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MATHEMATICAL STUDY OF ROTATING FLUIDS

WITH RESONANT SURFACE STRESS

ANNE-LAURE DALIBARD AND LAURE SAINT-RAYMOND

Abstract. We are interested here in describing the linear response
of a highly rotating fluid to some surface stress tensor, which admits
fast time oscillations and may be resonant with the Coriolis force. In
addition to the usual Ekman layer, we exhibit another - much larger
- boundary layer, and we prove that for large times, the effect of the
surface stress may no longer be localized in the vicinity of the surface.
From a mathematical point of view, the main novelty here is to introduce
some systematic approach for the study of boundary effects.

The goal of this paper is to understand the influence of a surface stress -
depending on time - on the evolution of an incompressible and homogeneous
rotating fluid. More precisely, we are interested in the effects of a resonant
forcing, i.e. of a stress oscillating with the same period as the rotation of
the fluid.

In the non-resonant case, the works by Desjardins and Grenier [5] then by
Masmoudi [16] show that the wind forcing creates essentially some boundary
layer in the vicinity of the surface, which contributes to the mean motion
by a source term, known as the Ekman pumping. For a precise description
of the method leading to such convergence results, we refer to the book [4]
by Chemin, Desjardins, Gallagher and Grenier.

Here the situation is much more complicated since the resonant part of the
forcing will be proved to generate another boundary layer with a different
typical size, and may overall destabilize the whole fluid with the apparition
of a vertical profile. We give here a precise description of these (linear)
effects of the Coriolis force in presence of resonant wind.

1. Introduction

Let us first present the mathematical framework of our study.

1.1. A linear model for rotating fluids.
• Our starting point is the linear version of the homogeneous incom-

pressible Navier-Stokes system in a rotating frame

(1.1)
∂tu + ∇p = F + u ∧ Ω ,

∇ · u = 0 ,
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2 ANNE-LAURE DALIBARD AND LAURE SAINT-RAYMOND

where F denotes the frictional force acting on the fluid, Ω is the rotation
vector, and p is the pressure defined as the Lagrange multiplier associated
with the incompressibility constraint. We assume that equation (1.1) is al-
ready in a nondimensional form, meaning that all unknowns and parameters
are dimensionless. For a precise dimensional analysis, we refer for instance
to [14] (section I.3).

We assume further that the rotation vector Ω is constant, homogeneous,
and has constant vertical direction, which we denote by e3. Moreover, we
wish to study the limit of fast rotation, i.e. |Ω| → ∞. Hence, we set

Ω :=
1

ǫ
e3, with ǫ → 0,

where the parameter ǫ is called the Rossby number.
• We consider the motion in some horizontal strip

ω = ωh × [0, 1]

where the bottom and upper surface of the fluid are assumed to be flat at
z = 0 and z = 1. For the sake of simplicity, we restrict our attention to the
case when ωh = T2 is the the two-dimensional torus.

As boundary conditions on the upper surface, we enforce

(1.2)
u3|z=1 = 0,

∂zuh|z=1 = βσǫ ,

where β is a positive constant and σǫ is a given stress tensor of order one,
describing the stress on the surface of the fluid.

At the bottom we use the Dirichlet boundary condition

(1.3) u|z=0 = 0.

• At last, we assume that frictional forces F are given by

F = ∆hu + ν∂zzu,

such a choice is classical in the rotating fluids literature, see for instance
[4, 16, 17]. We refer to paragraph 6.1 for an attempt of justification in a
geophysical context.

Hence, our goal is to study the asymptotic behaviour as ǫ → 0 of the
solution of

(1.4)
∂tu +

1

ǫ
e3 ∧ u + ∇p − ∆hu − ν∂zzu = 0 ,

∇ · u = 0 ,

supplemented with the boundary conditions (1.2)-(1.3), depending of the
order of magnitude of the vertical viscosity ν.
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1.2. Formal study of the asymptotics.
The system (1.2)-(1.4) has already been studied by several authors, see

for instance [16, 5], and also [4, 17] when Dirichlet boundary conditions are
enforced at the top and at the bottom. Before describing the precise issues
we wish to study in the present paper, let us recall briefly some of the main
results and techniques for singular perturbation problems.

