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Abstract

This paper deals with the structural modeling of a family of similar, actual structures
taking into account uncertainties and modeling errors. Only errors of the ”structural
stiffness” type are considered. We develop a new theory in which what we call the
Lack Of Knowledge (LOK) is defined through an internal variable, whose upper and
lower bounds are stochastic, associated with each substructure. Two main questions
are discussed: the impact of the basic LOKs on the predicted structural response
and the reduction of the basic LOKs through the use of additional information.
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1 Introduction

Today, the validation of complex structural models - i.e. the assessment of
their quality - remains a major issue. The objective is to quantify, then to
improve, the quality of the structural model being used by comparison with
an experimental reference. Most advanced approaches rely on the updating of
deterministic dynamic parameters (stiffness, mass, damping) based on free or
forced vibration tests [1,2]. Probabilistic models are investigated in [3–5]. The
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final result is an updated structural model which, evidently, cannot reproduce
the behavior of the family of actual structures under consideration perfectly.

In order to describe some of the uncertainties as material uncertainties, the use
of probabilistic methods has become increasingly popular [6]. These methods
consist in studying the effect of the uncertainties affecting the input on the
variability of the output, which can be achieved in various ways and has led
to major improvements. For example, many stochastic finite element methods
have been proposed [7–11]. There are also methods which do not necessarily
involve probability laws and which are capable of dealing with uncertainties
unrelated to the actual variability of a given parameter [12–14].

Here, we follow quite a different approach, and the structural model being
used can be deterministic or not. Evidently, such a model does not yield a
”perfect” prediction of the response. There are numerous sources of uncertain-
ties as well as modeling errors, which we describe using the concept of Lack
Of Knowledge [15–18]. The structure being studied is defined as an assembly
of substructures E in which the connections can be viewed as special sub-
structures. The LOKs are defined on the substructure level: the basic LOK
mE is a scalar internal variable which quantifies the substructure’s LOK state.
In mathematical terms, mE is bounded by m+

E(θ) and m−
E(θ), which follow

probabilistic laws.

In this paper, we limit ourselves to Lack Of Knowledge of the ”structural stiff-
ness” type and to structures described as deterministic FE dynamic models.
The LOK theory is developed with particular emphasis on two aspects:

• the meaning of what we call a structural model with LOKs, and its impact
on the prediction of the structural response,

• the reduction of the basic LOKs using additional information.

Finally, we conclude by giving some engineering illustrations.

2 Basic LOKs

To define the framework of our theory, let us consider a family of actual, quasi-
identical structures, each being modeled as an assembly of substructures E in
which the connections can be viewed as special substructures. We assume that
a deterministic FE model has been defined in order to predict the response
of the ”structure”. All quantities associated with the FE model are designated
by •. Only errors of the ”structural stiffness” type are considered.
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2.1 Definition of the basic LOKs

We associate with each substructure E of an actual structure Ω a LOK variable
mE defined over an interval whose bounds m+

E(θ) and m−
E(θ) are formally

defined as follows:
(
1 −m−

E(θ)
)
KE ≤ KE ≤

(
1 +m+

E(θ)
)
KE (1)

KE designates the stiffness matrix of the FE model being used. KE is the
stiffness matrix of an actual structure belonging to the family under consider-
ation. In this formal expression, the inequalities can be considered to hold for
the eigenvalues associated with these matrices.

In practice, these inequalities are expressed using the strain energies:
(
1 −m−

E(θ)
)
eE ≤ eE ≤

(
1 +m+

E(θ)
)
eE (2)

where eE = 1
2
UTKEU denotes the strain energy of an actual structure belong-

ing to the family of similar structures being studied, and eE = 1
2
UTKEU the

strain energy of the theoretical model. These inequalities must hold for any
displacement field U . The two quantities m+

E(θ) and m−
E(θ) are scalar internal

variables of Substructure E, which we call the upper basic LOK and the lower

basic LOK respectively. These are stochastic variables.

For each substructure, the LOK mE lies within the interval [−m−
E ;m+

E ], and
one cannot be more precise than that. As we will see later, this description

is compatible with a rigorous analysis of the LOKs on the response of the

structure. Let us consider two particular examples of LOK definitions:

• for a uniform probability law, mE belongs to intervals [−m−
E ;m+

E ],
and the range of the uniform probability law associated to these
bounds is an interval denoted [−m−

E ;m+
E ];

• other cases can be described by an interval [−m−
E ;m+

E ] without giving any
probabilistic law. One reverts to the simple interval analysis mentioned in
[19,20], which can be used, for example, to describe the LOK related to an
actual nonlinear connection calculated using a linear model.

Other situations can be envisaged, such as the use of a normal probability law,
which is detailed in the following section.

2.2 Illustration: material variability

When the only sources of errors being considered are those related
to the material, one can reasonably assume that the LOK on Sub-
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structure E is a stochastic variable mE(θ) following a modified nor-
mal law p∗(mE) based on the classical normal probability density

p(mE) = 1√
2πσ2

e−
m

2
E

2σ2 :

p∗(mE) =





A · p(mE) if mE ∈ [−m−
E ;m+

E ]

0 if mE ∈] −∞;−m−
E [∪]m+

E ;∞[
(3)

This law can be considered as a truncated normal law, where a
zero probability density outside [−m−

E ;m+
E ] is prescribed in order to

eliminate nonphysical samples (−m−
E < −1). The quantity σ coming

from the normal law can be defined using the quantities m+
E and

m−
E , for example by setting

∫m+

E

−m−

E

p(mE)dmE = 0.99. In this case, the

normalization constant A equals to 1
0.99

.

