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Abstract: This technical report details a family of time warp distances on the set of discrete
time series. This family is constructed as an editing distance whose elementary operations
apply on linear segments. A specific parameter allows controlling the stiffness of the elastic
matching. It is well suited for the processing of event data for which each data sample is
associated with a timestamp, not necessarily obtained according to a constant sampling rate.

Some properties verified by these distances are proposed and proved in this report.
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l. Introduction

At the junction of symbolic edit distances [1][3][S][7][11] and dynamic time warping
measures [2][9][4][10] we propose a family of Time Warp Edit Distance (TWED) that we

denote &, , to refer to the two parameters that characterize the family, namely the gap penalty
A and the stiffness parameter . We first define d, ,and then we prove successively that
whenever 41>20,7>0

1. Proposition 1: &, ,is a distance metric.

2. Proposition 2: §, , is upper bounded by twice the L/ distance.

3. Proposition 3: 6, , is an increasing function of 2 and y .

4. Proposition 4: Upper-bounding the distance between a time series and its piecewise
constant polygonal approximation

Further details and experiments on & 2., are described in [6].



Il. Definitions

Let U be the set of finite discrete time series: U ={Al” /Ipe N +}u {Q}, where Qis the
empty time series (with null length). Let A”be a time series with discrete index varying
between 1 and p. Let ', be the i” sample of time series A. We will consider that a',€ S xT
where S < R* with k >1 embeds the multidimensional space variables and T < R embeds
the time stamp variable, so that we can write a', = (a,,7, ) where a, € § and 7, € T, with the
condition that 7, >, whenever i>j (time stamp are strictly increasing in the sequence of
samples).

Let us define d, ,as:

S, (A7 B! )+T(a',—>A)
5, (Al .B] )=Mini 5, (A" B/ )+T(d',—b',) (1)
S, (Al.BI" )+T(A—b',)

T(a,—AN)=d(d,.d,_ )+A
with  I(a,—b, )=d(d, b, )+d(a, b, )
T(A—b,)=d(b, b, )+A

r’

q-1’

where d is any distance on R“’. In practice, we will choose

d(a',b')=d,(ab)+yd, (1,1, )whereyis a parameter which characterizes the
stiffness of the elastic distance &, ,, and 4 any positive constant element in R that

corresponds to a gap penalty.



The recursion is initialized setting:
5, (A B')=0

o
G, Al\B] )= Zd(b,k by )jedl.ql

k=1

8, (ALB')=>d(d,.a\_ )iell.,p}

k=1
with a’, = b, = 0 by convention.

lll. Proposition 1: 5, is a distance on the set U of finite
discrete time series

Proof:
P1: non-negativity

For all (A?,B}")in U XU let m=p+q. Non-negativity of &, , is proved by induction on m.

P1 is true for m=0 by definition of &, , and the induction hypothesis holds.

Suppose P is true for all me {0,.n—1} for some n>0. Then for all (Af,B/')in U xU such
that m=n, as &,,(A'",B/ )0, (A’ B )and &_(A/ B/ )are assumed positive and as
the non-negativity of distance d holds, 51}7( A/ ,B} )is necessary non-negative, showing that

P1 is true for all me {0,..n}. By induction, PI holds for all me N.[J



P2: identity of indiscernibles

For all (A’,B/)in U XU , if A’ = B/ then p=q and Vie {1,..., p}, a';=b',. It is easy to show

p
by induction on p that if A”=B' then 0<45 (A/ ,Bl")SZd( a’;,b; )=0 leading to

i=1
6,,(A,B!)=0.
Now consider the backward proposition P’2: 517( Al,B! )=0= A" =B/. P’2 is proved by

induction on m=p+gq.

P’2 is true for m=0.

Suppose P2 is true for all me {0,..n —1} for some n>0. Then for all (A/,B/')in U xU such
that m=n and 5“(A”,Bl" )=0 we have necessarily:

0., (ANB!)=6 (A" B! )+d(d, b, )+d(a, b, ).
We verify that the cases where &, (A", B!)=0, (Al,B/" )+d(b b )+A or
5, (Al B! )=6, (A" \B!)+d(a',,a',, )+ A are impossible since d(b',.b', ) and
d(a',,a', ) are strictly positive (the reason being that time stamps are strictly increasing).