• The first step is to determine the geostrophic motion. The only way
to control the Coriolis force as ǫ → 0 is to balance it with the pressure
gradient term (see for instance [14]). Hence in the limit, e3 ∧ u must be a
gradient

(1.5) e3 ∧ ūint
mean = −∇p

which leads to

uint
mean = ∇⊥

h p

where the limit pressure and thus the limit velocity are independent of z.
In particular, uint

mean is a two-dimensional, horizontal, divergence-free vector-
field. The fluid being limited by rigid boundaries, from above and below,
the divergence-free condition leads indeed to u3 = 0 (at least to first order
in ǫ). In other words, all the particles which have the same xh have the
same velocity. The particles of fluid move in vertical columns, called Taylor-
Proudman columns. That is the main effect of rotation and a very strong
constraint on the fluid motion.

As the domain evolution is limited by two parallel planes, the height of
Taylor-Proudman columns is constant as time evolves, which is compatible
with the incompressibility constraint. We can then prove that the columns
move freely and in the limit of high rotation the fluid behaves like a two-
dimensional incompressible fluid. Integrating the motion equation (1.4) with
respect to z and taking formal limits as ǫ → 0 leads indeed to

(1.6)
∂tu

int
mean + ∇hp = ∆huint

mean,

∇h · uint
mean = 0 .

Note however that on the boundary of the domain, where the velocity is
prescribed, the z independence is violated. That leads to vertical bound-
ary layers modifying the limit equation (1.6), which will be investigated in
the rest of the paper.

• Before starting with the precise study of these boundary layers, let us
now describe what happens for the three-dimensional ageostrophic part
of the initial data, i.e. the part of the initial data that does not satisfy the
geostrophic constraint (1.5). The dominant process is then governed by the
Coriolis operator

(1.7) L : u ∈ V0 7→ P(e3 ∧ u) ∈ V0,
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where V0 denotes the subspace of L2(ω) of divergence-free vector fields hav-
ing zero flux both through the bottom and through the surface

V0 = {u ∈ L2([0, 1] × T2) / ∇ · u = 0 and u3|z=0 = u3|z=1 = 0},
and P denotes the orthogonal projection onto V0 in L2(ω). Notice that in
general, V0 is strictly smaller than the space of divergence-free vector fields
in L2(ω), and consequently P is different from the Leray projector.

The equation
ǫ∂tu + Lu = 0

turns out to describe the propagation of waves, called Poincaré waves. More
precisely, one can prove (see for instance [14], [4] and Appendix A at the end
of this paper for more details) that there exists a hilbertian basis of V0, de-
noted by (Nk)k∈Z3\{0}, constituted of eigenvectors of the linear penalization:

for all k ∈ Z3 \ {0}, we have

(1.8) LNk = P(e3 ∧ Nk) = iλkNk, where λk = − k3π
√

|kh|2 + (πk3)2
.

That means that the three-dimensional part of the initial data generates
waves, which propagate very rapidly in the domain (with a speed of order
ǫ−1). The time average of these waves vanish, like their weak limit, but they
carry a non-zero energy.

1.3. Resonant forcing. In view of the remarks of the previous paragraph,
it seems interesting, in order to study possible resonances between the sur-
face stress and the Coriolis operator L, to consider in (1.2) a stress tensor
of the form

σǫ(t, xh) = σ

(

t

ǫ
, xh

)

,

with σ ∈ L∞([0,∞) ×T2) almost periodic in its first variable, i.e.

(1.9) σ(τ, xh) =
∑

kh∈Z2

∑

µ∈M

σ̂(µ, kh)eiµτ eikh·xh ,

where M is a finite set. The corresponding boundary layer terms are then
expected to oscillate with the frequencies µ/ǫ, with either µ ∈ M or µ = −λk

for some k ∈ Z3. The construction of such boundary layer terms is relatively
well understood (see for instance [4, 16, 17]), insofar as µ 6= ±1. When
|µ| = 1, the classical construction of boundary layers fails; the usual way
to get round this difficulty is to assume that the initial data and the stress
tensor satisfy some spectral assumptions, in order to avoid the apparition
of the frequencies µ = ±1 altogether.

