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Abstract

This paper deals with model validation in structural dynamics for a family of quasi-
identical structures in the context of uncertain measurements. The crucial point is
for the engineer to be able to quantify the quality of the model, which is probabilis-
tic with respect to a set of measurements from which a probability density function
can be extracted. Our approach is based on the ”mechanical concept” of Consti-
tutive Relation Error Estimator (CRE), which was introduced initially in order to
quantify the quality of finite element analyses, then developed in the deterministic
context. Our extended CRE estimator enables us to quantify the quality of a given
probabilistic model and, thus, to update and validate the model. Several examples
are given, including an industrial case.
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1 Introduction

Modeling tools constitute a major accomplishment of the past 25 years, if one
considers how radically they transformed, and continue to transform, industry
and research. This is a true revolution which is far from complete. Of course,
mastering the models (by which we mean controlling the calculation process
itself as well as validating the results against a set of experimental data) is
an essential requirement in using these tools. Until now, model validation and
verification have been carried out mostly in a deterministic sense. Indeed,
for deterministic models, there are a number of open issues which still require
research, but one must recognize that most of the scientific obstacles have been
eliminated [1–3]. On the contrary, regarding the stochastic domain, one could
jokingly say that practically everything remains to be done. One should also
add that the ability to deal with uncertain data in the model’s parameters
and in the environment is fast becoming a priority in structural analysis,
particularly in the industrial context.

This work focuses on validation alone; more precisely, its purpose is to derive
tools enabling one to master stochastic models in a possibly uncertain environ-
ment. Our approach is an extension of the constitutive relation error method,
which is extremely effective in the deterministic case [4].

Validation (in fact, model updating) has been widely studied, particularly for
the deterministic case and for structural dynamic models, as shown by state-
of-the-art reviews in [5,6]. Many of the methods proposed did not attempt to
provide a meaningful error measure which could be used for validation. The
earlier model updating methods fall into the category of ’direct methods’, in
which corrections to the mass and stiffness matrices of the model are sought
without taking into account the physical meaning of the modifications. Within
this category, a first set of methods is based on the search for minimum norm
corrections [7,8]. A second set of methods is closely related to control theory
[9,10]. The main drawback of these methods is that the corrections usually lack
physical meaning; consequently, the models could be invalid when applied to
configurations other than those used for the updating process.

In order to preserve the physical meaning of the model, indirect or parametric
methods have been developed. In these methods, the changes in the stiffness
and mass matrices are based on variations of the physical parameters of the
model. The approach consists in building a cost function which represents the
correlation between the numerical model and the test data in terms of the
physical parameters of the model. Several types of cost functions can be used,
such as input residuals [11,12] and output residuals [13,14].

As mentioned earlier, many of these methods do not attempt to perform quan-
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titative validation. This field is still quite new; some attempts for nonlinear
models can be found in [15–17].

At Cachan, still for the deterministic case, we have been developing a rather
different approach which has a strong mechanical meaning. This approach
can be viewed as an extension of works previously conducted on a posteri-
ori estimators in order to quantify the quality of a finite element calculation,
e.g. in studying the situation where the approximate model is the numerical
model [2,1]. Our method is based on the concept of a posteriori Constitutive
Relation Error (CRE), which is a meaningful energy-based indicator. Using
this concept, we are able to address the validation question as well as up-
date the model. The initial works on model updating go back to the eighties
[18]. The first development of the method was aimed at updating the model
based on eigenfrequencies and eigenmodes [19]. Then, the method was ex-
tended to forced vibration problems in [20]. This approach is based on what
is known as the Drucker error, and it has proved its effectiveness in updating
the mass, stiffness and damping properties [21,22]. The method can also deal
with nonlinearities due to the material’s behavior or to contacts. The concept
of dissipation error [23] was introduced in a further development presented in
[24]. This error has a clear mechanical meaning and emphasizes the dissipa-
tion properties of the model. Let us also mention the existence of very similar
methods for free vibration problems, such as the Minimum Dynamic Residual
Expansion (MDRE) method [25] or the Modeling Error in the Constitutive
Equations (MECE) method [26,27].

In order to get closer to reality, uncertainties must be introduced into the
model’s parameters (material characteristics, parameters of the joints), lead-
ing to a probabilistic structural model. Regarding experimental data, which
are not necessarily the ultimate reference in the case of industrial structures,
measurement errors must be taken into account. In industrial tests, in addition
to noise due to the testing equipment, significant measurement errors (such
as wiring errors, erroneous excitation direction, errors in the test reports) of-
ten occur and cause the updating methods to fail; in order to deal with these
problems, a method for recovering consistent experimental data was proposed
recently [28]. Consequently, the actual validation problem concerns the com-
bination of a given probabilistic model with noisy measurements.