We want now to describe this stochastic variable in terms of Lack of
Knowledge. With such a law, the probability of observing mE(θ) in a given
interval [−m−

E ;m+
E ] is:

P (−m−
E ≤ mE(θ) ≤ m+

E) =
∫ m+

E

−m−

E

p(mE)dmE (4)

Since in (2) the basic LOKs m+
E(θ) and m−

E(θ) are defined on both sides of the
theoretical model, the previous situation can be described by two mutually
exclusive events:

• either mE ∈ [0;m+
E ], i.e. one has the event (m−

E = 0,m+
E ≥ 0) with the

probability P+(m+
E);

• or mE ∈ [−m−
E ; 0], i.e. one has the event (m−

E ≥ 0,m+
E = 0) with the

probability P−(m−
E).

This statement describes how we compute the basic LOKs in prac-
tice: depending on the value of mE obtained by random drawing, one
has two distinct types of intervals, [0;m+

E ] and [−m−
E ; 0], whose collec-

tion constitutes the basic LOK on Substructure E. This case illustrates
how one can represent an uncertainty defined by a classical probability law
using our concept of Lack Of Knowledge.

2.3 Interval probability

Since, in practice, the use of two probabilities P+ and P− is relatively
complex, we decided in [21] to introduce a number of mathematical
tools; of course, other ways could have been considered.
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Let us consider a family of intervals [−m−
E ;m+

E ] ∋ mE with m+
E +m−

E = L. The
interval [−m−

E ;m+
E ] is said to be standard if for a given L, the probability of

having mE in [−m−
E ;m+

E ] is maximum over the set of all intervals with length
L:

I(L) = arg max
[−m−

E
;m+

E
]

m+

E
+m−

E
=L

P+(m+
E) + P−(m−

E) (5)

With this definition, one can introduce the concept of interval probability by
stating that for a given L P (L) is the probability associated with the definition
(5) of I(L):

P (L) = max
[−m−

E
;m+

E
]

m+

E
+m−

E
=L

P+(m+
E) + P−(m−

E) (6)

Thus, P+(m+
E) and P−(m−

E) being linked to the distribution functions of the
occurrences of the upper and lower bounds m+

E and m−
E respectively, the prob-

ability of the uncertain variable mE being within [−m−
E ;m+

E ] is greater than
P+(m+

E) + P−(m−
E): indeed, P+(m+

E) + P−(m−
E) < 1 means that by sampling

larger intervals containing [−m−
E ;m+

E ] the probability of mE being within these
intervals would be higher.

Another possible interpretation of these definitions is that if one seeks an
interval of basic LOKs such that mE has at least a given probability P of being
inside, one must consider the standard interval I(LP) such that the associated
interval probability P (LP) equals P . One can show that this interval I(LP) is,
in fact, the smallest interval [−m−

E ;m+
E ] such that P+(m+

E) + P−(m−
E) = P ,

which can be expressed mathematically as:

I(LP) = arg min
[−m−

E
;m+

E
]

P+(m+

E
)+P−(m−

E
)=P

m+
E +m−

E (7)

In the case of uniform laws, uniqueness is not guaranteed, but the important
point is to be able to consider a family of standard intervals defined by only
one stochastic variable, which simplifies the analysis.

3 Structural modeling with LOKs

3.1 The new structural model

Let us recall that we are considering only LOKs of the stiffness type. The
basic LOKs are assumed to be known, and so is the FE operator A used to
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calculate the response s of the structure over the time-space domain:

s = A

(
KE;E ∈ Ω

)
(8)

{KE, E ∈ Ω} should be viewed as parameters. One assumes that Relation (8)
holds for any actual structure belonging to the family under consideration if
the stiffness matrices are replaced by the actual stiffnesses:

s = A (KE;E ∈ Ω) (9)

The relation between the actual stiffness and the FE stiffness is established
through the basic LOKs:

(
1 −m−

E(θ)
)
KE ≤ KE ≤

(
1 +m+

E(θ)
)
KE ∀E ∈ Ω (10)

Indeed, in a certain way, we are defining an envelope of the actual responses.
Let us consider a scalar quantity of interest α:

α = α̂(s) (11)

where α̂ is a given operator. Let us define:

∆αmod = α− α (12)

where α is the FE value, ie:
α = α̂(s) (13)

For the quantity of interest α, one defines the following envelope of the possible
actual responses:

−[∆α−
mod](θ) ≤ [∆αmod] ≤ [∆α+

mod](θ) (14)

These can be obtained from Problems (15) and (18). Let us start with [∆α+
mod](θ),

which is determined from the problem:

∆α+
mod = max

−m−

E
KE≤KE−KE≤m+

E
KE

E∈Ω

α̂
(
A(KE;E ∈ Ω)

)
− α (15)