Our goal in this paper is precisely to study the influence of such res-
onant frequencies on the global behaviour of the fluid, starting with the
boundary layers. To that end, we have developed a systematic way of com-
puting the boundary layer profiles associated with some given boundary
conditions; our main result in that regard is stated in the next paragraph,
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and proved in section 3. Next, we use the boundary layer profiles so defined
in order to construct an approximate solution for equation (1.4), supple-
mented with (1.2)-(1.3), and we prove a strong convergence result for (1.4).

2. Main results

2.1. Description of the boundary layers.
We begin with the construction of boundary layers. Let us first emphasize

that since equation (1.4) is linear, we can work with a finite number of
Fourier modes in the horizontal domain and in time. Note that on the
contrary, because of the boundary conditions at z = 0 and z = 1, there is a
strong coupling between the vertical modes.

Hence, let N > 0 be an arbitrary integer, and let M0 be a finite set such
that M ⊂ M0. We consider some arbitrary boundary conditions δ0

h and δ1
h

which take the form

(2.1) δj
h(τ, xh) =

∑

|kh|≤N

∑

µ∈M0

δ̂j
h(µ, kh)eiµτeikh·xh , j = 0 or 1.

Here and in the whole paper, the superscript 0 (resp. 1) stands for func-
tions associated with some boundary conditions at the bottom (resp. at the
surface).

Our goal is to construct some stationnary boundary layer profiles, denoted
by v0, v1, which have respectively exponential decay with respect to z and
1 − z, are exact solutions of equation (1.4), and satisfy

(2.2)

v0
h|z=0(t, xh) = δ0

h

(

t

ǫ
, xh

)

,

∂zv
1
h|z=0(t, xh) = δ1

h

(

t

ǫ
, xh

)

.

Notice that we do not enforce boundary conditions on both sides for vj
h, and

that we do not specify the boundary condition on the vertical component
of each function vj : indeed, the vertical component of vj is dictated by the
assumption that vj is divergence free and that its dependance on the vertical
variable z is given by a decaying exponential. Similarly, the trace of v0 at
z = 1 is imposed by the exponential profile condition. At last, we do not
specify any initial data for v0, v1, for the same reasons as above; we only

require that ‖vj
|t=0‖L2 = o(1) as ǫ, ν → 0.

However that construction fails if some particular coefficients δ̂j(kh, µ) in
the boundary condition are not identically zero (see Remark on page 15).
This leads to the following definition:

Definition 2.1. Assume that the boundary conditions δj
h are given by

δj
h(t, xh) =

∑

kh

∑

µ

δ̂j
h(µ, kh)eikh·xheiµ t

ǫ .
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We define the resonant part δj
h,res of the boundary conditions by

δj
h,res :=

1

2

〈





1
i
0





∣

∣δ̂j
h(1, 0)

〉





1
i
0



 ei t
ǫ +

1

2

〈





1
−i
0





∣

∣δ̂j
h(−1, 0)

〉





1
−i
0



 e−i t
ǫ

We will say that a boundary condition δj
h is non-resonant if δj

h,res = 0.

In the resonant case, we will indeed see that the boundary profiles are not
stationnary. More precisely, we will prove the following result

Theorem 2.2. Let δ0
h, δ1

h be given by (2.1). Then there exist v0, v1 which
are exact solutions of (1.4) supplemented with (2.2), and such that v0 decays
exponentially with z, and v1 with 1 − z. Moreover, each function vj (j = 0
or 1) can be written as

vj = v̄j + ṽj + vj
res

where the stationnary boundary profiles v̄j , ṽj satisfy the following estimates

(2.3)

‖v̄j
h‖L∞(R+,L2(ω)) +

1√
ǫν

‖v̄j
3‖L∞(R+,L2(ω)) ≤ C(ǫν)

1+2j
4 ‖δj

h‖,

‖ṽj
h‖L∞(R+,L2(ω)) +

(

ǫ +
√

ǫν

ǫν

)
1
2

‖ṽj
3‖L∞(R+,L2(ω)) ≤ C

(

ǫν

ǫ +
√

ǫν

)
1+2j

4

‖δj
h‖,

while the resonant part vj
res satisfies

(2.4) ∀t ≥ 0, ‖vj
res,h(t)‖L2(ω) ≤ C(νt)

1+2j
4 ‖δj

h,res‖, vj
res,3 ≡ 0 ,

where

‖δj
h‖ =

∑

µ∈M0

∑

|kh|≤N

|δ̂j
h(µ, kh)|2

and C is a nonnegative constant depending on N .

