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We derive the asymptotic behavior of weighted quadratic variations of fractional Brownian motion B with Hurst index H = 1/4. This completes the only missing case in a very recent work by I. Nourdin, D. Nualart and C.A. Tudor. Moreover, as an application, we solve a recent conjecture of K. Burdzy and J. Swanson on the asymptotic behavior of the Riemann sums with alternating signs associated to B.

Introduction

Let B H be a fractional Brownian motion with Hurst index H ∈ (0, 1). Since the seminal works by Breuer and Major [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF], Dobrushin and Major [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF], Giraitis and Surgailis [START_REF] Giraitis | CLT and other limit theorems for functionals of Gaussian processes[END_REF] or Taqqu [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF], it is well-known that

• if H ∈ (0, 3 4 ) then

1 √ n n-1 k=0 n 2H (B H (k+1)/n -B H k/n ) 2 -1 Law ---→ n→∞ N (0, C 2 H );
(1.1)

• if H = 3 4 then 1 √ n log n n-1 k=0 n 3/2 (B 3/4 (k+1)/n -B 3/4 k/n ) 2 -1 Law ---→ n→∞ N (0, C 2 3 4 
);

(1.2)

• if H ∈ ( 3 4 , 1) then n 1-2H n-1 k=0 n 2H (B H (k+1)/n -B H k/n ) 2 -1 Law ---→ n→∞ "Rosenblatt r.v.". (1.3) 
1 Université Pierre et Marie Curie Paris VI, Laboratoire de Probabilités et Modèles Aléatoires, Bo îte courrier 188, 4 place Jussieu, 75252 Paris Cedex 05, France, inourdin@gmail.com 2 Université de La Rochelle Laboratoire Mathématiques, Image et Applications, Avenue Michel Crépeau, 17042 La Rochelle Cedex, France anthony.reveillac@univ-lr.fr 1 Here, C H > 0 denotes a constant depending only on H and which can be computed explicitly. Moreover, the term "Rosenblatt r.v." denotes a random variable whose distribution is the same as that of the Rosenblatt process Z at time one, see (1.9) below. Now, let f be a real function assumed to be regular enough. Very recently, the asymptotic behavior of

n-1 k=0 f (B H k/n ) n 2H (B H (k+1)/n -B H k/n ) 2 -1 (1.4)
received a lot of attention, see [START_REF] Gradinaru | Convergence of weighted power variations of fractional Brownian motion[END_REF][START_REF] Neuenkirch | Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion[END_REF][START_REF] Nourdin | A simple theory for the study of SDEs driven by a fractional Brownian motion[END_REF][START_REF] Nourdin | Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion[END_REF][START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of fractional Brownian motion[END_REF] (see also the related works [START_REF] Nourdin | Weighted power variations of iterated Brownian motion[END_REF][START_REF] Réveillac | Estimation of quadratic variation for two-parameter diffusions[END_REF][START_REF] Réveillac | Convergence of finite-dimensional laws of the weighted quadratic variations process for some fractional Brownian sheets[END_REF][START_REF] Swanson | Variation of the solution to a stochastic heat equation[END_REF]).

The initial motivation of such a study was to derive the exact rates of convergence of some approximation schemes associated to scalar stochastic differential equations driven by B H , see [START_REF] Gradinaru | Convergence of weighted power variations of fractional Brownian motion[END_REF][START_REF] Neuenkirch | Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion[END_REF][START_REF] Nourdin | A simple theory for the study of SDEs driven by a fractional Brownian motion[END_REF] for precise statements. But it turned out that it was also interesting for itself because it highlighted new phenomena with respect to (1.1)- (1.3). Indeed, in the study of the asymptotic behavior of (1.4), a new critical value (H = 1 4 ) has appeared. More precisely:

• if H < 1 4 then n 2H-1 n-1 k=0 f (B H k/n ) n 2H (B H (k+1)/n -B H k/n ) 2 -1 L 2 ---→ n→∞ 1 4 1 0
f ′′ (B H s )ds;

(1.5)

• if 1 4 < H < 3 4 then 1 √ n n-1 k=0 f (B H k/n ) n 2H (B H (k+1)/n -B H k/n ) 2 -1 Law ---→ n→∞ C H 1 0 f (B H s )dW s (1.6) 
for W a standard Brownian motion independent of B H ;

• if H = for W a standard Brownian motion independent of B 3/4 ;

• if H > 3 4 then

n 1-2H n-1 k=0 f (B H k/n ) n 2H (B H (k+1)/n -B H k/n ) 2 -1 L 2 ---→ n→∞ 1 0 f (B H s )dZ s (1.8)
for Z the Rosenblatt process defined by

Z s = I X 2 (L s ), (1.9) 
where I X 2 denotes the double stochastic integral with respect to the Wiener process X given by the transfer equation (2.3) and where, for every s ∈ [0, 1], L s is the symmetric square integrable kernel given by

L s (y 1 , y 2 ) = 1 2 1 [0,s] 2 (y 1 , y 2 ) s y 1 ∨y 2 ∂K H ∂u (u, y 1 ) ∂K H ∂u (u, y 2 )du.
Even if it is not completely obvious at first glance, convergences (1.1) and (1.5) well agree. Indeed, since 2H -1 < - 1 2 if and only if H < 1 4 , (1.5) is actually a particular case of (1.1) when f ≡ 1. The convergence (1.5) is proved in [START_REF] Nourdin | Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion[END_REF] while the other cases (1.6)- (1.8) are proved in [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of fractional Brownian motion[END_REF]. On the other hand, notice that the relations (1.5)-(1.8) do not cover the critical case H = 1 4 . Our first main result completes this important (see why just below) missing case:

Theorem 1.1. If H = 1 4 then 1 √ n n-1 k=0 f (B 1/4 k/n ) √ n(B 1/4 (k+1)/n -B 1/4 k/n ) 2 -1 Law ---→ n→∞ C 1/4 1 0 f (B 1/4 s )dW s + 1 4 1 0 f ′′ (B 1/4 s )ds
(1.10) for W a standard Brownian motion independent of B 1/4 and where

C 2 1/4 = 1 2 ∞ p=-∞ |p + 1| + |p -1| -2 |p| 2 < ∞.
Here, it is interesting to compare the obtained limit in (1.10) with those obtained in the recent work [START_REF] Nourdin | Weighted power variations of iterated Brownian motion[END_REF]. In [START_REF] Nourdin | Weighted power variations of iterated Brownian motion[END_REF], the authors also studied the asymptotic behavior of (1.4) but when the fractional Brownian motion B H is replaced by an iterated Brownian motion Z, that is the process defined by Z t = X(Y t ), t ∈ [0, 1], with X and Y two independent standard Brownian motions. Iterated Brownian motion Z is self-similar of index 1 4 and has stationary increments. Thus, although if it is not Gaussian, Z is "close" to the fractional Brownian motion B 1/4 . For Z instead of B 1/4 , it is proved in [START_REF] Nourdin | Weighted power variations of iterated Brownian motion[END_REF] that the correctly renormalized weighted quadratic variation (which is note exactly defined as in (1.4), but rather by means of a random partition composed of Brownian hitting times) converges in law towards the so-called weighted Brownian motion in random scenery at time one, defined as

√ 2 +∞ -∞ f (X x )L x 1 (Y )dW x ,
compare with the right-hand side of (1.10). Here, {L x t (Y )} x∈R,t∈[0,1] stands for the jointly continuous version of the local time process of Y , while W denotes a two-sided standard Brownian motion independent of X and Y .