Consequently, ∆α+
mod can be expressed as a given function of the

quantities (m+
E ;m−

E)E∈Ω :

∆α+
mod = Z

+
(
m+

E ,m
−
E ;E ∈ Ω

)
(16)

and remembering that these quantities are stochastic variables, we
can finally write:

[∆α+
mod](θ) = Z

+
(
m+

E(θ),m−
E(θ);E ∈ Ω

)
(17)
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For ∆α−
mod(θ), one first solves:

−∆α−
mod = min

−m−

E
KE≤KE−KE≤m+

E
KE

E∈Ω

α̂
(
A(KE;E ∈ Ω)

)
− α (18)

then:

∆α−
mod = Z

−
(
m+

E ,m
−
E ;E ∈ Ω

)
(19)

[∆α−
mod](θ) = Z

−
(
m+

E(θ),m−
E(θ);E ∈ Ω

)
(20)

Remarks:

• The resolution of Problems (15) and (18) is not very difficult, especially
if the basic LOKs are small, in which case linearization procedures can be
used, like in Section 3.2. A more general case is studied in Section
3.3.

• What we now call the structural model consists of both the operator A and
the basic LOKs.

Let us proceed a little further and introduce an interval probability Pα(L)
such that:

P (∆αmod ∈ I∆αmod
(L)) = Pα(L)∀L (21)

Again, this is the same as considering, for a given probability P , the stan-
dard interval I∆αmod

(LP) such that P (∆αmod ∈ I∆αmod
(LP)) is greater than P .

The two bounds of this interval I∆αmod
(LP), denoted ∆α−

mod(P ) and ∆α+
mod(P ),

constitute what we call the effective LOK on the quantity of interest α. Thus,
whereas the initial theoretical model gives us an incomplete descrip-
tion of the actual phenomena, the addition of a LOK-model easily
makes possible to derive more detailed information about the quan-
tity of interest α through the calculation of confidence intervals. The
question of the determination of this LOK-model will be addressed
in Section 4.

3.2 Effective LOKs for dynamic problems

The calculation of effective LOKs can be applied to quantities of interest which
are common in modal analysis. Here, we are interested in free vibrations;
therefore, we are using as the quantities of interest α the eigenfrequencies ωi

(in rd/s) and eigenmodes φ
i
which are defined by the eigenvalue problem:

(K − ω2
i M)φ

i
= 0 (22)
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where K and M are the global stiffness and mass matrices respectively. More-
over, the global stiffness matrix can be split among the different substructures
E of the structure Ω: K =

∑

E∈Ω

KE.

Let us recall that the pair ∆α−
mod(P ), ∆α+

mod(P ) constitutes what we call the
effective LOK related to the quantity ∆αmod. The determination of these two
quantities for eigenfrequencies and eigenmodes, described in the following two
sections, relies on the rigorous propagation of the basic LOK intervals using
relations between the eigenmodes of an original model and those of a perturbed
model, a classical practice in modal analysis.

Writing the difference of the eigenvalue problems (22) for both mod-
els, the system to be solved is, with a first-order approximation:

Z(ωi)∆φi mod
= B(ωi) (23)

where:

Z(ωi) =
(
K − ω2

i M
)

(24)

B(ωi) = −
(
∆K − ∆ω2

i modM
)
φ

i
(25)

and the two models are linked by:

K = K + ∆K (26a)

M = M (26b)

ω2
i mod = ω2

i + ∆ω2
i mod (26c)

φ
i mod

= φ
i
+ ∆φ

i mod
(26d)

Since the matrix Z is singular at ωi, there are solutions of (23) if
and only if:

φ
T

i
B(ωi) = 0 (27)

that is:
φ

T

i
Mφ

i
∆ω2

i mod = φ
T

i
∆Kφ

i
(28)

In this case, solutions could be expressed as:

∆φ
i mod

= ψ
i
+ aiφi

(29)

where ψi is a particular solution, one given coordinate of which is
set to zero [22].

3.2.1 Effective LOK on an eigenfrequency

If the modes φ
i
of the theoretical model are normalized with respect

to the mass matrix (φ
T

j
Mφ

i
= δji), one can express the discrepancy
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between ω2
i and ω2

i according to (28) as:

∆ω2
i mod = φ

T

i
(K − K)φ

i
= 2

∑

E∈Ω

(
eE(φ

i
) − eE(φ

i
)
)

(30)

by definition of the strain energies, and when the basic LOKs are
small enough to use the condition (28). When there are multiple
modes, other expressions can be used [23,24].

With the previous equation, the fundamental relation (2) allows a rigorous
propagation of the intervals ([−m−

E ;m+
E ])E∈Ω (where, for each substructure E,

(m−
E ,m

+
E) is a particular sample of the basic LOKs depending on the proba-

bility laws chosen) as follows:

−[∆ω2−
i mod](θ) ≤ [∆ω2

i mod] ≤ [∆ω2+
i mod](θ) (31)

with

[∆ω2−
i mod](θ) = Z

−
(
m+

E(θ),m−
E(θ);E ∈ Ω

)
= 2

∑

E∈Ω

m−
E(θ)eE(φ

i
) (32a)

[∆ω2+
i mod](θ) = Z

+
(
m+

E(θ),m−
E(θ);E ∈ Ω

)
= 2

∑

E∈Ω

m+
E(θ)eE(φ

i
) (32b)

If the probability laws for the basic LOKs are known, one can obtain the
dispersions of the bounds ∆ω2−

i mod and ∆ω2+
i mod and, thus, determine for a given

probability P the two bounds [∆ω2−
i mod](θ) and [∆ω2+

i mod](θ) of the associated
standard interval I∆ω2

i mod
(LP). In other words, one obtains the effective LOK

on the square of the eigenfrequency ω2
i .