In the stochastic case, major progress has been made recently in structural
analysis, particularly with the Karhunen-Loeve method and the polynomial
chaos technique, which can be found in [29–31]. Conversely, as mentioned
above, very little research has been done on the verification and validation of
probabilistic models. Nevertheless, one should mention, in relation to verifi-
cation/validation, the error indicators proposed in [32,33], which are, in fact,
sensitivity indicators and, therefore, have nothing in common with what has
been developed in the deterministic case. Regarding validation, one should
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mention what is known as ”inverse methods”, many of which definitely fall
into the stochastic category [34,35]; in fact, in these methods, the approach
is purely stochastic and mechanics is mostly absent; a first attempt to draw
a parallel between the CRE and the general inverse problem theory can be
found in [36], where it is proposed to use the local value of the CRE to evalu-
ate the relative variances on the parameters of the model. In [37], a statistical
interpretation of the norm to be applied to the measurements in direct relation
to the covariance matrix was advocated as being the only possible choice if
the data are scarce for a first true attempt to extend the constitutive relation
error to the stochastic case. In [38], this statement was shown to be excessive
and equally effective choices were presented. In this paper, we go further than
these previous works, considering that the model is probabilistic, too.

The approach we are following here is radically different from any existing
work in the stochastic case. It is deliberately ”mechanics-oriented” and de-
rives from works on verification and validation we did for the deterministic
case based on the concept of constitutive relation error. The extension of the
constitutive relation error to the stochastic case presents no serious difficulty
in the particular case where the model is deterministic and the experimental
data contain noise [4,38]. Through a number of examples, it was shown that
the approach, which is purely mechanical, is perfectly consistent.

Here, new illustrations are given. The main difficulty (in fact, the real scien-
tific stumbling block) lies in the validation of a stochastic model. The problem
consists in deriving an error measure which is zero if the model is ”exact”, i.e.
if the results obtained from the model match the experimental data. The ex-
tension to the modified constitutive relation error discussed here satisfies this
fundamental requirement: it is based on [38]. It is still completely ”mechanics-
oriented” regarding the norms used. Another constraint is that the statistical
description of the experimental data is often very limited. In this regard, a
major feature of our approach is that we propose to reconstruct these experi-
mental data using the statistical mean value and the model; this reconstruction
is based on a qualitative analysis of the error in the response in terms of the
two sources of errors, i.e. the fluctuations of the parameters and the possible
variations due to the approximate nature of the stochastic model itself. The
”excitation” can be deterministic or not. In this paper, the simplest possible
”model” problem, i.e. an elastic structure with small perturbations in isother-
mal conditions, is described in full detail. The extension to the nonlinear case,
whether quasi-static or dynamic, presents no major a priori difficulty. Finally,
the approach is illustrated by numerical examples.
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2 The ”model” reference problem

2.1 Description of the problem

Fig. 1. Schematic description of the problem

Here, we are considering the simplest problem possible, which is the elastic
modeling of a structure under quasi-static conditions with small perturbations.
The model, however, is probabilistic. The Hooke’s tensor and the data are
stochastic fields. Nevertheless, through the Karhunen-Loeve method, it is usual
and convenient to reduce these to stochastic variables [29–31]. It is also possible
and easy to preserve the positive definite character of the Hooke’s operator
[30]. The study of the underlying approximations is not within the scope of
this work. Then, the reference ”model” problem becomes:

Find U(M, θ), σσ(M, θ),M ∈ Ω such that:

• kinematic constraint equations U ∈ U

U|∂1Ω = Ud(d(θ))

• equilibrium equations σσ ∈ S

div σσ + f
d
(d(θ)) = 0

σσn|∂2Ω = F d(d(θ))

• constitutive relation

σσ = K(m(θ))εε(U)

The Hooke’s operator is a function of the vector random variable m(θ), whose
probability density function and corresponding space are dP (m) and Hm re-
spectively. The quantities Ud, f

d
, F d are functions of the vector random vari-

able d(θ), whose probability density function and corresponding space are
dQ(d) and Hd respectively. All these quantities are assumed to be perfectly
known; they characterize the model we are seeking to validate.
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In fact, the solution s(M, θ) = (U(M, θ), σσ(M, θ)) can be written as:

s(M,m(θ), d(θ))

A major point is that s(M,m, d) is the solution of a parameterized determin-
istic problem whose parameters are m and d. The resolution of such a problem
presents no real difficulty, except in the nonlinear domain or if the number of
parameters is really very large. We will not concern ourselves with these cases;
we will consider the situation where the problem can be properly solved using,
for example, the ”polynomial chaos” technique coupled with a finite element
approach [29,31].

2.2 Extension of the CRE to the stochastic framework

Definition: ŝ(m, d) is admissible if ∀d ∈ Hd it verifies:
• the kinematic constraint equations
• the equilibrium equations

The corresponding space is Sd
ad. The only equation which is not verified by ŝ

is the constitutive relation, whose residual at any point M of domain Ω is:

eCRE = σ̂σ(m, d) − K(m)εε(Û(m, d)) (1)

It is also useful to define the global constitutive relation error:

Ē2
CRE =

∫

Hm×Hd
E2

CRE(m, d)dP (m)dQ(d)

D̄2

D̄2 =
∫

Hm×Hd

∫

Ω

[ϕ(ε̂ε) + ϕ∗(σ̂σ)] dΩ dP (m)dQ(d) (2)

E2
CRE =

∫

Ω

[ϕ(ε̂ε) + ϕ∗(σ̂σ) − Tr[σ̂σε̂ε]] dΩ

where ϕ, ϕ∗ are the classical potentials for the constitutive relation in elasticity.