For now, we take B H = B 1/4 to be a fractional Brownian motion with Hurst index H = 1 4 . This particular value of H is important because the fractional Brownian motion with Hurst index H = 1 4 has a remarkable physical interpretation in terms of particle systems. Indeed, if one consider an infinite number of particles, initially placed on the real line according to a Poisson distribution, performing independent Brownian motions and undergoing "elastic" collisions, then the trajectory of a fixed particle (after rescaling) converges to a fractional Brownian motion with Hurst index H = 1 4 . This striking fact has been first pointed out by Harris in [START_REF] Harris | Diffusions with collisions between particles[END_REF], and then rigorously proven in [START_REF] Dürr | Asymptotics of particle trajectories in infinite one-dimensional systems with collisions[END_REF] (see also references therein). Now, let us explain an interesting consequence of a slight modification of Theorem 1.1 towards a first step in the construction of a stochastic calculus with respect to B 1/4 . As it is nicely explained by Swanson in [START_REF] Swanson | Variation of the solution to a stochastic heat equation[END_REF], there are at least two kinds of Stratonovitch-type Riemann sums that one can consider in order to define

1 0 f (B 1/4 s ) • dB 1/4 s
when f is a real smooth function. The first corresponds to the so-called "trapezoid rule" and is given by

S n (f ) = n-1 k=0 f (B 1/4 k/n ) + f (B 1/4 (k+1)/n ) 2 B 1/4 (k+1)/n -B 1/4 k/n .
The second corresponds to the so-called "midpoint rule" and is given by

T n (f ) = ⌊n/2⌋ k=1 f (B 1/4 (2k-1)/n ) B 1/4 (2k)/n -B 1/4 (2k-2)/n .
By Theorem 3 in [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of fractional Brownian motion[END_REF] (see also [START_REF] Cheridito | Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H in (0, 1/2)[END_REF][START_REF] Gradinaru | m-order integrals and Itô's formula for non-semimartingale processes; the case of a fractional Brownian motion with any Hurst index[END_REF][START_REF] Gradinaru | Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H ≥ 1 4[END_REF]), we have that

1 0 f ′ (B 1/4 s )d • B 1/4 s := lim n→∞ S n (f ′ ) exists in probability
and verifies the following classical change of variable formula:

1 0 f ′ (B 1/4 s )d • B 1/4 s = f (B 1/4 1 ) -f (0). (1.11)
On the other hand, it is quoted in [START_REF] Swanson | Variation of the solution to a stochastic heat equation[END_REF] that Burdzy and Swanson conjectured 3 that

1 0 f ′ (B 1/4 s )d ⋆ B 1/4 s := lim n→∞ T n (f ′ ) exists in law
and verifies, this time, the following non classical change of variable formula:

1 0 f ′ (B 1/4 s )d ⋆ B 1/4 s Law = f (B 1/4 1 ) -f (0) - κ 2 1 0 f ′′ (B 1/4 s )dW s , (1.13) 
where κ is an explicit universal constant and W denotes a standard Brownian motion independent of B 1/4 . Our second main result is the following:

3 In reality, Burdzy and Swanson conjectured (1.13) not for the fractional Brownian motion B 1/4 but for process F defined by

Ft = u(t, 0), t ∈ [0, 1], (1.12) 
where

ut = 1 2 uxx + Ẇ (t, x), t ∈ [0, 1], x ∈ R, with initial condition u(0, x) = 0.
(Here, as usual, Ẇ denotes the space-time white noise on [0, 1] × R). It is immediately checked that F is a centered Gaussian process with covariance function

E(FsFt) = 1 √ 2π √ t + s -|t -s| .
so that F is actually a bifractional Brownian motion of indices 1 2 and 1 2 in the sense of Houdré and Villa [START_REF] Houdré | An Example of Infinite Dimensional Quasi-helix Stochastic Models[END_REF]. Using the main result of [START_REF] Lei | A decomposition of the bifractional Brownian motioin and some applications[END_REF], we have that B 1/4 and F actually differ only from a process with absolutely continuous trajectories. As a direct consequence, using a Girsanov type transformation, we immediately see that it is equivalent to prove (1.13) either for B 1/4 or for F .

As quoted in [START_REF] Russo | On the bifractional Brownian motion[END_REF]Remark 12], notice finally that the change of variable formula (1.11) also holds for F .

Theorem 1.2. The conjecture of Burdzy and Swanson is true. More precisely, (1.13) holds for any real function f : R → R verifying (H 9 ) (see Section 3 below).

Finally, we would mention that the strategy we used in this paper can also be derived in order to obtain the following analogue of Theorem 1.2, that we propose (in order to keep the length of the present paper within limit) to prove in a forthcoming paper: Theorem 1.3. Let f : R → R be smooth enough. Then

1 0 f ′ (B 1/6 s )d • B 1/6 s
exists in law and verifies

1 0 f ′ (B 1/6 s )d • B 1/6 s Law = f (B 1/6 1 ) -f (0) - κ 6 1 0 f ′′′ (B 1/6 s )dW s ,
where κ is an explicit universal constant and W denotes a standard Brownian motion independent of B 1/6 .

The rest of the paper is organized as follows. In Section 2, we recall some notion concerning fractional Brownian motion. In Section 3, we prove Theorem 1.1. In Section 4, we prove Theorem 1.2.

Preliminaries and notations

We begin by briefly recalling some basic facts about stochastic calculus with respect to a fractional Brownian motion. We refer to [START_REF] Nualart | Stochastic calculus with respect to the fractional Brownian motion and applications[END_REF] for further details. Let B H = (B H t ) t∈[0,1] be a fractional Brownian motion with Hurst parameter H ∈ (0, 1 2 ) defined on a probability space (Ω, A, P ). We mean that B H is a centered Gaussian process with the covariance function

R H (s, t) = 1 2 t 2H + s 2H -|t -s| 2H . (2.1)
We denote by E the set of step R-valued functions on [0, 1]. Let H be the Hilbert space defined as the closure of E with respect to the scalar product

1 [0,t] , 1 [0,s] H = R H (t, s).
The covariance kernel R H (t, s) introduced in (2.1) can be written as

R H (t, s) = s∧t 0 K H (s, u)K H (t, u)du,
where K H (t, s) is the square integrable kernel defined by 

K H (t, s) = c H t s H-1 2 (t -s) H-1 2 -(H - 1 2 ) s 1 2 -H t s u H-3 2 (u -s) H-1 2 du , 0 < s < t, (2.2) where c H 2 = 2H(1 -2H) -1 β(1 -2H, H + 1/2) -
(t, s) = 0 if s ≥ t. Let K * H : E → L 2 ([0, 1]
) be the linear operator defined by:

K * H 1 [0,t] = K H (t, •).
The following equality holds for any s, t ∈ [0, 1]:

1 [0,t] , 1 [0,s] H = K * H 1 [0,t] , K * H 1 [0,s] L 2 ([0,1]) = E B H t B H s
and then K * H provides an isometry between the Hilbert spaces H and a closed subspace of L 2 ([0, 1]). The process X = (X t ) t∈[0,1] defined by

X t = B H (K * H ) -1 (1 [0,t] ) (2.3)
is a Wiener process, and the process B H has an integral representation of the form

B H t = t 0 K H (t, s)dX s .
Let S be the set of all smooth cylindrical random variables, i.e. of the form

F = ψ(B H t 1 , . . . , B H tm ) (2.4) where m ≥ 1, ψ : R m → R ∈ C ∞ b and 0 ≤ t 1 < . . . < t m ≤ 1. The Malliavin derivative of F with respect to B H is the element of L 2 (Ω, H) defined by D s F = m i=1 ∂ψ ∂x i (B H t 1 , . . . , B H tm )1 [0,t i ] (s), s ∈ [0, 1]. In particular D s B H t = 1 [0,t] (s).
For any integer k ≥ 1, we denote by D k,2 the closure of the set of smooth random variables with respect to the norm

F 2 k,2 = E F 2 + k j=1 E |D j F | 2 H ⊗j .
The Malliavin derivative D verifies the chain rule:

if ϕ : R n → R is C 1 b and if (F i ) i=1,...,n is a sequence of elements of D 1,2 then ϕ(F 1 , . . . , F n ) ∈ D 1,2
and we have, for any s ∈ [0, 1]:

D s ϕ(F 1 , . . . , F n ) = n i=1 ∂ϕ ∂x i (F 1 , . . . , F n )D s F i .
The divergence operator I is the adjoint of the derivative operator D. If a random variable u ∈ L 2 (Ω, H) belongs to the domain of the divergence operator, that is if it verifies

|E DF, u H | ≤ c u F L 2 for any F ∈ S , then I(u) is defined by the duality relationship E F I(u) = E DF, u H , for every F ∈ D 1,2 .
For every n ≥ 1, let H n be the nth Wiener chaos of B H , that is, the closed linear subspace of L 2 (Ω, A, P ) generated by the random variables

{H n B H (h) , h ∈ H, |h| H = 1}
, where H n is the nth Hermite polynomial. The mapping I n (h ⊗n ) = n!H n B H (h) provides a linear isometry between the symmetric tensor product H ⊙n and H n . For H = 1 2 , I n coincides with the multiple stochastic integral. The following duality formula holds

E (F I n (h)) = E D n F, h H ⊗n , (2.5) 
for any element h ∈ H ⊙n and any random variable F ∈ D n,2 . Let {e k , k ≥ 1} be a complete orthonormal system in H. Given f ∈ H ⊙p and g ∈ H ⊙q , for every r = 0, . . . , p ∧ q, the rth contraction of f and g is the element of H ⊗(p+q-2r) defined as

f ⊗ r g = ∞ i 1 ,...,ir=1
f, e i 1 ⊗ . . . ⊗ e ir H ⊗r ⊗ g, e i 1 ⊗ . . . ⊗ e ir H ⊗r .

Note that f ⊗ 0 g = f ⊗ g equals the tensor product of f and g while, for p = q, f ⊗ p g = f, g H ⊗p . Finally, we mention the useful following multiplication formula: if f ∈ H ⊙p and g ∈ H ⊙q , then

I p (f )I q (g) = p∧q r=0 r! p r q r I p+q-2r (f ⊗ r g). (2.6)
3 Proof of Theorem 1.1

In all this section, B = B 1/4 denotes a fractional Brownian motion with Hurst index H = 1/4. Let

G n := 1 √ n n-1 k=0 f (B k/n )[ √ n(B (k+1)/n -B k/n ) 2 -1], n ≥ 1.
For k = 0, . . . , n -1 and t ∈ [0, 1], we set

δ k/n := 1 [k/n,(k+1)/n] and ε t := 1 [0,t] .
The relations between Hermite polynomials and multiple stochastic integrals (see Section 2) allow to write

√ n(B (k+1)/n -B k/n ) 2 -1 = √ n I 2 (δ ⊗2 k/n ). As a consequence: G n = n-1 k=0 f (B k/n )I 2 (δ ⊗2 k/n ).
In the sequel, for f : R → R, we will need assumption of the type:

Hypothesis (H q ):
The function f : R → R belongs to C q and is such that

sup t∈[0,1] E |f (i) (B t )| p < ∞
for any p ≥ 1 and i ∈ {0, . . . , q}.

We begin by the following technical lemma: Lemma 3.1. Let n ≥ 1 and k = 0, . . . , n -1. We have

(i) |E (B r (B t -B s ))| ≤ √ t -s for any r ∈ [0, 1] and 0 ≤ s < t ≤ 1, (ii) sup t∈[0,1] n-1 k=0 ε t , δ k/n H = n→∞ O(1), (iii) n-1 k,j=0 ε j/n , δ k/n H = n→∞ O(n), (iv) ε k/n , δ k/n 2 H - 1 4n ≤ √ k + 1 - √ k 4n ; consequently n-1 k=0 ε k/n , δ k/n 2 H - 1 4n -→ n→∞ 0.
Proof of Lemma 3.1.

(i) We have

E(B r (B t -B s )) = 1 2 ( √ t - √ s) + 1 2 |s -r| -|t -r| .
Using the classical inequality |b| -|a| ≤ |b -a|, the desired result follows.

(ii) Observe that

ε t , δ k/n H = 1 2 √ n √ k + 1 - √ k -|k + 1 -nt| + |k -nt| .
Consequently, we have

n-1 k=0 ε t , δ k/n H ≤ 1 2 + 1 2 √ n   ⌊nt⌋-1 k=0 √ nt -k - √ nt -k -1 + ⌊nt⌋ + 1 -nt -nt -⌊nt⌋ + n-1 k=⌊nt⌋+1 √ nt -k - √ nt -k -1   .
The desired conclusion follows easily.

(iii) It is a direct consequence of (ii):

n-1 k,j=0 ε j/n , δ k/n H ≤ n sup j=0,...,n-1 n-1 k=0 ε j/n , δ k/n H = n→∞ O(n).
(iv) We have

ε k/n , δ k/n 2 H - 1 4n = 1 4n √ k + 1 - √ k √ k + 1 - √ k -2 .
Thus, the desired bound is immediately checked by using 0

≤ √ x + 1 - √ x ≤ 1 available for x ≥ 0.
The main result of the current section is the following:

Theorem 3.2. Under Hypothesis (H 4 ), we have

G n Law -→ n→∞ C 1/4 1 0 f (B s )dW s + 1 4 1 0 f ′′ (B s )ds,
where W = (W t ) t∈[0,1] is a standard Brownian motion independent of B and

C 1/4 := 1 2 ∞ p=-∞ |p + 1| + |p -1| -2 |p| 2 < ∞.
Proof. This proof is mainly inspired by the first draft of [START_REF] Nourdin | Central limit theorems for multiple Skorohod integrals[END_REF]. During all the proof, C will denote a constant depending only on f (a) ∞ , a = 0, 1, 2, 3, 4, which can differ from one line to another.

Step 1.-We begin the proof by showing the following limits:

lim n→∞ E (G n ) = 1 4 1 0 E f ′′ (B s ) ds, (3.1) 
and

lim n→∞ E G 2 n = C 2 1/4 1 0 E f 2 (B s ) ds + 1 16 E 1 0 f ′′ (B s )ds 2 . (3.2)
Proof of (3.1): we can write

E (G n ) = n-1 k=0 E f (B k/n )I 2 (δ ⊗2 k/n ) = n-1 k=0 E D 2 (f (B k/n )), δ ⊗2 k/n H = n-1 k=0 E f ′′ (B k/n ) ε k/n , δ k/n 2 H = 1 4n n-1 k=0 E f ′′ (B k/n ) + n-1 k=0 E f ′′ (B k/n ) ε k/n , δ k/n 2 H - 1 4n 9 -→ n→∞ 1 4 1 0 E f ′′ (B s
) ds, by Lemma 3.1(iv) and under (H 4 ).

Proof of (3.2):

By the multiplication formula (2.6), we have

I 2 (δ ⊗2 j/n )I 2 (δ ⊗2 k/n ) = I 4 (δ ⊗2 j/n ⊗δ ⊗2 k/n ) + 4 I 2 (δ j/n ⊗δ k/n ) δ j/n , δ k/n H + 2 δ j/n , δ k/n 2 H . (3.3) Thus E G 2 n = n-1 j,k=0 E f (B j/n )f (B k/n )I 2 (δ ⊗2 j/n )I 2 (δ ⊗2 k/n ) = n-1 j,k=0 E f (B j/n )f (B k/n )I 4 (δ ⊗2 j/n ⊗δ ⊗2 k/n ) + 4 n-1 j,k=0 E f (B j/n )f (B k/n )I 2 (δ j/n ⊗δ k/n ) δ j/n , δ k/n H + 2 n-1 j,k=0 E f (B j/n )f (B k/n ) δ j/n , δ k/n 2 H = A n + B n + C n .
Using Malliavin integration by parts formula (2.5), A n can be expressed as follows:

A n = n-1 j,k=0 E D 4 (f (B j/n )f (B k/n )), δ ⊗2 j/n ⊗δ ⊗2 k/n H ⊗4 = 24 n-1 j,k=0 a+b=4 E f (a) (B j/n )f (b) (B k/n ) ε ⊗a j/n ⊗ε ⊗b k/n , δ ⊗2 j/n ⊗δ ⊗2 k/n H ⊗4 .
In fact, in the previous sum, each term is negligible except

n-1 j,k=0 E f ′′ (B j/n )f ′′ (B k/n ) ε j/n , δ j/n 2 H ε k/n , δ k/n 2 H = E   n-1 k=0 f ′′ (B k/n ) ε k/n , δ k/n 2 H 2   = E   1 4n n-1 k=0 f ′′ (B k/n ) + n-1 k=0 f ′′ (B k/n ) ε k/n , δ k/n 2 H - 1 4n 2   -→ n→∞ E 1 4 1 0 f ′′ (B s )ds 2 
, by Lemma 3.1(iv) and under (H 4 ).