3.2.2 Effective LOK on an eigenmode

Since a mode φ
i

is not a scalar quantity, one is interested either in its com-

ponent φ
ki

along a specific degree of freedom k or in its projection φN
i onto a

given direction N . In either case, for small LOKs (m−
E(θ),m+

E(θ))E∈Ω, one can
express the dispersions of the bounds [∆φ−

ki mod](θ) and [∆φ+
ki mod](θ) as well

as [∆φN−
i mod](θ) and [∆φN +

i mod](θ) as linear combinations of the basic LOKs: the
resulting relations come from Nelson’s classical formula (29). Let us
remark that in the case of industrial structures with a great number
of DOFs, reduction bases can be used and associated perturbation
expressions are derived [25].

For example, for the calculation of the bounds [∆φN−
i mod](θ) and [∆φN +

i mod](θ),
one obtains the following relations:

−[∆φN−
i mod](θ) ≤ [(φ

i
− φ

i
) ·N ] ≤ [∆φN +

i mod](θ) (33)
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with

[∆φN−
i mod](θ) = Z

−
(
m+

E(θ),m−
E(θ);E ∈ Ω

)

=
∑

E∈Ω

r∑

k=1
k 6=i

1

2(ω2
k − ω2

i )

{
m−

E(θ)eE(φ
i
+ φ

k
) +m+

E(θ)eE(φ
i
− φ

k
)
}
φ

k
·N

(34a)

[∆φN +
i mod](θ) = Z

+
(
m+

E(θ),m−
E(θ);E ∈ Ω

)

=
∑

E∈Ω

r∑

k=1
k 6=i

1

2(ω2
k − ω2

i )

{
m+

E(θ)eE(φ
i
+ φ

k
) +m−

E(θ)eE(φ
i
− φ

k
)
}
φ

k
·N

(34b)

Then, for a given probability P , one determines the two bounds ∆φN−
i mod(P )

and ∆φN +
i mod(P ) of the associated standard interval I∆φN

i mod
(LP). In other words,

one obtains the effective LOK on the value of the projection φi·N . More details
can be found in [15].

3.3 Calculation of effective LOKs when a given basic LOK is large

All of the above derivations of effective LOKs are based on the expressions
of the variations of modal quantities in a first-order approximation: this is
correct provided the basic LOKs on the substructures are all small enough.
The objective of this section is to define a new way of calculating the effective
LOKs in the presence of a large basic LOK.

3.3.1 Principle

Let us assume that large values of the basic LOK mE(θ) defined on Substruc-
ture E can be sampled. The idea is to calculate the eigenfrequencies ω̃i(mE)
and eigenmodes φ̃

i
(mE) of the structure perturbed by the large value of the

given sample mE : let us recall that this value is either m+
E , or −m−

E , depending
on the type of interval drawn (either [0;m+

E ], or [−m−
E ; 0]).

The actual problem to be solved is to find ω̃i and φ̃
i
such that:

(
K +mE∆KE

)
φ̃

i
= ω̃2

i Mφ̃
i

(35)

where ∆KE is the contribution of Substructure E to the stiffness matrix of
the theoretical model. If one seeks to keep the computational cost low, this
problem cannot be solved directly for each value of the sample mE .
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3.3.2 Introduction of a reduced basis

In order to reduce the size of the problem to be solved, one begins by intro-
ducing a reduced modal basis by keeping only the n eigenmodes such that:

eE(φi
) ≥ k%e(φi

) (36)

where e(φ
i
) is the total strain energy associated with Eigenmode φ

i
. Typically,

one chooses k% = 0.3.

In order to improve the results with this reduced basis, one introduces some
additional static modes ψ

i
defined by:

Kψ
i
= ∆KEφi

(37)

After eliminating collinear modes and normalizing the static modes with re-
spect to the mass matrix, orthogonality relations for the m ≤ n calculated
static modes are derived:

∀i, j ψT

j
Mφ

i
= 0 and ψT

j
Kφ

i
= 0 (38)

Then, the solution of the initial problem is sought as follows:

φ̃
i
= Φx+ Ψy = (Φ Ψ )

(
x
y

)
(39)

where Φ =
(
φ

1
. . . φ

n

)
and Ψ =

(
ψ

1
. . . ψ

m

)
.

By premultiplying the previous equality by (Φ Ψ )T , one finally gets:








ω2
1 0

. . . 0
0 ω2

n

0 ΨTKΨ




+mE

(
ΦT ∆KEΦ ΦT ∆KEΨ

ΨT ∆KEΦ ΨT ∆KEΨ

)





(
x
y

)
= ω̃2

i

(
x
y

)

(40)

3.3.3 Interpolation

In addition to the reduction of computation time due to the size of this reduced
system, the values ω̃i(mE) and φ̃

i
(mE) are estimated by interpolation.