Besides, one can easily show that:

Property 1: The global constitutive relation error is zero if and only if ŝ(m, d)
is the exact solution of the reference problem.

Property 2: If sex = (U ex, σσex) is the exact solution, one has:

‖σ̂σ − σσex‖
2

S +
∥

∥

∥Û − U ex

∥

∥

∥

2

U
= Ē2

CRED̄2 (3)

where:
‖ • ‖2

S =
∫

Hm×Hd

∫

Ω

Tr[•K−1•]dΩ dP (m)dQ(d)
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‖ • ‖2
U =

∫

Hm×Hd

∫

Ω

Tr[εε(•)Kεε(•)]dΩ dP (m)dQ(d)

Remarks:

• The constitutive relation error can be easily extended to ill-posed problems
where ∂1Ω ∩ ∂2Ω 6= {�}.

• The Prager-Synge theorem can also be extended. Furthermore, it is valid,
along with the type of result given by Property 2, for all values of m and
d.

• It is possible to introduce ”means” and ”standard deviations” into the
above expressions.

3 Validation of the model

3.1 The validation problem in the stochastic framework

We are seeking to validate the linear elasticity model described in Section 2.1
in the case where f

d
= 0. This model is probabilistic and defined by:

K(m(θ))

where m(θ) is a random variable whose probability density function is dP (m).
The corresponding space is Hm.

The validation is carried out based on experimental results:

• Ũd(d̃(θ)) over ∂1Ω
• F̃ d(d̃(θ)) over ∂2Ω

where d̃(θ) is a random variable whose probability density function is dQ̃(d̃).
The corresponding space is Hd.

All the quantities introduced here are assumed to be perfectly known:

• model: K(m), dP (m), Hm

• experimental results: Ũd(d̃(θ)), F̃ d(d̃(θ)), dQ̃(d̃), Hd

3.2 Validation using the modified-CRE: general philosophy

The idea introduced in [18] and developed, principally at LMT-Cachan, over
the last twenty years consists in using as references:
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• the reliable experimental information (e.g. positions of the sensors, eigen-
frequencies)

• part of the model, described by reliable equations (e.g. the equilibrium equa-
tions)

Thus, what is considered to be the reference is verified exactly, while the rest,
i.e. the constitutive relations and the remaining experimental information, is
verified in an average sense. The modified constitutive relation error turns out
to be the sum of two errors: the first error is associated with the verification of
the constitutive relations, which are a priori unreliable: it is the constitutive
relation error, as described above; the second error concerns the unreliable
experimental information. This approach is also characterized by the fact that
it is the only approach which leads to an actual error and, therefore, which
is capable of dealing with the validation problem. For further details in the
context of structural dynamics, see [20,22]. The latest developments can be
found in [20,39,28].

Let us note that the approaches described in [40,25,26] can be viewed as vari-
ations of the modified constitutive relation error method. For more details on
the validation of deterministic models, see [5,6,12,9,15].

The stochastic case has rarely been considered. A complete parallel with
Tarantola’s theory [34] was identified recently in [38]. This option requires
a choice of norm of the ”statistical” type for the unreliable experimental in-
formation, a direction which, until now, has been followed only in [37]. A
recent work [38] showed that this ”statistical” choice is not absolutely required
if the experimental data are uncertain. In other words, the norm currently
used, which is ”mechanical”by nature, is at least equally effective; it filters the
experimental noise relatively well.

3.3 The CRE approach - Deterministic case

Let z = (u, F ) representing the boundary conditions for both displacements
and forces. The space of the admissible s = (U, σσ, z), denoted Sad, is the space
of the solutions of:

• the kinematic constraint equations U ∈ U

U|∂1Ω = u

• the equilibrium equations σσ ∈ S

div σσ = 0

σσn|∂2Ω = F
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Here, the intersection of ∂1Ω and ∂2Ω is usually nonempty; were it empty,
would the problem not be ill-posed anymore, and the solution be easily deter-
mined.

Then, the modified constitutive relation error for s ∈ Sad is:

η2(s) =
∫

Ω

Tr[(σσ − Kεε(U))K−1 (σσ − Kεε(U))]
dΩ

D2

+
r

1 − r

{

∣

∣

∣

∣

∣

∣

∣

∣

∣u − Ũd

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

1
+

∣

∣

∣

∣

∣

∣

∣

∣

∣F − F̃ d

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

}

(4)

r is a weighting coefficient representing how much we trust the experimental
results. Due to the denominator D and the choice of the norms ||| |||, the
two terms of the error have equivalent weights. The norms ||| |||1 and ||| |||2

are the classical energy norms which define
[

H1/2(∂1Ω)
]3

and
[

H−1/2(∂2Ω)
]3

:
they characterize the unreliable experimental information.