The other terms appearing in A n make no contribution to the limit. Indeed, they have the form

n-1 j,k=0 E f (a) (B j/n )f (b) (B k/n ) ε j/n , δ k/n H 3 i=1 ε x i /n , δ y i /n H
(where x i and y i are for j or k) and, from Lemma 3.1 (i) (iii), we have that    sup j,k=0,...,n-1

3 i=1 ε x i /n , δ y i /n H = n→∞ O(n -3/2 ), n-1 j,k=0 ε j/n , δ k/n H = n→∞ O(n).
Still using Malliavin integration by parts formula (2.5), we can bound B n as follows:

|B n | ≤ 8 n-1 j,k=0 a+b=2 E f (a) (B j/n )f (b) (B k/n ) ε ⊗a j/n ⊗ε ⊗b k/n , δ j/n ⊗δ k/n H ⊗2 δ j/n , δ k/n H ≤ Cn -1 n-1 j,k=0 δ j/n , δ k/n H , by Lemma 3.1 (i) and under (H 4 ) = Cn -3/2 n-1 j,k=0 |ρ(j -k)| ≤ Cn -1/2 ∞ r=-∞ |ρ(r)| = n→∞ O(n -1/2 ),
where ρ(r)

:= |r + 1| + |r -1| -2 |r|, r ∈ Z. (3.4) 
Observe that the serie

∞ r=-∞ |ρ(r)| is convergent since |ρ(r)| ∼ |r|→∞ 1 2 |r| -3 2 .
Finally, we consider the term C n :

C n = 1 2n n-1 j,k=0 E f (B j/n )f (B k/n ) ρ 2 (j -k) = 1 2n ∞ r=-∞ (n-1)∧(n-1-r) j=0∨-r E f (B j/n )f (B (j+r)/n ) ρ 2 (r) -→ n→∞ 1 2 1 0 E f 2 (B s ) ds ∞ r=-∞ ρ 2 (r) = C 2 1/4 1 0 E f 2 (B s ) ds.
The desired convergence (3.2) follows.

Step

2.-Since the sequence (G n ) is bounded in L 1 , the sequence G n , (B t ) t∈[0,1] is tight in R×C ([0, 1]). Assume that G ∞ , (B t ) t∈[0,1] denotes the limit in law of a certain subsequence of G n , (B t ) t∈[0,1] , denoted again by G n , (B t ) t∈[0,1] .
We have to prove that

G ∞ Law = C 1/4 1 0 f (B s )dW s + 1 4 1 0 f ′′ (B s )ds,
where W denotes a standard Brownian motion independent of B, or equivalently that

E e iλG∞ | (B t ) t∈[0,1] = exp i λ 4 1 0 f ′′ (B s )ds - λ 2 2 C 2 1/4 1 0 f 2 (B s )ds . (3.5)
This will be done by showing that for every random variable ξ of the form (2.4) and every real number λ, we have

lim n→∞ φ ′ n (λ) = E e iλG∞ ξ i 4 
1 0 f ′′ (B s )ds -λC 2 1/4 1 0 f 2 (B s )ds (3.6)
where

φ ′ n (λ) := d dλ E e iλGn ξ = iE G n e iλGn ξ , n ≥ 1.
Let us make precise this argument. Because G ∞ ,

(B t ) t∈[0,1] is the limit in law of G n , (B t ) t∈[0,1] and (G n ) is bounded in L 1 , we have that E(G ∞ ξ e iλG∞ ) = lim n→∞ E G n ξ e iλGn , ∀λ ∈ R,
for every ξ of the form (2.4). Furthermore, because convergence (3.6) holds for every ξ of the form (2.4), the conditional characteristic function λ → E e iλG∞ |(B t ) t∈[0,1] satisfies the following linear ordinary differential equation:

d dλ E e iλG∞ |(B t ) t∈[0,1] = E e iλG∞ |(B t ) t∈[0,1] i 4 1 0 f ′′ (B s )ds -λC 2 1/4 1 0 f 2 (B s )ds .
By solving it, we obtain (3.5), which yields the desired conclusion. Thus, it remains to show (3.6). By the duality between the derivative and divergence operators, we have

E f (B k/n )I 2 (δ ⊗2 k/n )e iλGn ξ = E D 2 f (B k/n )e iλGn ξ , δ ⊗2 k/n H ⊗2 . (3.7)
The first and second derivatives of f (B k/n )e iλGn ξ are given by

D f (B k/n )e iλGn ξ = f ′ (B k/n )e iλGn ξ ε k/n + iλf (B k/n )e iλGn ξ DG n + f (B k/n )e iλGn Dξ
and

D 2 f (B k/n )e iλGn ξ = f ′′ (B k/n )e iλGn ξ ε ⊗2 k/n + 2iλf ′ (B k/n )e iλGn ξ ε k/n ⊗DG n +2f ′ (B k/n )e iλGn ε k/n ⊗Dξ -λ 2 f (B k/n )e iλGn ξ DG ⊗2 n +2iλf (B k/n )e iλGn DG n ⊗Dξ +iλf (B k/n )e iλGn ξD 2 G n + f (B k/n )e iλGn D 2 ξ.

Hence, taking expectation and multiplying by δ

⊗2 k/n yields E D 2 f (B k/n )e iλGn ξ , δ ⊗2 k/n H ⊗2 = E f ′′ (B k/n )e iλGn ξ ε k/n , δ k/n 2 H + 2iλE f ′ (B k/n )e iλGn ξ DG n , δ k/n H ε k/n , δ k/n H +2E f ′ (B k/n )e iλGn Dξ, δ k/n H ε k/n , δ k/n H -λ 2 E f (B k/n )e iλGn ξ DG n , δ k/n 2 H +2iλE f (B k/n )e iλGn Dξ, δ k/n H DG n , δ k/n H +iλE f (B k/n )e iλGn ξ D 2 G n , δ ⊗2 k/n H ⊗2 + E f (B k/n )e iλGn D 2 ξ, δ ⊗2 k/n H ⊗2 . (3.8) 
We also need explicit expressions for DG n , δ k/n H and for D 2 G n , δ ⊗2 k/n H ⊗2 . Differentiating G n we obtain

DG n = n-1 l=0 f ′ (B l/n )I 2 (δ ⊗2 l/n )ε l/n + 2f (B l/n )∆B l/n δ l/n (3.9)
and, as a consequence,

DG n , δ k/n H = n-1 l=0 f ′ (B l/n )I 2 (δ ⊗2 l/n ) ε l/n , δ k/n H + 2 n-1 l=0 f (B l/n )∆B l/n δ l/n , δ k/n H . (3.10) Also D 2 G n = n-1 l=0 f ′′ (B l/n )I 2 (δ ⊗2 l/n )ε ⊗2 l/n + 4f ′ (B l/n ) ∆B l/n ε l/n ⊗δ l/n + 2f (B l/n )δ ⊗2 l/n ,
and, as a consequence, 