Typically, one uses a quadratic interpolation defined over each interval [−m−
E ; 0]

or [0;m+
E ] depending on the sign of the sample mE . The approximate values of
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ω̃i(mE) and φ̃
i
(mE) are derived from the exact solutions of the reduced system

for the following values of the sample mE , depending on its sign:

{
−m−

E ;−
2m−

E
3

;−
m−

E
3

}
and

{
m+

E
3

;
2m+

E
3

;m+
E

}

From this interpolation, the strain energies are estimated using a fifth-order
approximation:

ẽ =
1

2
φ̃

T

i

(
K +mE∆KE

)
φ̃

i
=
∑

E∈Ω

ẽE
(
φ̃i(mE)

)
(41)

Finally, it is possible to combine the other basic LOKs simply by adding their
contributions to the model perturbed by the large value of the basic LOK on
E . For instance, we derive the following bounds for the eigenfrequencies:

[∆ω2−
i mod](θ) = 2

∑

E 6=E
m−

E(θ)ẽE
(
φ̃i(mE(θ))

)
−
(
ω̃i(mE(θ))

2 − ω2
i

)
(42a)

[∆ω2+
i mod](θ) = 2

∑

E 6=E
m+

E(θ)ẽE
(
φ̃i(mE(θ))

)
+ ω̃i(mE(θ))

2 − ω2
i (42b)

This method will be applied to an academic example in Section 5 and to an
actual industrial structure in Section 6.

4 Identification and reduction of the basic LOKs

4.1 Comparison with an experimental reference

Let us consider a structural model with LOKs giving for the quantity of in-
terest α the two bounds:

[∆α+
mod](θ), [∆α

−
mod](θ)

The quantification of the quality of a model with respect to an experimental
reference using our theory involves the determination of the basic LOKs which
best characterize the experimental variabilities. Regarding the family of actual
structures, one can determine two values ∆α−

exp and ∆α+
exp which, for a given

probability P , contain P% of the values of the quantity of interest ∆αexp

related to the actual structures.

12



Then, using the concept of interval probability, one can compare the experi-
mental data with the values given by the LOK model by saying that the basic
LOKs must be such that:

P (∆αexp ∈ I∆αmod
(L)) ≥ Pα(L)∀L (43)

Through this relation, we express that the LOK model should be determined
conservatively, i.e. that the interval probability, which is a lower bound of the
actual probability of ∆αmod being within the standard interval I∆αmod

(LP),
should be a lower bound of the probability of the experimental quantity of
interest ∆αexp being within I∆αmod

(LP).

This necessary condition is the same as saying, in terms of standard intervals,
that the relation ∆α−

exp(P ) ≤ ∆α−
mod(P ) and ∆α+

exp(P ) ≤ ∆α+
mod(P ) must be

verified for any given probability P . This interpretation is, in fact, a general-
ization of the 99%-values mentioned in [15].

4.2 Reduction of the basic LOKs

4.2.1 Main principle

The main idea behind this determination is that the greater the amount of
experimental information available, the more likely one is to reduce the basic
LOKs. This principle requires an initial description, which may be coarse but
must necessarily be overestimated, of the basic LOKs for each substructure.
This can be obtained through a priori knowledge or through experiments
relevant to the structure being studied. In the end, one has a set of initial basic
LOKs (m+0

E (θ),m− 0
E (θ))E∈Ω (associated with probability laws) which are such

that all the constraints (43) are verified for the experimental data available,
and which can be used to describe the basic LOKs for each substructure.

In our present approach, which is conservative, the reduction process consists
in using this additional relevant experimental information to reduce the level
of LOK one substructure at a time. Let us consider a particular substructure
E∗. The problem is to determine a basic LOK (m−

E∗(θ),m+
E∗(θ)) smaller than

the initial LOK (m− 0
E∗ (θ),m+ 0

E∗ (θ)), which is equivalent, in terms of interval
probabilities, to the following inequality:

P 0
E∗(L) ≤ PE∗(L) ∀L (44)

This reduction is carried out under Constraint (43) associated with the ex-
perimental information chosen, which, in terms of the effective LOK on the
quantity of interest α, can be written as:

∆α−
exp(P ) ≤ ∆α−

mod(P ) and ∆α+
exp(P ) ≤ ∆α+

mod(P ) (45)

13



4.2.2 Worst-case estimates of ∆α+
mod and ∆α−

mod

Since the reduction is carried out one substructure at a time, the verification of
Constraint (43) is not sufficient to guarantee realistic results in all situations.
Indeed, let us recall that the effective LOK derives from the interval probabil-
ity Pα(L) which characterizes the distribution of the bounds [∆α+

mod(θ)] and
[∆α−

mod(θ)] of the quantity of interest ∆αmod relative to the model. As these
bounds contain distinct contributions from all the substructures, for
a given set of samples (m−

E ,m
+
E)E∈Ω, one has:

∆αmod = α̂
(
A(KE;E ∈ Ω)

)
− α = ∆αE∗ +

∑

E 6=E∗

∆αE (46)

In our reduction process, we build worst-case estimates of [∆α+
mod(θ)] and

[∆α−
mod(θ)], denoted [∆α+worst

mod (θ)] and [∆α−worst
mod (θ)], which verify:

∆α−worst
mod (P ) ≤ ∆α−

exp(P ) and ∆α+ worst
mod (P ) ≤ ∆α+

exp(P ) (47)

These worst-case values must lie within the experimental bounds.