The problem to be solved becomes:

Find s ∈ Sad which minimizes:

s→ η2(s) = E2
CRE(s) +

r

1 − r
I2(s)

Sad →R (5)

For convenience, this problem can be described in terms of displacements by
introducing V ∈ U such that:

div Kεε(V ) = 0

Kεε(V )n|∂2Ω = F (6)

(V − U) = 0 over the complementary part of ∂2Ω

Let γ = (U, V , z) and let Γad be the space of the admissible γ. The above
problem becomes:

Find γ ∈ Γad which minimizes:

γ → η2(γ)

Γad →R (7)

with:

η2(γ) =
∫

Ω

Tr[(εε(U − V ))K (εε(U − V ))]
dΩ

D2

+
r

1 − r

{

∣

∣

∣

∣

∣

∣

∣

∣

∣u − Ũd

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

1
+

∣

∣

∣

∣

∣

∣

∣

∣

∣F − F̃ d

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

}

(8)
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In order to go further, we will now work only with the boundary quantities z,
and the discretized form:

Find z ∈ Rn which minimizes:

z → η2(z)

Rn →R (9)

with η2(z) = zT Hz + r
1−r

(z − z̃)T Z(z − z̃).

One has:
[

H +
r

1 − r
Z

]

z =
r

1 − r
Zz̃ (10)

where the operator H + r
1−r

Z is regular.

Remark: Today, for the weighting coefficient r we systematically use the
value 0.5; arguments in favor of this value are given later in the paper.

The calculation of the error and the correction procedure can be expensive
for industrial structures. To alleviate this problem, ad hoc reduced bases were
introduced in [39].

One might question the influence of the finite element discretization on the
value of the error and on the updating process. In [41], it was shown that the
updating process can counterbalance the discretization errors only in excep-
tional cases.

3.4 Extension of the CRE approach - noise-free measurements

The experimental data z̃ = (Ũd, F̃ d) are random, but in this section we will
assume that they are not affected by measurement errors; their probability
density function is dQ̃(z̃) and the corresponding space is Hz.

3.4.1 z-value given by the model

Let z = (u, F ) calculated by the model. (u = U|∂1Ω, F = σσn|∂2Ω) In discretized
form, z is characterized by:

Hz = 0 (11)

where the operator H is the one defined in (9) and (10). Next, let us split z

into two parts zI and zR, where zI is the excitation which gives the model a
unique response such that:

zR = Q(m(θ))zI (12)
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Thus, relation (12) is a modified form of (11). As an illustration, consider the
case of a forced-vibration problem discretized with the finite element method:
zI is the nodal forces vector, whereas zR is the nodal response vector; if ω is
the angular frequency of the excitation, Q(m(θ)) = (K(m(θ)) + iωB(m(θ))−
ω2M(m(θ)))−1 with the general case where global stiffness, damping and mass
matrices depend on the random variable m(θ).

An important point is that here zI is assumed to be perfectly known, in a
deterministic sense or not. In order to simplify the presentation, we will first
examine the deterministic case, which is also the most usual case in practice.
The general case will be considered later.

Here, the difficulty in deriving error estimators for validation purposes resides
in the condition that for an ”exact” stochastic model the error should be zero.

Definition: A stochastic model is said to be ”exact” if for any excitation the
probability density function of z calculated by the model is equal to the
probability density function of z derived from the experimental data.

The scientific stumbling block resides, on the one hand, in the description of
the experimental values (which, in practice, is very succinct) and, on the other
hand, in the comparison of the experimental values with the values given by
the model.

The guiding principle in the approach we are proposing to solve this problem
consists in observing that there are, in fact, two sources of perturbation [4]:

• one is associated with the model itself (indicator µ)
• the other is related to the fluctuations inherent in the stochastic nature of

the model (indicator µ′)

The first step consists in considering the case where the model is ”exact”
(µ = 0); the solution calculated with the model can be written:

z(m(θ)) = z̄ + µ′







[

Q − Q
]

z̄I

0





 (13)

where •̄ =
∫

Hm
• dP (m). This quantity must be compared with the experi-

mental data.

For a nearly similar model (µ 6= 0), if one neglects the second-order terms, the
solution calculated with the model can be written:

z(m(θ)) + µ∆z(m(θ)) ≈ z̄ + µ∆z̄ + µ′







[

Q − Q
]

z̄I

0






(14)
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In other words, one can say that in first-order approximation the errors on the
model itself affect the mean value, and nothing else than the mean value.

3.4.2 Reconstruction of experimental data

Expression (14) plays a major role in what we call ”reconstructed experimen-
tal data”. Let us recall that from the experimental side very little statistical
information is available. Thus, it seems reasonable when the excitation is de-
terministic and the measurements are noise-free to use only the mean value.
Consequently, the reconstructed experimental data is:







〈z̃R〉

z̃I






+







[Q(m(θ)) − Q]z̃I

0






(15)

where 〈z̃〉 =
∫

Hz
z̃dQ̃(z̃).

When the excitation z̃I is a known random function, one has:

z̃I(l̃(θ)) (16)

where l̃ is a vector random variable whose probability density function and
associated space are dL̃(l̃) and Hl respectively. In the general case, the recon-
structed experimental data is:







〈z̃R〉

z̃I





 +







Q(m(θ))z̃I(l̃(θ)) − Q
∫

Hl
z̃IdL̃(l̃)

0





 (17)

3.4.3 The constitutive relation error for validation

Let us proceed with the usual situation where the excitation is deterministic.
In this case, the modified constitutive relation error is:

η2(z) =

∫

Hm

[

zT Hz +
r

1 − r

(

z − 〈z̃〉 − (L − L)〈z̃〉
)T

Z
(

z − 〈z̃〉 − (L − L)〈z̃〉
)

]

dP (m)

(18)

with:

Lz̃ =







Qz̃I

0





 (19)

z is a function of m; let Zm be the corresponding space. Then, the problem
associated with the error calculation is:
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Find z ∈ Zm which minimizes:

z′ → η2(z′)

Zm →R (20)

Property 3: If H is a positive operator and Z a positive definite operator,
the previous problem has only one solution for 0 < r < 1.

