π0

f − (1 − 2ξ)φi t (49)

σ =
3E

2(1 + υ)
(ε − γ ξ). (50)

Thus, we can write an explicit expression for the equation

πf(ε, σ ) = 0, by eliminating ξ in both equations:

σ =
1

4φit (1+υ)

3Eγ
−

γ

ρ

(
2φi t

γ
ε + π0

f − φi t

)

. (51)

So, it appears that the transformation points belong to

a straight line. In figure 20 there are represented several

internal loops and the line of equation (51). For each loop,

the transformation points belong to the line which represents

πf = 0: the state of ‘unstable equilibrium’.
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Figure 18. Force loading: beam in bending.

Figure 19. Volume fraction of the martensite in a cross-section
(x = 18 cm).

4.6. Assessment of these static tests

By considering the global implementation of the Rl model

described in the section 3, many static tests (plate in tension,

in proportional bi-tension, in bending loaded in its plane and

internal loops) have been investigated. The implementation

is practically the same for each simulation: the only changes

are in the geometry, the boundary conditions and the material

characteristics.

All the results obtained are consistent with the theory

background. This implementation will now be used to study

the dynamic behavior of SMAs.

5. Dynamic behavior

The mechanical adjustments applied to SMA antiseismic

structures can be modeled by some harmonic vibrations

(dynamic strains with an amplitude εm for a given frequency

ω) and a static strain offset ε0. In order to design these

devices, it is important to evaluate the influence of εm and

ε0 on the stiffness and the damping effect of the SMAs.

The equivalent complex Young’s modulus approach is used

to evaluate this influence. It is a powerful tool commonly

used in structural dynamics for the characterization of damping

materials (damping effect and stiffness). For example,

Caracciolo et al [13] have characterized a viscoelastic material

by determining the equivalent complex Young’s modulus of

Figure 20. Internal loops and the straight line defined by
πf(ε, σ ) = 0.

a small beam-like specimen subject to seismic excitation.

Gandhi et al [6] use this approach in order to characterize

the pseudoelastic stress/strain hysteresis damping behavior of

an NiTi SMA wire versus the oscillation frequency strain

amplitude and the temperature. And finally, Pintelon et al

have presented in [14] a system identification approach for

measuring the elastic modulus of homogeneous viscoelastic

materials from longitudinal and flexural vibration experiments,

leading to a parametric model for the equivalent complex

Young’s modulus.

5.1. Equivalent complex Young’s modulus

In the mono-axial case, the constitutive relation between σ

and ε for a damping material subject to steady state harmonic

excitations can be written as

σ = E · ε = E(1 + iη)ε (52)

where E is the equivalent complex Young’s modulus, E the

storage modulus (representation of the stiffness), η the loss

factor (representation of the damping). Eη is usually called the

loss modulus. But, first, let us recall the fundamentals of the

equivalent complex Young’s modulus notion: in order to take

into account irreversible effects, the relation between stress and

strain must be an operator introducing the concept of behavior

differed into time. In 1971, a functional calculus of a general

9



Figure 21. Relaxation test.

form of behavior laws was proposed by Valanis (endochronic

theory) [15]:

σ(t) =
t

−∞

E(t − τ )
dε(τ)

dτ
dτ (53)

where σ is the stress and ε the strain. Let us consider a

harmonic strain ε(t) and ε̂(t), its Fourier transform:

ε̂(t) = εmeiωt ε(t) = Re{ε̂(t)}. (54)

The relation (53) is linear and should only be applied

to linear viscoelastic problems. Furthermore, if the coupling

with the temperature T is not taken into account, E is only

a function of the time t and can be written as the sum of an

asymptotic limit value and a time dependent term:

E(t) = E∞ + E∗(t) (55)

where E∗(t) → 0 when t → +∞. For causality reasons,

E∗(t) = 0 for t < 0.

Thus, gathering the relations (55) and (54) into

equation (53) leads to

σ̂ (t) = E∞εmeiωt + iωεm

t

−∞

E∗ (t − τ )eiωτ dτ. (56)

A simple one-dimensional relaxation test allows us to

identify E∞ and E(t), as shown in figure 21.