Precisely, we write:

∆α−worst
mod = ∆α−

E∗ + ∆α−worst
∁E∗

(48a)

∆α+ worst
mod = ∆α+

E∗ + ∆α+worst
∁E∗

(48b)

where

−∆α−worst
∁E∗

= max
−m−

E
KE≤KE−KE≤m+

E
KE

E∈Ω,E 6=E∗

α̂
(
A(KE;E ∈ Ω)

)
− α (49a)

∆α+ worst
∁E∗

= min
−m−

E
KE≤KE−KE≤m+

E
KE

E∈Ω,E 6=E∗

α̂
(
A(KE;E ∈ Ω)

)
− α (49b)

For example, with regard to the effective LOK on the square of an eigenfre-
quency ω2

i , one has to deal with:

[∆α−worst
E (θ)] = −2m+

E(θ)eE(φ
i
) (50a)

[∆α+ worst
E (θ)] = −2m−

E(θ)eE(φ
i
) (50b)

4.2.3 Representativeness of the experimental data

Until now, we assumed implicitly that the experimental data we used in the
reduction process gave a good description of the basic LOKs on the differ-
ent substructures. In reality, the information given by experimental data is
generally only partial.

14



Therefore, we allow our worst-case analysis to be further enriched by introduc-
ing a coefficient ρE∗ ∈]0; 1] which enables one to quantify the extent to which
the selected experimental information is representative of the behavior of the
substructure: this quantity, which we call the coefficient of representativeness,
is maximum when the experimental data give a perfect account of the global
mechanics of the substructure, including the main sources of error. To illus-
trate this point, let us consider the example of a traction test: in the case of an
isotropic substructure model, the experimental data associated with this test
are relevant because they give a trustworthy vision of the LOK associated with
the substructure. On the contrary, in the case of an orthotropic model, the
same data, by giving information in the direction of the traction test alone,
provide only a very partial vision. Therefore, the corresponding bounds are
defined as follows:

∆α−worst
mod = ρE∗∆α−

E∗ + ∆α−worst
∁E∗

(51a)

∆α+ worst
mod = ρE∗∆α+

E∗ + ∆α+worst
∁E∗

(51b)

The value of the coefficient ρE∗ , which belongs to ]0; 1], is closely related to
the type of test being considered. 1 corresponds to a perfectly representative
test. Let us observe that a precise value is not necessary and that specialists
should be able to propose a reasonable coefficient for any given specific case. In
several cases in which the sources of error are well-established, the coefficient
of representativeness can be obtained from calculations.

The worst evaluations of ∆αmod defined by (48) should verify Inequalities
(47). These and Inequalities (45) are the constraints related to the inverse
problem defining the new set of LOKs for Substructure E∗. It is important
to understand that if the test has not been chosen well, the reduction process
does not lead to any reduction: its solution is the initial set of LOKs for
Substructure E∗.

5 First example

5.1 Definition of the structure

Let us consider a family of similar, but not identical, plane trusses, each con-
sisting of six pin-jointed bars as shown in Figure 1.
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5.1.1 Data of the theoretical model

The theoretical model is defined as a FE model with deterministic characteris-
tics. The bars are assumed to be solicited only in traction-compression and the
connections between the structure and the base are assumed to be perfectly
rigid. The material characteristics of the theoretical model are given in Table
1.

5.1.2 Experimental data

In order to derive the experimental data which enable the reduction of the
basic LOKs, we used the eigenfrequencies and eigenmodes of a family of sim-
ilar trusses. In order to simulate these ”experimental” trusses, we introduced
stiffness dispersions into the material characteristics of the theoretical model
as defined in Table 1. One should note that Material ”X” is not known very
well and that the associated stiffness dispersion follows a uniform distribution.
Then, we calculated the eigenfrequencies and eigenmodes of each of these sim-
ulated trusses and determined their distribution laws (e.g. Figure 2), which
we took as the experimental quantities of interest.

1

2

3

4

5

Fig. 1. The plane truss being studied
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Experimental distribution of eigenfrequencies for Mode 6

Fig. 2. Experimental distribution of
ω2

exp for Mode 6

Table 1
Material characteristics of the deterministic model of the truss and of the numer-
ically simulated structures, where Group g1 consists of bars 1-3, 3-5, 4-5 and 2-4,
bar 2-3 is Group g2 and bar 3-4 is Group g3

Gr. Mate- Young’s Mass Law Relative Relative statistical moments

-rial modulus density chosen range (µ: mean / σ: std. dev.)

g1 alum. Eg1 = 72 GPa 2, 700kg/m3 normal [−0.05; 0.05] µ = 0.00 / σ = 0.019

g2 steel Eg2 = 210 GPa 7, 800kg/m3 normal [−0.20; 0.70] µ = 0.25 / σ = 0.175

g3 ”X” Eg3 = 10 GPa 1, 500kg/m3 uniform [−0.15; 0.05] µ = −0.05 / σ = 0.039
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5.2 Reduction of the basic LOKs