Proof: It suffices to prove uniqueness. Let ∆ be the difference between two
solutions. The minimum conditions yield:

∫

Hm

[

∆T H∆ +
r

1 − r
∆T Z∆

]

dP (m) = 0 (0 < r < 1)

and, therefore, ∆ = 0, which demonstrates uniqueness. 2

Fundamental Property 4: With the conditions of Property 3, the modified
constitutive relation error is zero if and only if the model is ”exact” with
respect to the experimental data.

Proof: The error is zero if and only if ∀m ∈ Hm:

Hz = 0

z = 〈z̃〉 +
(

L − L
)

〈z̃〉

The first condition is equivalent to saying that z verifies the equations of the
model exactly; then, z can be written:

z =







Q(m)zI

zI







The second equation can also be written ∀m ∈ Hm:

QzI = 〈z̃R〉 +
[

Q − Q
]

z̃I

zI = z̃I

and, therefore,
z̄ = 〈z̃〉

Therefore, the reconstructed experimental data is:

z̄ +
(

L(m) − L
)

z̄

or:
L(m)z̄ = zR 2
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3.4.4 Example

Let us consider a beam made up of two homogeneous parts (Young’s modulus
E0) connected by a joint (Young’s modulus E1). This beam is subjected to an
excitation F at frequency ω, as described in Figure 2. The frequency range
being studied comprises the first five modes. Table 1 summarizes the main
characteristics of the beam.

Joint

F

E1E0

Fig. 2. Beam with a joint

Table 1
Main characteristics

Length 10 m

Section 1.10−2 m2

Moment of inertia 8.33.10−6 m4

Density 2, 700 kg/m3

What we mean by the ”model” is defined in Table 2, where two types of beams
are considered. The Young’s moduli are modeled in the form:

e = E(1 + αδ) (21)

where δ is a modified Gaussian variable (such that e ≥ aE, a > 0) with zero
mean and unit standard deviation.

For this academic example, the measurements were simulated by introducing a
hysteretic damping factor of 1 % and considering a frequency range containing
the first five modes. The values retained were those which would have been
given by ten equally-spaced accelerometers along the beam. Table 3 gives the
values of the parameters E,α used to derive these experimental values. Here,
we did not introduce any measurement noise.

Table 2
Stochastic parameters for the model (two cases)

E0, α0 E1, α1

Case 1 71.109Pa, 0 71.109Pa, 0.1

Case 2 71.109Pa, 0.02 71.109Pa, 0.02

14



Table 3
Stochastic parameters used to define the measurements

E0, α0 E1, α1

Case 1 71.109Pa, 0 142.10
9Pa, 0.1

Case 2 71.109Pa,0.05 71.109Pa,0.05

For both cases, the spatial distribution of the constitutive relation error was
calculated (Figure 3). For Case 1, there is a peak in the joint, which is consis-
tent with the fact that this was the most poorly modeled element. The error
distribution for Case 2 is also consistent with a uniform modeling error along
the beam. Figure 3 also gives the constitutive relation error, which is an in-
dicator of the quality of the model, and the error in the experimental results.
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Fig. 3. Error values for the two cases

3.5 Extension of the CRE-approach - measurements with noise

The model is probabilistic and the experimental data are affected by measure-
ment noise. More precisely, the fluctuations δ̃ due to the measurement noise
are defined by the probability density function dQ̃(δ̃). The associated Hilbert
space is Hδ. If the measurement noise is Gaussian, the probability density
function is defined by the covariance matrix, which can reasonably be consid-
ered to be diagonal, with a generic term σ2. Of course, one can easily introduce
the value of the measured quantity into the expression of the standard devi-
ation. The important point is that the measurement noise be a fully-described
random phenomenon.

In order to simplify the presentation, the excitation will be assumed to be
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deterministic, but, of course, affected by measurement noise. Then, the con-
stitutive relation error is:

η2(z) =
∫

Hm×Hδ

[

zT Hz +
r

1 − r
(z − z̃)T

Z (z − z̃)
]

dP (m)dQ̃(δ̃) (22)

with
z̃(δ̃) = 〈z̃〉 + δ̃ + (L − L)

[

〈z̃〉 + δ̃
]

(23)

where 〈z̃〉 is the statistical mean of z̃. In addition, we consider a noise such
that: ∫

Hδ

δ̃dQ̃(δ̃) = 0 (24)

Let us recall that:

• •̄ =
∫

Hm
• dP (m)

• L(m) =







0 Q(m)

0 0







The associated problem is:

Find z(m, δ̃) which minimizes

z′ → η2(z′)

Zm,δ →R (25)

This problem leads to the resolution of ∀(m, δ̃) ∈ Hm × Hδ:
[

H(m) +
r

1 − r
Z(m)

]

z =
r

1 − r

[

I + (L(m) − L̄)
]

(〈z̃〉 + δ̃) (26)

which can be solved using the polynomial chaos technique. Here, the error is
never zero; it is polluted by the measurement noise.