Theorem 2.2 will be proved in section 3. The definition of the boundary
layer operator B is then as follows:

Definition 2.3. Let δ0
h, δ1

h be given by (2.1). We denote by B the bilinear
operator such that with the notations of Theorem 2.2,

v0 = B(δ0
h, 0),

v1 = B(0, δ1
h).

Remark 2.4. (i) As we shall see in the course of the proof, the terms v̄j

correspond to the usual Ekman layers, for which the typical size of the
boundary layer is

√
ǫν. The corresponding boundary conditions are given by

δ̄j
h(τ, xh) =

∑

|kh|≤N

∑

|µ|6=1

δ̂j
h(µ, kh)eiµτeikh·xh.
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On the contrary, the terms ṽj are due to the quasi-resonant modes, for
which |µ| = 1 and kh 6= 0; for these modes, the typical size of the boundary

layer is much larger, of order
√

ǫν/(
√

ǫ + (ǫν)1/4).

δ̄j
h(τ, xh) =

∑

kh 6=0

∑

|µ|=1

δ̂j
h(µ, kh)eiµτ eikh·xh .

(ii) The last terms vj
res are due to resonant forcing on the modes |µ| =

1, kh = 0. Notice that for these modes, the estimate is not global in time:
indeed, the typical size of the boundary layer is

√
νt.

δ̄j
h(τ, xh) =

∑

|µ|=1

δ̂j
h(µ, 0)eiµτ .

In particular, for large times (t ≫ ν−1), the boundary layer penetrates the
interior of the fluid.

(iii) As outlined above, the boundary layer term v0 (resp. v1) does not
vanish on z = 1 (resp. on z = 0). Precisely, we find that there exists a
positive constant C (depending on N and M) such that

v̄0
|z=1 = O

(

exp

(

− C√
ǫν

))

, v̄1
|z=0 = O

(√
ǫν exp

(

− C√
ǫν

))

,

ṽ0
|z=1 = O

(

exp

(

− C

(ǫν)1/4

))

, ṽ1
|z=0 = O

(

(ǫν)1/4 exp

(

− C

(ǫν)1/4

))

,

v0
res|z=1 = O

(

(νt)1/2 exp

(

− 1

4νt

))

, v1
res|z=0 = O

(

(νt)3/2 exp

(

− 1

4νt

))

.

2.2. Construction of approximate solutions to (1.4)-(1.2)(1.3).
Once the mechanism of construction of boundary layers is understood,

one possible application lies in the definition of an approximate solution of
equation (1.4), with a view to derive a limit system for this equation. This
approximate solution is the sum of boundary terms uBL, obtained as above,
and interior terms uint.

• Hence, we now explain the asymptotic behaviour of the interior part
of the solution. Following the multi-scale analysis initiated in the previous
paragraph, we expect the solution uǫ to (1.4) to behave like some function
exp(−tL/ǫ)uint

L (t), where L is the Coriolis operator defined by (1.7).
In order to understand the evolution with respect to the slow time vari-

able, the idea is then to get rid of the penalization term by filtering out the
oscillations in equation (1.4) (see [11, 23]), that is, by composing equation
(1.4) by the Coriolis semi-group exp(tL/ǫ).

The filtered function uǫ,L(t) := exp(tL/ǫ)uǫ(t) satisfies a linear equation
with vanishing viscosity (and without any penalization term); passing to the
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limit in the latter yields the so-called ‘envelope equation’

(2.5)
∂tu

int
L − ∆huint

L +

√

ν

ǫ
SEkmanuint

L = 0,

uint
L|t=0 = γ,

where SEkman : V0 → V0 is a linear, positive and continuous operator re-
sulting from the non commutation between the vertical Laplacian ν∆z with
boundary conditions and the Coriolis semi-group (see [4] and (5.21) below
for a precise definition).

• The approximation of the function uǫ constructed in this paper is actu-
ally much more precise than the mere function exp(−tL/ǫ)uint

L . Indeed, we
will need to build boundary and corrector terms, which are all small in
L2 norm, and thus do not play a role in the final convergence result, but are
necessary in order that equation (1.4) is approximately satisfied.