The reduction process was initiated by prescribing a priori on each substruc-
ture initial LOK values which constitute appropriate overestimated levels;
these levels are indicated in Table 2. We also assumed that the probability
laws of the basic LOKs were normal for the aluminum and steel bars and
uniform for the bar made of Material ”X”. The only experimental informa-
tion retained was the values ∆ω2+

i exp(0.99) and ∆ω2−
i exp(0.99) which bounded

99% of the experimental values of the eigenfrequencies actually measured; in
particular, we did not concern ourselves with the distribution of these values
between these bounds of the standard 99%-probability interval I∆ω2

i mod
. If one

were to seek a richer description, one could also use the 70%-probability val-
ues of these experimental quantities, which would provide an estimate of the
standard deviation.

Table 2
Initial LOK model (m− 0

E ,m+ 0
E )

Groups Law Range Relative statistical moments

chosen [−m− 0
E ;m+ 0

E ] (µ: mean / σ: std. dev.)

g1 = {b13, b24, b35, b45} normal [−0.25; 0.25] µ = 0.00 / σ = 0.097

g2 = {b23} normal [−0.75; 0.75] µ = 0.00 / σ = 0.289

g3 = {b34} uniform [−0.25; 0.25] µ = 0.00 / σ = 0.097

Regarding the second step, it was important to identify the best experimental
measurements in order to carry out reductions on the different substructures
successfully. An effective method consists in relying upon the fact that the
sensitivity of the effective LOKs with respect to the basic LOKs is directly
related to the modal strain energies of the deterministic theoretical model,
as can be seen in the expressions of Section 3.2. Indeed, the most relevant
experimental data in the process of reducing the basic LOKs on Structure
E∗ are those whose modal strain energy is located primarily in E∗. Since the
experimental information we chose concerned eigenfrequencies, we needed to
consider the energies eE(φ

i
), which are depicted in Figure 3.

The reduction process was carried out by choosing successively Modes 6, 4
and 2 (for Groups g1, g2 and g3 respectively) as the experimental data and
by assuming that these data were representative of the global behavior of the
truss (coefficients ρE equal to 1). The final results are given in Table 3.

For this simple case, these results can be compared directly to the stiff-
ness dispersions introduced into the deterministic model in order to simulate
the experimental data: [Kg1 − 5%;Kg1 + 5%], [Kg2 − 20%;Kg2 + 70%] and
[Kg3 − 15%;Kg3 + 5%]. While the reduced basic LOKs for Groups g1 and g3
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Fig. 3. Modal strain energies for Modes 1 to 6

Table 3
Reduced basic LOKs

Groups Experimental data Reduced basic LOKs

Law [−m−
E ;m+

E ] Statistical moments

g1 (∆ω2+
6 exp(0.99),∆ω2−

6 exp(0.99)) normal [−0.032; 0.034] µ = 0.001 / σ = 0.013

g2 (∆ω2+
4 exp(0.99),∆ω2−

4 exp(0.99)) normal [−0.148; 0.581] µ = 0.217 / σ = 0.142

g3 (∆ω2+
2 exp(0.99),∆ω2−

2 exp(0.99)) uniform [−0.165; 0.075] µ = −0.045 / σ = 0.035

are quite good, the value obtained for Group g2 is not very accurate compared
to the corresponding experimental dispersion. The fact that this value is large
suggests that one should start the reduction process from scratch, this time
using the calculation method which takes large LOK values into account in-
stead of a linearization technique.

Modes 1 to 4 were used in the reduced basis involved in the specific process
described in Section 3.3. Once again, the reduction process was carried out by
choosing successively Modes 6, 4 and 2 (for Groups g1, g2 and g3 respectively)
as the experimental data and by assuming that these data were representative
of the global behavior of the truss (coefficients ρE equal to 1). The corre-
sponding results are shown in Table 4. This time, one can observe the good
agreement of the values obtained for Group g2.
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Table 4
Reduced basic LOKs taking into account large values of the LOK on Group g2

Groups Experimental Reduced basic LOKs

data Law [−m−
E ;m+

E ] Statistical moments

g1 (∆ω2+
6 exp(0.99),∆ω2−

6 exp(0.99)) normal [−0.032; 0.034] µ = 0.001 / σ = 0.013

g2 (∆ω2+
4 exp(0.99),∆ω2−

4 exp(0.99)) normal [−0.195; 0.703] µ = 0.254 / σ = 0.174

g3 (∆ω2+
2 exp(0.99),∆ω2−

2 exp)(0.99) uniform [−0.155; 0.075] µ = −0.040 / σ = 0.033

6 Study of an industrial case

Now, let us examine the application of our method to an actual industrial
structure: the Sylda5 satellite support capable of carrying two satellites simul-
taneously, developed by EADS Group (Figure 4).

6.1 Description of the structure

6.1.1 Experimental data

Free-vibration measurements with 260 sensors were carried out by IABG on
behalf of DASA/DORNIER under contract with CNES.