Remark: The validation method for a stochastic model in an uncertain envi-
ronment which we just developed can be transposed with no major difficulty
to time-dependent nonlinear problems, either in quasi-static or in dynamic
situations. However, the minimization of the modified constitutive relation
error may lead to a problem whose resolution using the polynomial chaos
technique is very computationally intensive. The question of the improve-
ment of this resolution should probably be addressed.

4 Application to an industrial structure

Before illustrating the extension of the constitutive relation error to the stochas-
tic case, let us briefly review this approach in the deterministic case. Its exten-
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sion to the stochastic case will not be detailed here; it follows the same steps
we developed in Section 3.

4.1 Validation of dynamics models: review of the deterministic case

We are assuming small displacement and we seek harmonic solutions at the
angular frequency ω, with the following equilibrium equation:

div σσ + f
d
(d(θ)) = Γ

with:

Γ = ρ
∂2U

∂t2

where ρ is the density.

We need some data in addition to the equations presented above (frequency,
direction and amplitude of the excitation, boundary conditions, . . . ) in order
to solve the problem. In the framework of model updating and validation,
these data come from measurements on real structures. For example, let us
consider a structure excited at certain points and whose displacements are
measured at other locations. In this example, we partition the data as follows:

The reliable measurements:

• the measured angular frequency ω;
• the positions and directions of the excitation and sensors.

The less reliable measurements:

• the amplitudes of the forces F̃d and displacements Ũd at the points of
excitation;

• the amplitudes of the displacements at the sensor points Ũω, which con-
stitute a finite-dimension vector containing all the discrete measurement
values.

This partitioning is given only as an example and can vary depending on the
problem. The reliable quantities and equations define the admissible solution.
We seek a solution which is admissible and which verifies the less reliable
equations and quantities as perfectly as possible. The problem we need to
solve is:

Find s ∈ Sω
ad

which minimizes η2
ω(s′) with s′ ∈ Sω

ad

where η2
ω(s′) is the modified constitutive relation error. In the case of a single

excitation, the measured displacements are normalized by the amplitude of
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the force vector; thus, only the amplitudes of the displacements appear in the
expression of the modified error, which can be written at a given frequency as:

η2
ω(s) =

ECRE
2
ω(s)

D2
ω

+
r

1 − r

‖ΠU − Ũω‖
2

‖Ũω‖
2

(27)

where ECRE
2
ω(s) is the constitutive relation error and D2

ω represents the energy
of the structure at the frequency ω; therefore the first term is dimensionless.
The second term represents the error in the measurements and is also dimen-
sionless. For simplicity, we will write:

η2
ω(s) = ECRE

2
ωr(s) +

r

1 − r
I2
ωr(s) (28)

where:

ECRE
2
ωr(s) =

ECRE
2
ω(s)

D2
ω

(29)

I2
ωr(s) =

‖ΠU − Ũω‖
2

‖Ũω‖
2

(30)

The CRE is greater than or equal to zero. It is equal to zero if the solution s

verifies the constitutive relations. η2
ω(s) contains all the less reliable quantities

and equations which are to be verified by the admissible solution as closely as
possible.

Π is a projection operator which, when applied to vector U , yields the value
of the vector at the sensors. ‖•‖2 is a norm. The coefficient r

1−r
is a weighting

factor which enables us to assign a greater or lesser degree of confidence to
the measurements. The optimum choice for r will be discussed later.

In the case of multiple excitations, additional terms appear in the expression
of η2

ω(s) in order to reflect the fact that the amplitudes of the measured forces
are unreliable quantities. For more details, see [22].

Remark: There are other examples where one could consider that the direction
or the position of the excitation is unreliable. In these cases, the definitions of
the modified constitutive relation error and of admissibility should be changed
to reflect this new assumption.

The second term of the modified CRE can be expressed as:

I2
ωr =

‖ΠU − Ũω‖
2

‖Ũω‖
2

(31)

18



This term can be normalized and divided into contributions from each sensor
at frequency ω:

I2
ωr =

NS
∑

i=1

‖ΠU − Ũω‖i
2

‖Ũω‖
2

=
NS
∑

i=1

I2
iω (32)

‖•‖2
i is the norm obtained by setting all the components of the vector, except

that related to sensor i, to zero. NS is the number of sensors.

When the structure is studied in a frequency range, we introduce a weighting
factor z(ω) such that:

∫ ωmax

ωmin

z(ω) dω = 1 z(ω) ≥ 0 (33)

Examples of such weighting factors are:

z(ω) =
1

ωmax − ωmin

(34)

z(ω) =
1

m

m
∑

i=1

δωi
(ω) (35)

δωi
is the Dirac distribution associated with the value ωi, where ωi i ∈ 1, ...m

denote the free-vibration eigenfrequencies which are comprised between ωmin

and ωmax.