D 2 G n , δ ⊗2 k/n H ⊗2 = n-1 l=0 f ′′ (B l/n )I 2 (δ ⊗2 l/n ) ε l/n , δ k/n 2 H +4f ′ (B l/n ) ∆B l/n ε l/n , δ k/n H δ l/n , δ k/n H + 2f (B l/n ) δ l/n , δ k/n 2 
φ ′ n (λ) = -2λ n-1 k,l=0 E f (B k/n )f (B l/n )e iλGn ξ δ l/n , δ k/n 2 H + i n-1 k=0 E f ′′ (B k/n )e iλGn ξ ε k/n , δ k/n 2 H + i n-1 k=0 r k,n (3.12) 
where r k,n is given by

r k,n = 2iλE f ′ (B k/n )e iλGn ξ DG n , δ k/n H ε k/n , δ k/n H +2E f ′ (B k/n )e iλGn Dξ, δ k/n H ε k/n , δ k/n H -λ 2 E f (B k/n )e iλGn ξ DG n , δ k/n 2 H +2iλE f (B k/n )e iλGn Dξ, δ k/n H DG n , δ k/n H +iλ n-1 l=0 E f (B k/n )e iλGn ξ f ′′ (B l/n )I 2 (δ ⊗2 l/n ) ε l/n , δ k/n 2 H +4iλ n-1 l=0 E f (B k/n )e iλGn ξf ′ (B l/n ) ∆B l/n ε l/n , δ k/n H δ l/n , δ k/n H +E f (B k/n )e iλGn D 2 ξ, δ ⊗2 k/n H ⊗2 = 7 j=1 R (j) k,n . (3.13) 
Remark that the first sum in the right hand side of (3.12) is very similar to C n presented in Step 1. In fact, similar computations give

lim n→∞ -2λ n-1 k,l=0 IE[f (B k/n )f (B l/n )e iλGn ξ] δ l/n , δ k/n 2 H = -C 2 1/4 λ 1 0 E f 2 (B s )e iλG∞ ξ ds. (3.14)
Furthermore, the second term of (3.12) is very similar to E (G n ). In fact, using the arguments presented in Step 1, we obtain here that

lim n→∞ i n-1 k=0 E f ′′ (B k/n )e iλGn ξ ε k/n , δ k/n 2 H = i 4 1 0 E f ′′ (B s )e iλG∞ ξ ds. (3.15) 
Consequently, (3.6) will be shown as soon as we will prove that lim n→∞ n-1 k=0 r k,n = 0. This will be done in several steps.

Step 3.-In this step, we state and prove some estimates which will be crucial in the rest of the proof. First, we will show that

E f ′ (B k/n )f ′ (B l/n )e iλGn ξ I 2 (δ ⊗2 l/n ) ≤ C n for any 0 ≤ k, l ≤ n -1. (3.16) 
Then we will prove that

E f (B k/n )f ′ (B j/n )f ′ (B l/n )e iλGn ξ I 4 (δ ⊗2 j/n ⊗δ ⊗2 l/n ) ≤ C n 2 for any 0 ≤ k, j, l ≤ n -1. (3.

17)

Proof of (3.16):

Let ζ ξ,k,n denotes any random variable of the form f (a) (B k/n )f (b) (B l/n )e iλGn ξ with a and b two positive integers less or equal to four. From the Malliavin integration by parts formula (2.5) we have

E f ′ (B k/n )f ′ (B l/n )e iλGn ξ I 2 (δ ⊗2 l/n ) = E D 2 f ′ (B k/n )f ′ (B l/n )e iλGn ξ , δ ⊗2 l/n H ⊗2 .
When computing the RHS, three types of terms appear. First, we have some terms of the form:

       E (ζ ξ,k,n ) ε k/n , δ l/n 2 H , or E ζ ξ,k,n Dξ, δ l/n H ε k/n , δ l/n H , or E ζ ξ,k,n D 2 ξ, δ ⊗2 l/n H ⊗2 , (3.18) 
where Dξ and D 2 ξ are given by:

Dξ = m i=1 ∂ψ ∂x i (B t 1 , . . . , B tm ) ε t i , D 2 ξ = m i,j=1 ∂ 2 ψ ∂x j ∂x i (B t 1 , . . . , B tm ) ε t j ⊗ ε t i .
From Lemma 3.1 (i) and under (H 4 ), we have that each of the three terms in (3.18) is less or equal to Cn -1 . The second type of terms we have to deal with is

   E ζ ξ,k,n DG n , δ l/n H ε k/n , δ l/n H , or E ζ ξ,k,n DG n , δ l/n H Dξ, δ l/n H . (3.19)
By Cauchy-Schwarz inequality, under (H 4 ) and by using (4.20) in [START_REF] Nourdin | Central limit theorems for multiple Skorohod integrals[END_REF], that is

E DG n , δ l/n 2 H ≤ Cn -1 ,
we have that both expressions in (3.19) are also less or equal to Cn -1 . The last type of terms which has to be taken into account is the term

-λ 2 E f ′ (B k/n )f ′ (B l/n )e iλGn ξ D 2 G n , δ ⊗2 k/n H ⊗2 .
Again, by using Cauchy-Schwarz inequality and the estimate

E D 2 G n , δ ⊗2 k/n 2 H ⊗2 ≤ Cn -2
(which can be obtained by mimicing the proof of (4.20) in [START_REF] Nourdin | Central limit theorems for multiple Skorohod integrals[END_REF]), we can conclude that

-λ 2 E f ′ (B k/n )f ′ (B l/n )e iλGn ξ D 2 G n , δ ⊗2 k/n H ⊗2 ≤ C n .
As a consequence (3.16) is shown.

Proof of (3.17):

By the Malliavin integration by parts formula (2.5), we have

E ζ ξ,k,n f ′ (B j/n )f ′ (B l/n )I 4 (δ ⊗2 j/n ⊗δ ⊗2 l/n ) = E D 4 ζ ξ,k,n f ′ (B j/n )f ′ (B l/n ) , δ ⊗2 j/n ⊗δ ⊗2 l/n H ⊗4 .
When computing the RHS, we have to deal with the same type of terms as in the proof of (3.16) plus two additional types of terms containing

E D 3 G n , δ ⊗2 j/n ⊗δ l/n 2 H ⊗3 and E D 4 G n , δ ⊗2 j/n ⊗δ ⊗2 l/n 2 H ⊗4 .
In fact, by mimicing the proof of (4.20) in [START_REF] Nourdin | Central limit theorems for multiple Skorohod integrals[END_REF], we can obtain the following bounds:

E D 3 G n , δ ⊗2 j/n ⊗δ l/n 2 H ⊗3 ≤ Cn -3 and E D 4 G n , δ ⊗2 j/n ⊗δ ⊗2 l/n 2 H ⊗4 ≤ Cn -4 .
This allows us to obtain (3.17).

Step 4.-We compute the terms corresponding to R

(1)

k,n , R (4) 
k,n and R

k,n in (3.13). The derivative DG n is given by (3.9), so that

n-1 k=0 R (1) k,n = 2iλ n-1 k,l=0 E f ′ (B k/n )f ′ (B l/n )e iλGn ξI 2 (δ ⊗2 l/n ) ε l/n , δ k/n H ε k/n , δ k/n H + 2 n-1 k,l=0 E f ′ (B k/n )f (B l/n )e iλGn ξ∆B l/n δ l/n , δ k/n H ε k/n , δ k/n H = T (1) 1 + T (1)
2 .

From (3.16), Lemma 3.1 (i), (iii) and under (H 4 ), we have that

T (1) 1 ≤ Cn -3/2 n-1 k,l=0 ε l/n , δ k/n H ≤ Cn -1/2 .
For T

2 , remark first that Cauchy-Schwarz inequality and hypothesis (H 4 ) yield

E f ′ (B k/n )e iλGn ξf (B l/n )∆B l/n ≤ Cn -1/4 . (3.20)
Thus, by Lemma 3.1 (i),

T (1) 2 ≤ Cn -3/4 n-1 k,l=0 δ l/n , δ k/n H = Cn -5/4 n-1 k,l=0 |ρ(k -l)| ≤ Cn -1/4 ∞ r=-∞ |ρ(r)| = Cn -1/4 ,
where ρ has been defined in (3.4).