Thus, &, (A".B/")=0 and d(a',,b', )+d(a’, ,b', )=0 leading to A’ =B/ and

p-1’

a',=b', . Finally p=q and necessarily A” = B/ [1.

P3: Symmetry

Proof: Since the distance d on the sample space S X7 is symmetric, it is easy to show that

5117(A”,Bl" ) is symmetric for all (A”,B/)in U XU by induction on m=p+gq. [



P4: Triangle inequality
For all (A”,B/,C/)in U XU xU, 517(A1‘”,C1’ )< 517(A1”,Bl" )+ 547(31[1’(?{ ).

Proof: We will prove P4 by induction on m=p+q+r.

P4 is true for m=0 since 5M(Q,Q )=0< 5M(Q,Q )+ 517(Q,Q) and the induction hypothesis

holds.

(H4): Suppose P4 is true for all me{0.n—-1} for some n>0. Let
Y= 5M(A”,qu )+§M(Bq,C1’ ). Then for all (A’,B/,C/)in UxU XU such that m=n, we
have basically 9 different cases to explore for the decomposition of 5“( Al,B!') and

S, (BL.Cl):

o, (A” B! )=06, (A" B )+T(d', —Db )
1* Case: if Ar lr i 1_1 1_1 i “"  then
- 8, (B!.C/ )=6, (B .C/™" )+T(b', > ¢, )

226, (A7 B )+8, (BT ,C7 )+d(d, b, )+d(a

p-1’

b, )+d(b, ¢, )+d(b,c

g-1’"~r-1

>, ( AP O )4 d( a,.c,)+d(a, ', )(ff 6,,(Al,C/)  since (H4) applies,

and d verifies the triangular inequality.

3, (AlB!)=06, ( AP B )+ T(A - b, )
5,,B!.Cl)= 5M(Bf"1,C1"l J+T(b', > ¢, )

2" Case: if , then

)



X=6, (A" B )+d(b b, )+ A+8, (B ,C/7)+d(b, ¢, )+d(b ., )
>0, (Al,B/")+8, (B!",C/™" )+d(c, ¢’ )+ A, (d verifies the triangular inequality)
>0, (Al,C/7)+d(c', ¢, )+ A, (H4)applies
2 6,,(A.C])

3, (Al,B!)=0, ( A B! )+ I(a',—>A)

, then
8, ,(B!.C/)=6, (BI™,C/™" )+T(b, >, )

3" Case: if {

=6, (A7 B!)+d(a,,d, )+ A+, (BLCl)

28, (A7,C))+d(d,,a, )+ A  (H4)applies
20, (ACl)

S, (AlBI)=8, (A", B )+T(A b, )

, then
3, (Bl.C[)=6, (B!,C/" )+I(A—c, )

4™ Case: if {

r= 51,7( Al B! )+ 51,7( qu’clr_l )J+d(c, ¢, )+ A

X206, (A, C/7)+d(c', ¢, )+ A  (H4)applies
d%f 0,,(A",C/)

S, (AlBI)=8, (A" BT )+T(a', -V, )

, then
5, (Bl.Cl )= §M(B'1,C{-1 )J+T(A—c, )

5™ Case: if {
=3, (AlB! )+38, (BI,C/" )+d(c, ¢, )+ A
>0, (A,C/7 )++d(c, ¢, )+ A ( H4 )applies
25, (ANC)



3, (Al,B!)=0, ( AV B )+ I(a',—>A)

. - , then
é'M(Bl",Cl )= 5ﬂ,y(qu’Cl )J+I(A =)

6" Case: if {
X=0, (A’B! )+, (B!,C/™)+d(c' ¢, )+
> 5/1,7,( AP,C{_1 )++d(c' ¢, )+ A ( H4 )applies
26,,(AC)

0, (AlB!)=6, (A", B/ )+I(a' —
7™ Case: if 24 1= 0 1_1 )l ! ), then
S, (BL,Cl)=5, (B ,Cl )+T(b, > A)
S =8, (A B )d(a b, )rd(d, b, )+ S, (BLCl)Hd(b, b, )+ A
>8, (A7 B )+6, (BI.C] )+d(a',,d,_ )+ A (d satisfies the triangle inequality)
>8, (A7.C)+d(a,.a',_ )+ ﬂdzf 5, (Al,C]) ( H4 )applies.