The modeling error in a frequency range is given by:

ECRE
2
T =

∫ ωmax

ωmin

ECRE
2
ωrz(ω) dω (36)

and the local contributions become:

ECRE
2
T,E =

∫ ωmax

ωmin

ECRE
2
Eωz(ω) dω (37)

The error in the measurements is given by:

I2
T =

∫ ωmax

ωmin

I2
ωrz(ω) dω (38)

and the local contributions become:

I2
iT =

∫ ωmax

ωmin

I2
iωz(ω) dω (39)

Now, the modified constitutive relation error is:

η2
T = ECRE

2
T + I2

T (40)
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The value of ECRE
2
T represents the relative quality (in %) of the numerical

model with respect to the measurements.

4.2 Localization and correction of errors: review of the deterministic case

This approach is based on the same principles as adaptive mesh refinement,
in which each iteration consists in locating the most erroneous regions and
correcting these regions. Here, the corrections do not concern mesh parameters,
but physical parameters of the mathematical model.

4.2.1 Preliminary stage: reconstruction of experimental data

Once the erroneous measurements have been localized, it is possible to remove
these data from the measurements or to correct them (correcting this error
causes the value of I2

iT to decrease at the corresponding sensor). A correction
is possible only if the sources of error can be identified from the test reports
or simply by trying the most common causes of error, such as errors in the
directions of sensors and exciters, gain errors, . . .

Once the experimental data have been corrected, the error should be divided
almost equally among all the sensors, which means that all the measurements
are of equivalent quality.

4.2.2 Localization of modeling errors

Now that the measurement values have been updated as correctly as possible,
one can update the model based on the updated experimental results. The
value of ECRE

2
T represents the relative quality (in %) of the numerical model

with respect to the measurements in a certain frequency range. Since this value
represents an error measure of the model with respect to the measurements
considered as the reference, it can be used to decide whether model updating
is necessary or not.

If model updating is considered necessary, one starts from our mathemati-
cal model, which depends on a number of uncertain parameters (such as the
Young’s modulus, the thickness or the damping factors of certain parts). One
arranges these structural parameters into a vector k and calls the correspond-
ing space k. The selection of the ”most erroneous” substructures is based on
the criterion:

ECRE
2
T,E ≥ δ max

E∈E

ECRE
2
ET (41)
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with, for example, δ = 0.8. Let Z be the complete set of the substructures
which verify (41).

4.2.3 Correction of modeling errors

The localization step enables one to select the regions of the structure where
the modeling error is large. Only parameters belonging to these substructures
are selected for correction. The problem is:

Find k ∈ kz which minimizes:

k−→ J(k)

kz −→R (42)

The functional J(k) is defined by:

J(k) =
∫ ωmax

ωmin

η2
ω z(ω) dω

This is a nonlinear problem with respect to the parameters in k.

4.2.4 Interruption of the model updating process

Once the correction has been made, the value of ECRE
2
T is recalculated. If it

falls below the required quality level ECRE
2
0, the updating process is termi-

nated. If not, a new iteration consisting of a localization step and a correction
step is performed. In each iteration, new erroneous substructures may appear
as the result of the substructures from the previous stages being corrected.
This approach introduces a regularization mechanism into the inverse (ill-
posed) problem. The verification of ECRE

2
T < ECRE

2
0 enables one to determine

whether the model is valid. There could be situations in which one cannot
reduce the error below the required quality level by acting on the model’s pa-
rameters. This would indicate that errors are present in the model itself and
not only in its parameters.

4.3 Validation and updating of a dynamic model of SYLDA5 - deterministic
case

The structure is a satellite support called SYLDA5 (Figure 4). The purpose
of this component is to allow the Ariane 5 launcher to place two satellites into
orbit. This structure is made of very different materials in terms of stiffness
as well as density, and it includes different types of joints. The geometry is
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axisymmetric and the structure is 10 meters in total height and 5 meters in
diameter. The experimental modes were obtained by a force appropriation
method using 5 exciters. A total of 260 accelerometers where placed in various
parts of the structure.

Fig. 4. The SYLDA5 satellite support

The model consists of plate elements for the cylinders and cone and beam
elements for the joints and the upper beam of the payload. The first tests
have shown that it was essential to take the ground into account in the model;
this was done using 3 rotational springs, one translation spring and a rigid-
body-movement constraint for all the bottom nodes. The size of the finite
element model was decreased from 28,000 to 300 DOFs by using a reduced
basis [39]. The model was updated in a previous work [28]. A summary is
given in Table 4. The initial error of 12.39 % was reduced to 2.27 % after four
iterations.

Table 4
Summary of the updating process. (+: mode swapped with Modes 4 and 5)