2.3. Convergence result.

Theorem 2.5. Let γ ∈ V0, and let σ be given by (1.9). Let uǫ ∈ C(R+, V0)∩
L2

loc
(R+,H1(T2 × [0, 1])) be the unique solution of (1.4) supplemented with

(1.2)-(1.3), and let uint
L ∈ C(R+, V0)∩L2(R+,H1

h(T2×[0, 1])) be the solution
of equation (2.5).

Assume that σ has a finite number of Fourier modes, i.e. σ satisfies (2.1).
Then under the technical scaling assumption (4.17) on the parameters ǫ, ν

and β, we have, as ǫ, ν → 0,

(2.6) uǫ(t) − exp

(

− t

ǫ
L

)

uint
L (t) → 0

in L∞
loc

(R+, L2(T2 × [0, 1])).

Remark 2.6. (i) That result extends previous works by Masmoudi [16] and
Chemin, Desjardins, Gallagher and Grenier [4]. They have indeed studied
analogous boundary problems for rotating fluids, but have used in a crucial
way a spectral assumption on the forcing modes, which ensures that the
forcing is non-resonant, or in other words that the boundary layers remain
stable.

(ii) The above theorem holds for all values of the ratio ν/ǫ, but the as-
ymptotic behaviour of ūL depends on the scaling of ν/ǫ.

Note that, in the case when ǫ ≫ ν, the effects of the boundary terms, even
damped by the penalization, remain localized in the vicinity of the surface
and thus do not contribute to the mean motion.

If ν/ǫ → ∞, the vertical dissipation damped by the penalization induces
a strong relaxation mechanism, so that we expect the solution to be well
approximated, outside from some initial layer, by a “stationary” solution to
the wind-driven system. That initial layer should be of size O

(√

ǫ
ν

)

and the
relaxation should be governed by the Ekman dissipation process (2.5).
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(iii) If the forcing σ bears on resonant modes only, then we are able to
prove a global result. Precisely, assume that

σ(τ, xh) = σ̂+eiτ (1, i) + σ̂−e−iτ (1,−i).

Then there exists some destabilization profile vν solution of the heat equation
(3.10) such that

(2.7) uǫ(t) −
[

exp

(

− t

ǫ
L

)

(uint
L (t) + vν(t)

]

→ 0

in L∞(R+, L2(T2 × [0, 1])) ∩ L2(R+, L2(T2 × [0, 1])).
In particular, for large times,

u(t) ≈ exp

(

− t

ǫ
L

)

vν(t) = O(β).

Since β may be very large (see (4.17)), there is a destabilization of the whole
fluid inside the domain as t → ∞. Note that the two convergences (2.6) and
(2.7) are compatible, since with assumption (4.17),

vν = O(ν3/4β) = o(1) in L2([0, T ] ×T2 × [0, 1])

for any finite time T > 0.

2.4. Method of proof.
Let us now give some details about our method of proof. As the evolution

equation is linear, we will use some superposition principle, meaning that
we will deal separately with the forcing and with the initial condition.

• More precisely, we will consider on the one hand the wind-driven system

(2.8)

∂tu +
1

ǫ
P(e3 ∧ u)∆hu − ν∂zzu = 0,

∇ · u = 0,

u|t=0 = 0,

u|z=0 = 0,

u3|z=1 = 0, ∂zuh|z=1 = βσǫ.

For that system, we will construct an approximate solution constituted of
a boundary term uBL,1 localized near the surface, and some interior term
vint,1, which accounts for the fact that the vertical component of uBL,1 does
not match the no-flux boundary condition at the surface (see Remark 2.4
(ii)).

The convergence of the modes such that |µ| 6= 1 is then proved using a
somewhat soft argument, which can be applied with a crude approximation.

Concerning the quasi-resonant modes, for which |µ| = 1 and kh 6= 0, the
situation is more complicated, and we have to build several correctors before
reaching the adequate order of approximation.
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• On the other hand, we will study the initial value problem

(2.9)

∂tu +
1

ǫ
P(e3 ∧ u) − νh∆hu − ν∂zzu = 0,

∇ · u = 0,

u|t=0 = γ,

u|z=0 = 0,

u3|z=1 = 0, ∂zuh|z=1 = 0.

