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I. Introduction

At the junction of symbolic edit distances [START_REF] Chen | On the marriage of Lp-norm and edit distance[END_REF] [3] [START_REF] Mäkinen | Using Edit Distance in Point-Pattern Matching[END_REF] [7] [START_REF] Wagner | The String-to-String Correction Problem[END_REF] and dynamic time warping measures [START_REF] Das | Finding Similar Time Series[END_REF] [9] [START_REF] Keogh | A simple dimensionality reduction technique for fast similarity search in large time series databases[END_REF] [START_REF] Velichko | Automatic recognition of 200 words[END_REF] we propose a family of Time Warp Edit Distance (TWED) that we denote γ λ δ , to refer to the two parameters that characterize the family, namely the gap penalty λ and the stiffness parameter γ . We first define γ λ δ , and then we prove successively that whenever 0 0 > ≥ γ λ , 1. Proposition 1: γ λ δ , is a distance metric.

2. Proposition 2: γ λ δ , is upper bounded by twice the L1 distance.

3. Proposition 3: γ λ δ , is an increasing function of γ λ and . [START_REF] Keogh | A simple dimensionality reduction technique for fast similarity search in large time series databases[END_REF]. Proposition 4: Upper-bounding the distance between a time series and its piecewise constant polygonal approximation Further details and experiments on γ λ δ , are described in [START_REF] Marteau | Time Warp Edit Distances with Stiffness Adjustment for Time Series Matching[END_REF].

II. Definitions

Let U be the set of finite discrete time series:

{ } { } Ω ∪ ∈ = + N p A U p / 1
, where Ω is the empty time series (with null length). Let p A 1 be a time series with discrete index varying between 1 and p. Let i a' be the i th sample of time series A. 
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where d is any distance on R k+1 . In practice, we will choose
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where γ is a parameter which characterizes the stiffness of the elastic distance γ λ δ , , and λ any positive constant element in R that corresponds to a gap penalty.

The recursion is initialized setting: for some n>0. Then for all ) , ( 
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P2: identity of indiscernibles

For all ) , (
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. It is easy to show by induction on p that if
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Now consider the backward proposition P'2:
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we have necessarily:
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We verify that the cases where
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are strictly positive (the reason being that time stamps are strictly increasing).

Thus, 0
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P3: Symmetry

Proof: Since the distance d on the sample space T S × is symmetric, it is easy to show that
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P4: Triangle inequality
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such that m=n, we have basically 9 different cases to explore for the decomposition of
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IV. Proposition 2: γ λ δ , is upper bounded by twice the Lp distance.
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whenever X and Y have the same length.

Proof: let us consider the sequence of editing operations consisting in m match operations, where m is the length of the X and Y. This sequence has a cost equal to twice the Lp-distance between the two time series X and Y. Since γ λ δ , is equal to the cost of the optimal sequence of edit operations, the result follows.

V. Proposition 3:

γ λ δ , is an increasing function of γ λ and Proposition 3: 
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VI. Proposition 4: Upper-bounding the distance between a time series and its piecewise constant polygonal approximation.

We define r p A , 1 as a Piece Wise Constant Approximation (PWCA) of time series p A 1 containing 0 1 ≥ r constant segments and p samples. This approximation can be obtained using any kind of solution (from heuristic to optimal solutions), let say the optimal solution similar to the one proposed in [START_REF] Perez | Optimum polygonal approximation of digitized curves[END_REF]. Proposition 4: 
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VII Conclusion

We have proposed a family of time warp edit distances for time series matching. This family involves two parameters: the stiffness parameter that controls the elasticity of the distance and the gap penalty that is part of the cost involved in the insert or delete operations.

We have shown that the proposed measure:

-is a metric on the set of discrete and finite time series.

-is upper bounded by twice the Lp-distance.

-is an increasing function of the gap penalty and the stiffness parameter.

Further more, the distance between a time series and its piecewise constant approximation is upper bounded by an expression that only depends on the lengths of the times series, the number of segments of its approximation and the two parameters γ λ and .

  m=p+q. Non-negativity of γ λ δ , is proved by induction on m. P1 is true for m=0 by definition of γ λ δ , and the induction hypothesis holds. Suppose P1 is true for all

  Let us consider one of the optimal sequences of editing operations evaluated with the elementary operation costs we get a cost for this sequence that is lower than ) . The result follows.

  is the time difference average between two successive samples inside the piecewise constant segments of the approximation.The proof for this proposition is straightforward: let us consider the sequence of operations consisting in r match operations for the end extremities of the piecewise constant segments and (p-r) delete operations for the set of samples in r p X , 1 that are not end extremities of the piecewise constant segments. In this sequence each match operation has in average the cost delete operation has a λ fixed penalty and a penalty proportional to

  We will prove P4 by induction on m=p+q+r.

	P4 is true for m=0 since	,	(	,	)	,	(	,	)	,	(	,	)