Iterations Initial 1 2 3 4

Error (%) ECRE ∆f MAC ECRE ∆f ECRE ∆f ECRE ∆f ECRE ∆f

Mode 1 3.45 -3.51 99.62 2.65 -2.69 0.24 0.28 2.05 2.05 1.67 1.86

Mode 2 3.25 -3.31 99.73 2.46 -2.49 0.39 0.37 2.19 2.15 1.54 1.43

Mode 3 5.10 -5.24 96.53 4.06 -4.14 0.40 -0.40 1.49 1.48 1.49 1.48

Mode 4 10.29 -10.85 99.11 9.78 -10.29 9.03 -9.48 4.09 -4.15 4.28 -4.22

Mode 5 9.86 -10.39 99.64 9.36 -9.83 8.61 -8.99 3.66 -3.75 3.76 -3.98

Mode 6 3.47 3.45+ 97.45 1.91 1.90+ 0.10 0.10+ 2.66 2.63 0.00 0.00

Mode 7 27.15 23.60 98.77 1.27 1.27 1.27 1.27 3.36 3.30 2.71 2.67

Mode 8 27.77 24.09 98.87 1.92 1.90 1.92 1.90 4.00 3.92 3.36 3.30

Mode 9 1.78 -1.79 96.14 0.09 -0.09 0.09 -0.09 0.02 0.02 0.10 -0.10

Mode 10 1.24 -1.24 95.84 0.44 0.44 0.44 0.44 0.55 0.55 0.43 0.43

Mode 11 6.41 * * 1.01 * 1.04 * 2.11 * 1.65 *

Mode 12 4.82 * * 0.64 * 0.63 * 1.36 * 0.56 *

(ECRET
) 12.39 4.32 3.69 2.62 2.27

Now, let us introduce some randomness into this engineering structure in order
to see how the extension of the CRE works in the proposed stochastic case.
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4.4 Validation and updating of SYLDA5 - measurements with noise and de-
terministic dynamic modeling

We added a 5% uniform random noise to the measured values. We assumed
the mean values to be known.

For the updated model, we calculated the modified constitutive relation error
with the two contributions ECRE and I.

The values corresponding to the case of noise-free measurements are denoted
ECRE0 and I0.

Figure 5 gives the values of these errors in terms of the weighting factor r
1−r

.
It is interesting to note that for values close to 1 the effect of noise is very
small. Moreover, the curve which gives the model’s constitutive relation error
ĒCRE in terms of r

1−r
is relatively flat, which means that ĒCRE depends very

little on r
1−r

. This is the reason why, at the present time, we systematically
take r = 0.5 for structures similar to SYLDA5.

Figure 6 gives the contributions of the elements to the modified constitutive
relation error for the two cases (without and with noise). Here, the value of

r
1−r

is set relatively high in order to emphasize the influence of the noise. The
noise does not appear to modify the localization map very much.
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4.5 Validation of SYLDA5 with a probabilistic dynamic model

This is an academic example in which the experimental data resulted from a
calculation. The frequency range being studied contains the first six modes of
the structure. A deterministic excitation was applied at the top (see Figure
7). The only random variable was the stiffness of the ground. The Young’s
modulus was expressed as:

E = E0(1 + αδ)

where δ is a modified Gaussian variable with zero mean and unit standard
deviation.

The ”real” model used for the determination of the experimental data was
defined by:

E0 = 3 α = 1

24



ground

Fig. 8. Error values for the probabilistic dynamic model

We used the same sensors as in Section 4.3.

The model we want to validate is defined by:

E0 = 1 α = 0.5

Figure 8 shows the associated values of the constitutive relation error; we
get approximatively the same values, excepted for the stiffness of the ground,
whose contribution is much higher. So it is worth noting the accuracy with
which the modeling error was localized, which shows the efficiency of the
stochastic validation method applied to an industrial-sized problem.

5 Conclusion

The validation method we introduced here is very general; it is applicable to
probabilistic models in an uncertain experimental environment. The domains
of application concern, above all, complex structures which have been finely
modeled, for which the model’s validation must rely on only scarce experi-
mental data. One major characteristic of this approach, which is definitely
”mechanics-oriented”, is that it leads to a true error measure which enables
one to evaluate the quality of the model. This error measure is the keystone of
an updating method which, here, is identical to that which was developed for
the deterministic case. This updating method contains a regularization proce-
dure which is inherently non-artificial. This approach, which is an extension
of works done in the deterministic framework, follows the guiding principle
that part of the model is used as the reference. After updating, there remains
a residual error which characterizes a certain lack of knowledge of the model
whose evaluation is the focus of a new theory which is under development [42].
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[4] P. Ladevèze, Validation and verification of stochastic models in uncertain
environment through the constitutive relation error method, Internal Report
258, LMT-Cachan, in French (June 2003).

[5] J. Mottershead, M. Friswell, Model updating in structural dynamics: a survey,
Journal of Sound and Vibration 167 (2) (1993) 347–375.

[6] S. R. Ibrahim, Analytical dynamic model updating: The challenge for the
nineties, Transaction of the Institution of Engineers Australia 16 (1) (1991)
17.

[7] M. Baruch, Optimal Correction of Mass and Stiffness Matrices Using Measured
Modes, AIAA Journal 20 (11) (1982) 1623–1626.

[8] A. Berman, E. J. Nagy, Improvement of a Large Analytical Model Using Test
Data, AIAA Journal 21 (8) (1983) 1168–1173.

[9] M. Kaouk, D. Zimmerman, Structural Damage Assessment Using a Generalized
Minimum Rank Perturbation, AIAA Journal 32 (4) (1994) 836–842.

[10] D. Zimmerman, M. Kaouk, Eingenstructure Assignment Approach for
Structural Damage Detection, AIAA Journal 30 (7) (1992) 1848–1855.

[11] H. Berger, R. Ohayon, L. Quetin, L. Barthe, P. Ladèveze, M. Reynier, Updating
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Aérospatiale, Les Mureaux, in French (1983).
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