Here we will use, following [4], an energy method which requires to obtain
a very precise approximation. A quantitative result about the required pre-
cision is given in the stopping condition in the Appendix (Lemma 1): when
the approximate solution satisfies the hypotheses of Lemma 1, we put an end
to the construction of correctors and conclude thanks to an energy estimate,
whence the name ‘stopping Lemma’. The approximate solution is actually
obtained as the sum of two interior terms uint that we seek in the form

uint =
∑

clNle
−iλl

t
ǫ

coming from the analysis of the linear penalization as an operator of L2, and
two boundary terms uBL,0. We emphasize that in the case ν = O(ǫ), the
construction of an approximate solution for system (2.9) has already been
dealt with by several authors (see [4, 16]); we recall it here for the reader’s
convenience, and further extend it to the case when ν ≫ ǫ.

Of course, in the nonlinear case the superposition principle does not hold
anymore, and both systems (2.8) and (2.9) will be coupled.

The next sections are devoted to the proofs of Theorems 2.2 and 2.5.
We start with a precise description of the boundary layer operator B in
Section 3. We then build, in Section 4, the approximation and prove the
convergence for the (possibly resonant) wind-driven system (2.8). For the
sake of completeness, we finally study the system (2.9) which has already
been dealt with in a number of mathematical papers. Let us recall that in
both cases we need a refined approximation with many orders. We have
then to iterate some process giving the successive correctors. Note however
that we are not able to really obtain an asymptotic expansion leading to a
more accurate approximation (in L2 sense). At each step of the process the
order of the resonances involved in the estimates is indeed increased, so that
it is not possible to obtain convergent series. For more precisions regarding
that point, we refer to the proof in Section 5.

3. The boundary layer operator

This section is devoted to the proof of Theorem 2.2.
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3.1. Non-resonant case.
We recall that the boundary conditions are given by (2.1). and that we

seek the boundary terms as a sum of oscillating modes, rapidly decaying in z.
Our goal in this paragraph is to characterize these modes, or in other words
to describe the propagation with respect to z of the boundary conditions

v|z=0 = δ0
h, ∂zvh|z=1 = δ1

h .

We will use the following Ansatz

v(t, x) = v0(t, x) + v1(t, x)

with

vj(t, x) =
∑

µ,kh

V j(µ, kh;x) exp

(

i
t

ǫ
µ

)

where µ and kh are the oscillation period and horizontal Fourier mode.
We further seek V 0(µ, kh) and V 1(µ, kh) in the form

(3.1)

V 0(µ, kh;x) = v̂0(µ, kh) exp(ikh · xh) exp

(

−λ(µ, kh)
z√
ǫν

)

,

V 1(µ, kh;x) = v̂1(µ, kh) exp(ikh · xh) exp

(

−λ(µ, kh)
(1 − z)√

ǫν

)

so that they are expected to be localized in a neighbourhood of size O(
√

ǫν)
respectively near the bottom and near the surface. Note in particular that,
with such a choice, v0 (resp. v1) introduces only exponentially small error
terms on the surface (resp. at the bottom).

Plugging this Ansatz in the system (1.4) we get actually

(3.2)

iµv̂1 − λ2v̂1 + ǫk2
hv̂1 − v̂2 + ǫν

k1k2v̂1 − k2
1 v̂2

λ2 − ǫνk2
h

= 0,

iµv̂2 − λ2v̂2 + ǫk2
hv̂2 + v̂1 + ǫν

−k1k2v̂2 + k2
2 v̂1

λ2 − ǫνk2
h

= 0,

√
ǫν(ik1v̂1 + ik2v̂2) ± λv̂3 = 0 .

which expresses the balance between the forcing, the viscosity, the Coriolis
force and the pressure.

Denote by Aλ the matrix corresponding to (3.2)

Aλ(µ, kh) =









iµ − λ2 + ǫk2
h +

ǫνk1k2

λ2 − ǫνk2
h

−1 − ǫνk2
1

λ2 − ǫνk2
h

1 +
ǫνk2

2

λ2 − ǫνk2
h

iµ − λ2 + ǫk2
h − ǫνk1k2

λ2 − ǫνk2
h









.