The term corresponding to R

(4) k,n is very similar to R (1)
k,n . Indeed, by (3.9), we have

n-1 k=0 R (4) k,n = 2iλ m i=1 n-1 k,l=0 E f (B k/n )f ′ (B l/n )e iλGn ∂ψ ∂x i (B t 1 , . . . , B tm )I 2 (δ ⊗2 l/n ) × ε l/n , δ k/n H ε t i , δ k/n H + 4iλ m i=1 n-1 k,l=0 E f (B k/n )f (B l/n )e iλGn ∆B l/n ∂ψ ∂x i (B t 1 , . . . , B tm ) × δ l/n , δ k/n H ε t i , δ k/n H = T (4) 1 + T (4) 2
and we can proceed for T (4) i as for T

i . The term corresponding to R

(6) k,n is very similar to T (1)
2 . More precisely, we have

n-1 k=0 R (6) k,n ≤ Cn -3/4 n-1 k,l=0 δ l/n , δ k/n H = Cn -5/4 n-1 k,l=0 |ρ(k -l)| ≤ Cn -1/4 ∞ r=-∞ |ρ(r)| = Cn -1/4 . Step 5.-Estimation of R (3) k,n . Let ζ ξ,k,n := λ 2 f (B k/n )e iλGn ξ.
Using (3.9), we have

DG n , δ k/n 2 H = n-1 j,l=0 f ′ (B l/n )f ′ (B j/n )I 2 (δ ⊗2 l/n )I 2 (δ ⊗2 j/n ) ε j/n , δ k/n H ε l/n , δ k/n H + n-1 j,l=0 f (B j/n )f (B l/n )∆B j/n ∆B l/n δ j/n , δ k/n H δ l/n , δ k/n H
and, consequently:

n-1 k=0 R 3 k,n ≤ n-1 k=0 E ζ ξ,k,n DG n , δ k/n 2 H ≤ 2 n-1 k,j,l=0 E ζ ξ,k,n f ′ (B j/n )f ′ (B l/n )I 2 (δ ⊗2 j/n )I 2 (δ ⊗2 l/n ) ε j/n , δ k/n H ε l/n , δ k/n H + 8 n-1 k,j,l=0 E ζ ξ,k,n f (B j/n )f (B l/n )∆B j/n ∆B l/n δ j/n , δ k/n H δ l/n , δ k/n H .
Using the product formula (3.3), we have

n-1 k=0 R 3 k,n ≤ 2 n-1 k,j,l=0 E ζ ξ,k,n f ′ (B j/n )f ′ (B l/n )I 4 (δ ⊗2 j/n ⊗δ ⊗2 l/n ) ε j/n , δ k/n H ε l/n , δ k/n H + 8 n-1 k,j,l=0 E ζ ξ,k,n f ′ (B j/n )f ′ (B l/n )I 2 (δ j/n ⊗δ l/n ) δ j/n , δ l/n H ε j/n , δ k/n H ε l/n , δ k/n H + 4 n-1 k,j,l=0 E ζ ξ,k,n f ′ (B j/n )f ′ (B l/n ) δ j/n , δ l/n 2 H ε j/n , δ k/n H ε l/n , δ k/n H + 8 n-1 k,j,l=0 E ζ ξ,k,n f (B j/n )f (B l/n )∆B j/n ∆B l/n δ j/n , δ k/n H δ l/n , δ k/n H = 4 i=1 T (3) 
i .

From (3.17), we have

|T (3) 1 | ≤ Cn -1/2 n-1 k,j,l=0 E ζ ξ,k,n f ′ (B j/n )f ′ (B l/n )I 4 (δ ⊗2 j/n ⊗δ ⊗2 l/n ) ε j/n , δ k/n H ≤ Cn -5/2 n 2 sup j=0,...n-1 n-1 k=0 ε j/n , δ k/n H ≤ Cn -1/2 by Lemma 3.1 (ii).
Now, let us consider T

2 . Using (3.16) and Lemma 3.1 (ii), we deduce that

T (3) 2 ≤ Cn -3/2 n-1 j,l=0 δ j/n , δ l/n H sup j=0,...,n-1 n-1 k=0 ε j/n , δ k/n H ≤ Cn -1/2 ∞ r=-∞ |ρ(r)| = Cn -1/2 .
For T

3 , we have

T (3) 3 ≤ Cn -1/2 n-1 j,l=0 δ j/n , δ l/n 2 H sup j=0,...,n-1 n-1 k=0 ε j/n , δ k/n H ≤ Cn -1/2 ∞ r=-∞ ρ 2 (r) = Cn -1/2 .
Finally, by Cauchy-Schwarz inequality and under (H 4 ), we have

E ζ ξ,k,n f (B j/n )f (B l/n )∆B j/n ∆B l/n ≤ Cn -1/2 .
Consequently:

T (3) 4 ≤ Cn -1/2 n-1 k,j,l=0 δ j/n , δ k/n H δ k/n , δ l/n H ≤ Cn -3/2 n-1 k,j,l=0 |ρ(k -l)ρ(k -j)| ≤ Cn -1/2 ∞ r=-∞ |ρ(r)| 2 = Cn -1/2 .
Step 6.-Estimation of R

k,n . From (3.16) and Lemma 3.1 (iii), we have,

n-1 k=0 R (5) k,n ≤ Cn -3/2 n-1 k,l=0 ε l/n , δ k/n H ≤ Cn -1/2 .
Step 7.-Estimation of R

k,n and R

k,n . We recall that

0 ≤ √ x + 1 - √ x ≤ 1 for any x ≥ 0.
Thus, under (H 4 ) and using Lemma 3.1, we have:

n-1 k=0 R (2) k,n ≤ 2 m i=1 n-1 k=0 E f ′ (B k/n )e iλGn ∂ψ ∂x i (B t 1 , . . . , B tm ) ε t i , δ k/n H ε k/n , δ k/n H ≤ C(f, ψ) n -1 2 sup t∈[0,1] n-1 k=0 ε t , δ k/n H ≤ Cn -1/2 .
Similarly, the following bound holds:

n-1 k=0 R (7) k,n ≤ m i,j=1 n-1 k=0 E f (B k/n )e iλGn ∂ 2 ψ ∂x j ∂x i (B t 1 , . . . , B tm ) ε t i , δ k/n H ε t j , δ k/n H ≤ Cn -1/2 .
The proof of Theorem 3.2 is done.

4 Proof of Theorem 1.2

Once again, B = B 1/4 denotes a fractional Brownian motion with Hurst index H = 1/4. Moreover, we recall that we note ∆B k/n (resp.

δ k/n ; ε k/n ) instead of B (k+1)/n -B k/n (resp. 1 [k/n,(k+1)/n] ; 1 [0,k/n]
). The aim of this section is to prove Theorem 1.2, or equivalently: and where W denotes a standard Brownian motion independent of B.

Proof. In [START_REF] Swanson | Variation of the solution to a stochastic heat equation[END_REF], identity (1.6), it is proved that

⌊n/2⌋ k=1 f ′ (B (2k-1)/n ) B (2k)/n -B (2k-2)/n ≈ f (B 1 ) -f (0) - 1 2 ⌊n/2⌋ k=1 f ′′ (B (2k-1)/n ) (∆B (2k-1)/n ) 2 -(∆B (2k-2)/n) ) 2 - 1 6 ⌊n/2⌋ j=1 f ′′′ (B (2j-1)/n ) (∆B (2j-2)/n ) 3 + (∆B (2j-1)/n ) 3
where "≈" means the difference goes to zero in L 2 . Therefore, Theorem 4.1 is a direct consequence of Lemmas 4.2 and 4.3 below.