S, (Al,B})=0, (A’ B! )+T(d',—> A)

, then:
5M(Bf,Cl’ )= 5M(BI’I‘I,C1’ )+L(b',—>A)

8™ Case: if {
2=, (A" B} )+d(d,.d, )+ A+5, (B!.C)
>, (A/7.C] )+d(a',,a',_, )+ A, (H4)applies

z 0, ,(AlLCT)

5, (AlB)= 51,7(AP,Bf’_1 J+T(A D))

, then:
5M( B!,C] )= 5M( BI’H,C[ )+I(b, > A)

9 Case: if {

X246, (AlBI™)+38, (B/".C/)
>0,,(A’,C/") (H4)applies.



So property P4 holds for all m in {0,..n}. By induction P4 holds for all m in N and so P4 holds

for all (A”,B/,C/)in UxU xU .LJ

IV. Proposition 2: 9, , is upper bounded by twice the Lp
distance.

Proposition 2:

VA20,y>0 VX,YeU® &, (X,Y)<2-D,,(X,Y), whenever X and Y have the same

length.
Proof: let us consider the sequence of editing operations consisting in m match operations,
where m is the length of the X and Y. This sequence has a cost equal to twice the Lp-distance

between the two time series X and Y. Since J,, is equal to the cost of the optimal sequence of

edit operations, the result follows. []

V. Proposition 3: J,, is an increasing function of Aand y

Proposition 3:
VA20,y>0VA2AVy2y VX,YeU? §,,(X,Y)<38, (X.Y)
Proof: Let us consider one of the optimal sequences of editing operations evaluated with the

tuple (A4', ") with minimal cost equal to ;. (X,Y). If we keep this sequence of editing
operation while replacing (A',%'") with (4, %) in all the elementary operation costs we get a
cost for this sequence that is lower than &, .(X,Y) but greater than the cost of the optimal

sequence 0, ,(X,Y)evaluated using (4, 7). The result follows. [



VI. Proposition 4: Upper-bounding the distance between a
time series and its piecewise constant polygonal
approximation.

We define Zl"” as a Piece Wise Constant Approximation (PWCA) of time series A/

containing r —1 >0 constant segments and p samples. This approximation can be obtained

using any kind of solution (from heuristic to optimal solutions), let say the optimal solution

similar to the one proposed in [8]. Zl" " and A/ have the same number of samples, namely p.
Let Al" be the time series composed with the r segment extremities of A" . Al" contains r

samples. Let us similarly define B,”" and B, from time series B .

Proposition 4:

VA20,y>0, Vre[l;p[, VX'eU 5M(ZN,)Z; J)SA-(p—r)+y-AT(2-p—r) ,
where AT is the time difference average between two successive samples inside the
piecewise constant segments of the approximation.

The proof for this proposition is straightforward: let us consider the sequence of operations

consisting in r match operations for the end extremities of the piecewise constant segments
and (p-r) delete operations for the set of samples in X " that are not end extremities of the

piecewise constant segments. In this sequence each match operation has in average the cost

(p/r)-y-AT, and each delete operation has a A fixed penalty and a penalty proportional to

the time stamp difference between two successive samples

y.(timeStamps(i) — timeStamps(i —1)) . Then, the cost for this sequence of editing operations

is(p—r)(A+y.AT )+ p-y-AT . Finally the optimal sequence of editing operations has a cost

51’7()71‘"”,&’) lowerorequalto A-(p—r)+y-AT(2-p—r). O



VIl Conclusion

We have proposed a family of time warp edit distances for time series matching. This
family involves two parameters: the stiffness parameter that controls the elasticity of the
distance and the gap penalty that is part of the cost involved in the insert or delete operations.
We have shown that the proposed measure:

- 1s a metric on the set of discrete and finite time series.

- 1is upper bounded by twice the Lp-distance.

- 1is an increasing function of the gap penalty and the stiffness parameter.

Further more, the distance between a time series and its piecewise constant approximation
is upper bounded by an expression that only depends on the lengths of the times series, the

number of segments of its approximation and the two parameters A and ¥
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