6.1.2 Data for the theoretical model

The model proposed by EADS represents both the support itself and a cylin-
drical payload which simulates the presence of a satellite resting on the sup-
port. This model consists of 38 substructures made of various materials, in-
cluding orthotropic sandwich materials, aluminum and steel. Since initial mea-
surements had shown that it was absolutely essential to take into account the
deformation of the ground under the support, this was modeled very simply
using 3 torsional springs, one translational spring and a rigid-body constraint
for all the nodes at the junction between the ground and the support. The
final model consisted of 27,648 DOFs and 9,728 elements.

6.2 Determination of the basic LOKs

First, based on the first 12 experimental modes, the model was calibrated
using the method described in [2]. The problem was then to determine the
remaining LOKs. In order to do that, the structure was divided into 4 main
groups of substructures, as described in Figure 5:
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Fig. 4. Photograph of the Sylda5 sup-
port

Payload 

Connection

SYLDA 5 

Ground

Fig. 5. The associated Sylda5 model

• Group g1 associated with the cylindrical payload;
• Group g2 containing the composite connection between the cylinder and the

Sylda5 support;
• Group g3 corresponding to the Sylda5 support itself;
• Group g4 associated with the ground model.

The reduction process was initiated by setting a priori the initial LOK levels
(m− 0

E ,m+ 0
E ) (and their corresponding laws) as shown in Table 5. The exper-

imental information consisted of the eigenmodes and eigenfrequencies mea-
sured on the actual structure, which were considered as the extreme values
that would have been obtained if several similar structures had been tested.

Table 5
Initial LOK model

Groups Law Range Relative statistical moments

being sought (m− 0
E ,m+0

E ) (µ: mean / σ: std. dev.)

E=g1 normal (-0.25,0.25) (µ = 0.00 / σ = 0.097)

E=g2 uniform (-0.25,0.25) (µ = 0.00 / σ = 0.097)

E=g3 normal (-0.25,0.25) (µ = 0.00 / σ = 0.097)

E=g4 uniform (-0.75,0.75) (µ = 0.00 / σ = 0.289)

Table 6 shows the order in which the reduction was carried out, the data which
were used and the results (with ρE = 1) of the process.

These results confirmed the good quality of the calibrated model of the support
(g3) and of the model of the connector (both within a few %), but pointed out
the oversimplifications in the ground model resulting in a large LOK, which
suggested the use of the specific process described in Section 3.3.

The whole reduction process was started again from scratch, using a reduced
basis consisting of the first eight modes of the structure and the same experi-
mental data as before. The corresponding results are given in Table 7.
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Table 6
Reduced basic LOKs

Groups Experimental Reduced basic LOKs

data Law [−m−
E ;m+

E ] Statistical moments

g3 (∆ω2+
4 exp(0.99),∆ω2−

4 exp(0.99)) normal [−0.016; 0.000] µ = −0.008 / σ = 0.003

g1 (∆ω2+
8 exp(0.99),∆ω2−

8 exp(0.99)) normal [0.000; 0.144] µ = 0.072 / σ = 0.028

g4 (∆ω2+
6 exp(0.99),∆ω2−

6 exp(0.99)) uniform [0.000; 0.435] µ = 0.218 / σ = 0.126

g2 (∆ω2+
3 exp(0.99),∆ω2−

3 exp(0.99)) uniform [−0.060; 0.000] µ = −0.030 / σ = 0.012

Table 7
Reduced basic LOKs taking into account large values of the LOK for the ground
(Group g4)

Groups Experimental Reduced basic LOKs

data Law [−m−
E ;m+

E ] Statistical moments

g3 (∆ω2+
4 exp(0.99),∆ω2−

4 exp(0.99)) normal [−0.016; 0.000] µ = −0.008 / σ = 0.003

g1 (∆ω2+
8 exp(0.99),∆ω2−

8 exp(0.99)) normal [0.000; 0.144] µ = 0.072 / σ = 0.028

g4 (∆ω2+
6 exp(0.99),∆ω2−

6 exp(0.99)) uniform [0.000; 0.521] µ = 0.261 / σ = 0.150

g2 (∆ω2+
3 exp(0.99),∆ω2−

3 exp(0.99)) uniform [−0.060; 0.000] µ = −0.030 / σ = 0.012

Except for the LOK associated with the ground, the basic LOKs of the other
groups were unchanged. In order to evaluate the quality of the results of the
reduction process, one can calculate the effective LOK for Mode 1, which was
not used, and compare this with the corresponding experimental values from
Table 8. One can observe that the constraints for Mode 1 are properly verified,
which shows that the results obtained with the other modes were consistent.
Table 8
Comparison of 99%-values for Mode 1

i ω2
i + ∆ω2−

i mod ω2
i + ∆ω2−

i exp ω2
i ω2

i + ∆ω2+
i exp ω2

i + ∆ω2+
i mod

1 1.01 103 1.02 103 1.02 103 1.05 103 1.06 103

7 Conclusion

We developed a new approach to structural modeling using LOKs which con-
sists in inserting validity indicators into the model in the form of basic LOKs,
then predicting the ”envelope” of the responses of the family of actual struc-
tures being considered. We presented examples which illustrate how this ap-
proach works and what its capabilities are. The extension to sources of error
other than stiffness errors is in progress. Such a modeling scheme is suitable
for robust design [26].
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