Lemma 4.2. Let f : R → R verifying (H 6 ). Then

⌊n/2⌋ j=1 f (B (2j-1)/n ) (∆B (2j-2)/n ) 3 + (∆B (2j-1)/n ) 3 L 2 ---→ n→∞ 0. (4.2)
Proof. Let H 3 (x) = x 3 -3x be the third Hermite polynomial. Using the relation between Hermite polynomial and multiple integral (see Section 2), remark that

(∆B (2j-2)/n ) 3 + (∆B (2j-1)/n ) 3 = n -3 4 H 3 n 1 4 ∆B (2j-2)/n + H 3 n 1 4 ∆B (2j-1)/n + 3 √ n B (2j-2)/n -B (2j)/n = I 3 δ ⊗3 (2j-2)/n + I 3 δ ⊗3 (2j-1)/n + 3 √ n I 1 1 [(2j-2)/n,(2j)/n]
so that (4.2) can be shown by successively proving that Let us first proceed with the proof of (4.3). We can write, using in particular (2.6):

E 1 √ n ⌊n/2⌋
E 1 √ n ⌊n/2⌋ j=1 f (B (2j-1)/n ) I 1 1 [(2j-2)/n,(2j)/n] 2 = 1 n ⌊n/2⌋ j,k=1 E f (B (2j-1)/n )f (B (2k-1)/n ) I 1 1 [(2j-2)/n,(2j)/n] I 1 1 [(2k-2)/n,(2k)/n] ≤ 1 n ⌊n/2⌋ j,k=1 E f (B (2j-1)/n )f (B (2k-1)/n ) I 2 1 [(2j-2)/n,(2j)/n] ⊗ 1 [(2k-2)/n,(2k)/n] + 1 n √ n ⌊n/2⌋ j,k=1 E f (B (2j-1)/n )f (B (2k-1)/n )ρ(2j -2k) = 2 n a+b=2 ⌊n/2⌋ j,k=1 E f (a) (B (2j-1)/n )f (b) (B (2k-1)/n ) × ε ⊗a (2j-1)/n ⊗ ε ⊗b (2k-1)/n , 1 [(2j-2)/n,(2j)/n] ⊗ 1 [(2k-2)/n,(2k)/n] H ⊗2 + 1 n √ n ⌊n/2⌋ j,k=1 E f (B (2j-1)/n )f (B (2k-1)/n )ρ(2j -2k) .
But, by Lemma 3.1 (i), we have

ε ⊗a (2j-1)/n ⊗ ε ⊗b (2k-1)/n , 1 [(2j-2)/n,(2j)/n] ⊗ 1 [(2k-2)/n,(2k)/n] H ⊗2 ≤ 1 √ n ε (2j-1)/n , 1 [(2j-2)/n,(2j)/n] H + ε (2k-1)/n , 1 [(2k-2)/n,(2k)/n] H = 1 n 2j -2j -2 + √ 2k - √ 2k -2 .
Thus, under (H 6 ):

a+b=2 ⌊n/2⌋ j,k=1 E f (a) (B (2j-1)/n )f (b) (B (2k-1)/n ) × ε ⊗a (2j-1)/n ⊗ ε ⊗b (2k-1)/n , 1 [(2j-2)/n,(2j)/n] ⊗ 1 [(2k-2)/n,(2k)/n] H ⊗2 = O( √ n). Moreover ⌊n/2⌋ j,k=1 E f (B (2j-1)/n )f (B (2k-1)/n )ρ(2j -2k) ≤ C ⌊n/2⌋ j,k=1 ρ(2j -2k) = O(n).
Finally, convergence (4.3) holds. Now, let us only proceed with the proof of (4.4), the proof of (4.5) being similar. We have

E ⌊n/2⌋ j=1 f (B (2j-1)/n ) I 3 δ ⊗3 (2j-2)/n 2 = ⌊n/2⌋ j,k=1 E f (B (2j-1)/n )f (B (2k-1)/n )I 3 δ ⊗3 (2j-2)/n I 3 δ ⊗3 (2k-2)/n = 3 r=0 r! 3 r 2 n -3-r 2 ⌊n/2⌋ j,k=1 E f (B (2j-1)/n )f (B (2k-1)/n )I 2r δ ⊗r (2j-2)/n ⊗ δ ⊗r (2k-2)/n ρ 3-r (2j -2k).
To obtain (4.4), it is then sufficient to prove that, for every fixed r ∈ {0, 1, 2, 3}, the quantities

R (r) n = n -3-r 2 ⌊n/2⌋ j,k=1 E f (B (2j-1)/n )f (B (2k-1)/n )I 2r δ ⊗r (2j-2)/n ⊗ δ ⊗r (2k-2)/n ρ 3-r (2j -2k)
tend to zero as n → ∞. We have, by Lemma 3.1 (i) and under (H 6 ):

sup j,k=1,...,⌊n/2⌋ E f (B (2j-1)/n )f (B (2k-1)/n )I 2r δ ⊗r (2j-2)/n ⊗ δ ⊗r (2k-2)/n = sup j,k=1,...,⌊n/2⌋ (2r)! a+b=2r E f (a) (B (2j-1)/n )f (b) (B (2k-1)/n ) × ε ⊗a (2j-1)/n ⊗ε ⊗b (2j-1)/n , 1 ⊗r [(2j-2)/n,(2j/n)] ⊗ 1 ⊗r [(2k-2)/n,(2k/n)] H ⊗2 ≤ C sup j,k=1,...,⌊n/2⌋ sup a+b=2r ε ⊗a (2j-1)/n ⊗ε ⊗b (2j-1)/n , 1 ⊗r [(2j-2)/n,(2j/n)] ⊗ 1 ⊗r [(2k-2)/n,(2k/n)] H ⊗2 = O(n -r ).
Consequently, when r = 3, we deduce

R (r) n ≤ C n -r+3 2 ⌊n/2⌋ j,k=1 ρ(2j -2k) = O(n -r+1 2 ) -→ n→+∞ 0
while, when r = 3, we deduce

R (3) n ≤ C n -1 -→ n→+∞ 0.
The proof of (4.4) is done. Since the proof of (4.5) follows the same lines, we finally proved (4.2).

Lemma 4.3. Let f : R → R verifying (H 4 ). Set F n = ⌊n/2⌋ k=1 f (B (2k-1)/n ) (∆B (2k-1)/n ) 2 -(∆B (2k-2)/n) ) 2 . Then F n stably ----→ n→∞ κ 1 0 f (B s )dW s , (4.6) 
with κ defined by (4.1), and where W denotes a standard Brownian motion independent of B. Here, the stable convergence (4.6) has to be understood in the following sense: for any real number λ and any σ{B}-measurable and integrable random variable ξ, we have that

E e iλFn ξ -→ n→∞ E e -λ 2 κ 2 2 1 0 f 2 (Bs)ds ξ .
Proof. Since we follow exactly the proof of Theorem 3.2, we only describe the main ideas. First, observe that

F n = ⌊n/2⌋ k=1 f B (2k-1)/n I 2 (δ ⊗2 (2k-1)/n ) -I 2 (δ ⊗2 (2k-2)/n ) .
Here, the analogue of Lemma 3.1 is:

sup t∈[0,1] ⌊n/2⌋ k=1 ε t , δ (2k-1)/n H = n→∞ O(1), sup t∈[0,1] ⌊n/2⌋ k=1 ε t , δ (2k-2)/n H = n→∞ O(1), (4.7 
)

ε (2k-1)/n , δ (2k-1)/n 2 H - 1 4n ≤ √ 2k - √ 2k -1 4n (4.8)
and

ε (2k-1)/n , δ (2k-2)/n 2 H - 1 4n ≤ √ 2k -1 - √ 2k -2 2n . (4.9) 
In fact, the bounds (4.7) are obtained by following the arguments presented in the proof of Lemma 3.1. The only difference is that, in order to bound sums of the type

⌊n/2⌋ k=1 √ 2k - √ 2k -1 (which are no more telescopic), we use ⌊n/2⌋ k=1 √ 2k - √ 2k -1 ≤ ⌊n/2⌋ k=1 √ 2k - √ 2k -2 = 2⌊n/2⌋ ≤ √ n.
As in Step 1 of the proof of Theorem 3.2, here we also have that ( ]). Assume that F ∞ , (B t ) t∈[0,1] denotes the limit in law of a certain subsequence of F n , (B t ) t∈[0,1] , denoted again by F n , (B t ) t∈[0,1] .