With a variable change defined by β = t−τ , equation (56)

becomes:

σ̂ (t) =

[

E∞ + iω
∞

0

E∗(β)e−iωβ dβ

]

εmeiωt (57)

which can be written in the Fourier space as

σ(ω) = E(ω)εmeiωt . (58)

E(ω) is defined as the equivalent complex Young’s

modulus. By writing e−iωβ = cos(−ωβ) + i sin(−ωβ), an

extensive expression for E(ω) is obtained:

E(ω) = E∞

︸︷︷︸

isothermal

real

+ U (ω)
︸ ︷︷ ︸

conservative

+i
imaginary

V (ω)
︸ ︷︷ ︸

dissipative

(59)

with

U (ω) = ω
+∞

0

E∗(β) sin(ωβ) dβ (60)

Figure 22. Hysteresis cycle of a damping material, undergoing
cyclic strain oscillations of amplitude εm.

V (ω) = ω

∫ +∞

0

E∗(β) cos(ωβ) dβ. (61)

Finally, the equivalent complex Young’s modulus can be

written as

E(ω) = E(ω)(1 + iη(ω)) (62)

with the storage modulus E :

E(ω) = E∞ + ω
+∞

0

E∗ (β) sin (ωβ) dβ (63)

and the loss factor η as

η(ω) =
ω

∫ +∞

0
E∗(β) cos(ωβ) dβ

E∞ + ω
∫ +∞

0
E(β) sin(ωβ) dβ

. (64)

The hypothesis of a hysteretic damping can be stipulated.

This assumption entails E(ω) = E and η(ω) = η; thus

E = E(1 + iη). (65)

Assuming that equation (65) is verified, the harmonic

strain input ε(t) and the corresponding stress σ(t) are

evaluated as

ε(t) = Re{ε̂(t)} = εm cos(ωt) (66)

σ(t) = Re{σ̂ (t)} = Eεm(cos ωt − η sin ωt). (67)

A graphical representation of both equations (66) and (67)

in the (ε, σ ) axis system yields the classical stress/strain

elliptical hysteresis cycle of a damping material subjected to

harmonic excitations of amplitude εm (figure 22).

For the multi-axial situation, the same reasoning can be

developed with the equivalent stress and strain (σ , ε).

5.2. Equivalent complex Young’s modulus: application to

SMA.

This equivalent complex Young’s modulus concept will now

be used to describe the nonlinear dynamic behavior of SMAs.

Although this concept supposes a linear viscoelastic behavior

of the material, this mathematical tool can be generalized to

quantify the response on the first harmonic of a material having

a nonlinear hysteretic behavior.

10



Figure 23. Command function (displacement loading) for a plate in
tension.

Let us consider that the specific potential (Ep) and strain

(Ed) energies stored during a period of request are calculated:

Ep =
T

0

σ · ε̇ dt (68)

Ed =
T

0

σ · ε dt. (69)

For a nonlinear material loaded in a cyclic strain

(equation (66)), Ep and Ed are evaluated as

Ep = εm

T

0

σ(t) cos ωt dt (70)

Ed = −ωεm

T

0

σ(t) sin ωt dt (71)

and for a linear viscoelastic material, due to the relation (66)–

(68), Ed and Ep are linked to E and η by

Ep =
π Eεm

ω
(72)

Ed = π Eηεm. (73)

Energy equivalence envisages equality between the

specific potential and strain energies of the two material types.

Thus, the storage modulus E and the loss factor η are made

explicit by both equations (74) and (75):

E =
ω

πεm

T

0

σ(t) cos ωt dt (74)

Eη =
−ω

πεm

T

0

σ(t) sin ωt dt . (75)

Again, these results can be generalized to the multi-axial

cases by considering the equivalent Von Mises stress and strain.

5.3. Results

A plate in tension loaded in displacement by the command

function given in figure 23 is performed. A vibration state

(amplitude εm) is established around a static strain offset (ε0).

This static strain offset is reached linearly. The response of the

SMA is given in figure 24.

Figure 24. SMA response due to the command function given in
figure 23.

Figure 25. Hysteresis cycle and corresponding ellipse for
ε0 = 0.025 and εm = 0.005.