F n ) is bounded in L 2 . Consequently the sequence F n , (B t ) t∈[0,1] is tight in R × C ([0, 1 
We have to prove that

E e iλF∞ | (B t ) t∈[0,1] = exp - λ 2 2 κ 2 1 0 f 2 (B s )ds . (4.10) 
We proceed as in Step 2 of the proof of Theorem 3.2. That is, (4.10) will be obtained by showing that for every random variable ξ of the form (2.4) and every real number λ, we have

lim n→∞ φ ′ n (λ) = -λκ 2 E e iλF∞ ξ 1 0 f 2 (B s )ds where φ ′ n (λ) := d dλ E e iλFn ξ = iE F n e iλFn ξ , n ≥ 1.
By the duality formula (2.5) we have that

φ ′ n (λ) = ⌊n/2⌋ k=1 E D 2 f (B (2k-1)/n )e iλFn ξ , δ ⊗2 (2k-1)/n -δ ⊗2 (2k-2)/n H ⊗2 .
The analogue of (3.8) is here: 

E D 2 f (B (2k-1)/n )e iλFn ξ , δ ⊗2 (2k-1)/n -δ ⊗2 (2k-2)/n H ⊗2 = E f ′′ (B (2k-1)/n )e iλFn ξ ε ( 
The only difference with respect to (3.12) is that, this time, the term 

  [START_REF] Lei | A decomposition of the bifractional Brownian motioin and some applications[END_REF]) into (3.8) yields the following decomposition for φ ′ n (λ) = i E(G n e iλGn ξ):

Theorem 4 . 1 . 1 0flaw and we have 1 0f 1 0f(- 1 )

 411111 (Itô's formula) Let f : R → R verifying (H 9 ). Then ′ (B s )d ⋆ B s := lim n→∞ ⌊n/2⌋ k=1 f ′ (B (2k-1)/n ) B (2k)/n -B (2k-2)/n exists in ′ (B s )d ⋆ B s Law = f (B 1 ) -f (0) -κ 2 ′′ (B s )dW s , with κ defined by κ = 2 + ∞ r=1 r ρ 2 (r) = 1, 290 . . . . (4.1)

j=1f

  (B (2j-1)/n ) I 1 1 [(2j-2)/n,(2j)/n]

i n- 1 k=0E 2 H 2 H 2 H2 ρ 2 = -λ κ 2 1 0E f 2 (

 1222212 [f ′′ (B (2k-1)/n )e iλFn ξ] ε (2k-1)/n , δ (2k-1)/n -ε (2k-1)/n , δ (2k-2)/n corresponding to (3.15) is negligible. Indeed, we can writen-1 k=0 E[f ′′ (B (2k-1)/n )e iλFn ξ] ε (2k-1)/n , δ (2k-1)/n -ε (2k-1)/n , δ (2k-2)(B (2k-1)/n )e iλFn ξ ε (2k-1)/n , δ (2k-1)(B (2k-1)/n )e iλFn ξ ε (2k-1)/n , δ (2k-24.8)-(4.9), under (H 4 ).Moreover, exactly as in the proof of Theorem 3.2, we can show that lim n→∞ B(2k-1)/n )f (B (2l-1)/n )e iλFn ξ δ ⊗2 (2l-1)/n -δ ⊗2 (2l-2)/n , δ ⊗2 (2k-1)/n -δ ⊗2 (2k-2)/n H ⊗2 B (2k-1)/n )f (B (2l-1)/n )e iλFn ξ × 2ρ 2 (2k -2l) -ρ 2 (2l -2k + 1) -ρ 2 (2l -2k -(2r) -ρ 2 (2r + 1) -ρ 2 (2r -1) B (2k-1)/n )f (B (2k-1-2r)/n )e iλFn ξ B s )e iλF∞ ξ ds,where κ is defined by (4.1). In other words, (4.10) is shown and the proof of Lemma 4.3 is done.

  1 and β denotes the Beta function. By convention, we set K H

  ′ (B (2k-1)/n )e iλFn ξ DF n , δ (2k-1)/n H ε (2k-1)/n , δ (2k-1)/n H -2iλE f ′ (B (2k-1)/n )e iλFn ξ DF n , δ(2k-2)/n H ε (2k-1)/n , δ (2k-2)/n H +2E f ′ (B (2k-1)/n )e iλFn Dξ, δ (2k-1)/n H ε (2k-1)/n , δ (2k-1)/n H -2E f ′ (B (2k-1)/n )e iλFn Dξ, δ (2k-2)/n H ε (2k-1)/n , δ (2k-2)/n H -λ 2 E f (B (2k-1)/n )e iλFn ξ DF n , δ (2k-1)/n 2 H +λ 2 E f (B (2k-1)/n )e iλFn ξ DF n , δ (2k-2)/n 2 H +2iλE f (B (2k-1)/n )e iλFn Dξ, δ (2k-1)/n H DF n , δ (2k-1)/n H -2iλE f (B (2k-1)/n )e iλFn Dξ, δ (2k-2)/n H DF n , δ (2k-2)/n H +iλE f (B (2k-1)/n )e iλFn ξ D 2 F n , δ ⊗2 (2k-1)/n -δ ⊗2 (2k-2)/n H ⊗2 +E f (B (2k-1)/n )e iλFn D 2 ξ, δ ⊗2 (2k-1)/n -δ ⊗2 (2k-2)/n H ⊗2 . ′ (B (2k-1)/n )e iλFn ξ DF n , δ (2k-1)/n H ε (2k-1)/n , δ (2k-1)/n H -2iλE f ′ (B (2k-1)/n )e iλFn ξ DF n , δ (2k-2)/n H ε (2k-1)/n , δ (2k-2)/n H +2E f ′ (B (2k-1)/n )e iλFn Dξ, δ (2k-1)/n H ε (2k-1)/n , δ (2k-1)/n H -2E f ′ (B (2k-1)/n )e iλFn Dξ, δ (2k-2)/n H ε (2k-1)/n , δ (2k-2)/n H -λ 2 E f (B (2k-1)/n )e iλFn ξ DF n , δ (2k-1)/n 2 H +λ 2 E f (B (2k-1)/n )e iλFn ξ DF n , δ (2k-2)/n 2 H +2iλE f (B (2k-1)/n )e iλFn Dξ, δ (2k-1)/n H DF n , δ (2k-1)/n H -2iλE f (B (2k-1)/n )e iλFn Dξ, δ (2k-2)/n H DF n , δ (2k-2)/n H +E f (B (2k-1)/n )e iλFn D 2 ξ, δ ⊗2 (2k-1)/n -δ ⊗2 (2k-1)/n )e iλFn ξf ′ (B (2l-1)/n )∆B (2l-1)/n× ε (2l-1)/n ⊗δ (2l-1)/n , δ ⊗2 (2k-1)/n -δ ⊗2 (2k-1)/n )e iλFn ξf ′ (B (2l-1)/n )∆B (2l-2)/n × ε (2l-2)/n ⊗δ (2l-2)/n , δ ⊗2 (2k-1)/n -δ ⊗2

	2k-1)/n , δ (2k-1)/n (2k-2)/n H ⊗2 2 H -ε (2k-1)/n , δ (2k-2)/n E f (B (2k-1)/n )e iλFn ξ f ′′ (B (2l-1)/n )(I 2 (δ ⊗2 (2l-1)/n ) -I 2 (δ ⊗2 (2l-2)/n ) 2 H × ε ⊗2 (2l-1)/n , δ ⊗2 (2k-1)/n -δ ⊗2 (2k-2)/n H ⊗2 ⌊n/2⌋ ⌊n/2⌋ l=1 +4iλ +iλ l=1 E f (B (2k-2)/n H ⊗2 -4iλ ⌊n/2⌋ l=1 E f (B (2k-2)/n H ⊗2 13 j=1 +2iλE f As a consequence, = R j k,n .
		n-1	
	φ ′ n (λ) = -2λ	k,l=0	E f (B (2k-1)/n )f (B (2l-1)/n )e iλFn ξ
			n-1
	× δ ⊗2 (2l-1)/n -δ ⊗2 (2l-2)/n , δ ⊗2 (2k-1)/n -δ ⊗2 (2k-2)/n H ⊗2 + i

k=0 r k,n

(4.11) 

where r k,n is given by

r k,n = E[f ′′ (B (2k-1)/n )e iλFn ξ] ε (2k-1)/n , δ (2k-1)/n 2 H -ε (2k-1)/n , δ (2k-2)/n 2 H +2iλE f
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