Figure 26. Hysteresis cycle and corresponding ellipse for
ε0 = 0.025 and εm = 0.007.

The last cycle is then preserved to evaluate the

storage modulus E and the loss factor η by using

equations (74) and (75) and the corresponding ellipse defined

by equations (66) and (67). Many cycles were simulated

with different values of εm and ε0. Figures 25–27 show the

stabilized cycles and the corresponding ellipse for the static

strain offset ε0 = 0.025 and three different strain amplitudes.

11



Figure 27. Hysteresis cycle and corresponding ellipse for
ε0 = 0.025 and εm = 0.01.

Figure 28. Storage modulus: E versus (ε0, εm).

Table 2. E and η versus εm for ε0 = 0.025.

εm E η

0.005 34 × 108 1.17

0.007 69 × 108 0.46

0.01 133 × 108 0.18

Thus, the values of E and η for these three cases are listed

in table 2.

Clearly, for small cyclic strain amplitudes, the ellipses are

fairly close to the cycles, suggesting that the complex modulus

representation of the SMA material behavior is quite accurate.

For larger strain amplitudes, however, considerable differences

can be seen between the hysteresis cycle and the corresponding

ellipse, due to the fact that the behavior becomes strongly

nonlinear.

Finally, the graphic representation of the storage modulus

E and the loss factor η versus the static strain offset ε0 and the

strain amplitude εm are respectively given in figures 28–31.

The simulations seem to be good from a qualitative point

of view. Indeed, as the static strain offset increases, a rapid

increase of the storage modulus is noticed. The elastic behavior

Figure 29. Storage modulus: E versus (ε0, εm) represented in three
dimensions.

Figure 30. Loss factor: η versus (ε0, εm).

Figure 31. Loss factor: η versus (ε0, εm) represented in three
dimensions.

zone of the martensite is reached when the static strain offset

exceeds 3%.

With static strain offsets between 0.1% and 3% (the

pseudoelastic behavior zone), the storage modulus is minimal.

This observation is consistent because of the presence of the

12



plateau of the martensitic transformation. In this zone, the

stiffness is negligible compared to those noticed in the elastic

behavior zones of the austenite and martensite. In the same

way, still with static strain offsets between 0.1% and 3%, the

loss factor is maximal, which confirms that the damping effect

is due to the martensitic transformation end the pseudoelastic

behavior. Above 3%, the loss factor decreases and becomes

quickly negligible. This effective decrease is consistent with

the fact that there is no damping effect in the elastic behavior

zone of the martensite. The same observation can be made with

the static strain offsets lower than 0.1% (elastic behavior zone

of the austenite).

Higher damping is obtained in the pseudoelastic behavior

zone and for small cycle strain amplitudes. Indeed, a decrease

of the loss factor is obtained with an increase of the cyclic strain

amplitude. This is consistent with the fact that in this zone,

the SMA behavior is totally pseudoelastic (figure 27) for small

strain amplitudes; for more significant strain amplitudes, the

SMA behavior is partially pseudoelastic and elastic (figure 25),

leading to a loss of damping.

6. Conclusions

In this paper, the characterization of the dynamic behavior

of shape memory alloys versus two parameters—the strain

amplitude and the static strain offset—has been performed by

using the equivalent complex Young’s modulus approach.

In the first part, a phenomenological model (Rl model) has

been implemented in COMSOL© in order to simulate internal

loops for many cases of displacement loadings.

In the second part, for checking the implementation,

many static tests have been performed: plate in tension, in

proportional bi-tension, in bending loaded in its plane.

In the third part, the equivalent complex Young’s modulus

has been presented. Many cases of displacement loadings

with different values of the static strain offset and the strain

amplitude have been simulated.

Finally, the storage modulus and the loss factor have been

calculated. Thus, this study allows us to highlight the existence

of a high damping zone which is localized for static strain

offsets between 0.1% and 3% and small strain amplitudes (the

totally pseudoelastic behavior zone of the SMA). This new

modeling tool allows us to improve the nonlinear modeling of

SMAs in order to develop and optimize applications for control

and damping in civil engineering.
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