Classical results on boundary layers are then based on the fact that |µ| 6= 1,
which ensures that the matrix

(

µ i
−i µ

)
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is hyperbolic in the sense of dynamical systems, i.e. that its eigenvalues
have non zero real parts. In particular, there exist two complex numbers
λ = λ(µ, kh) with nonnegative real parts such that det Aλ = 0.

This feature, as well as general properties of the system, is therefore
stable by small perturbation. The method consists then in neglecting the
perturbation, i.e. the pressure and horizontal viscosity terms and to compute
a solution to

∂tv + e3 ∧ v − ν∂zzv = 0

with suitable boundary conditions.
Now, if |µ| = 1, the matrix

(

µ i
−i µ

)

admits zero as an eigenvalue, and we expect its behaviour to be very sensitive
to perturbations. Actually we will distinguish between two cases

• either kh 6= (0, 0) and we will prove that the same type of behaviour
as previously occurs, with the difference that the decay rate λ of the
singular component is anomalously small. We will thus develop a
general method, which can be used independently of the size of λ
(the classical method fails since the error depends on 1/λ2).

• or kh = (0, 0) and we have a bifurcation. The solution v is not
localized anymore.

Case when kh 6= (0, 0).
• Let us first introduce some notations in order to define an abstract

framework to deal with. For the sake of simplicity, we omit here all the
parameters µ and kh.

Let λ be such that det(Aλ) = 0, then there exists wλ such that

(3.3) Aλwλ = 0 .

In other words the vector fields W 0
λ and W 1

λ defined by

(3.4)

W 0
λ (t, x) =





wλ√
ǫν

λ
ikh · wλ



 exp(ikh · xh) exp(iµ
t

ǫ
) exp

(

−λ
z√
ǫν

)

W 1
λ (t, x) =





√
ǫν

λ
wλ

− ǫν

λ2
ikh · wλ



 exp(ikh · xh) exp(iµ
t

ǫ
) exp

(

−λ
(1 − z)√

ǫν

)

are exact solutions to (1.4) satisfying respectively the horizontal boundary
condition

W 0
λ,h|z=0 = wλ exp(ikh · xh) exp(iµ

t

ǫ
),

∂zW
0
λ,h|z=1 = − λ√

ǫν
wλ exp(ikh · xh) exp(iµ

t

ǫ
) exp

(

− λ√
ǫν

)

,
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and

∂zW
1
λ,h|z=1 = wλ exp(ikh · xh) exp(iµ

t

ǫ
),

W 1
λ,h|z=0 =

√
ǫν

λ
wλ exp(ikh · xh) exp(iµ

t

ǫ
) exp

(

− λ√
ǫν

)

.

We have moreover the following estimates (provided that λ√
ǫν

≫ 1)

(3.5)

W 0
λ = O(1)L∞(R+,L∞(Ω)), W 0

λ = O

(

( ǫν

λ2

)1/4
)

L∞(R+,L2(Ω))

,

W 1
λ = O

(

( ǫν

λ2

)1/2
)

L∞(R+,L∞(Ω))

, W 1
λ = O

(

( ǫν

λ2

)3/4
)

L∞(R+,L2(Ω))

.

We intend to build one particular solution to (1.4) satisfying the horizontal
boundary condition

vh|z=0 = δ0
h,

∂zvh|z=1 = δ1
h.

Hence, we only have to find (for all µ and kh) some wλ− and wλ+ constituting
a basis of C2.

• In order to determine some suitable wλ− and wλ+ , we have to get some
asymptotic expansions of the eigenvalues and eigenvectors of Aλ(µ, kh).

In view of the previous paragraph, at leading order, we have

Aλ =

(

iµ − λ2 −1
1 iµ − λ2

)

+ o(1)

so that

det(Aλ) = (iµ − λ2)2 + 1 + o(1) = 0

for (λ−)2 = i(µ + 1) + o(1) or (λ+)2 = i(µ − 1) + o(1). We further have

wλ− = (1,−i) + o(1) and wλ+ = (1, i) + o(1)

For |µ| 6= 1, we choose λ− and λ+ to be the roots of det(Aλ) = 0 with non-
negative real parts. The previous asymptotic equivalences are then enough
to prove that

det(wλ− , wλ+) = 2i + o(1)

from which we deduce that (wλ− , wλ+) is a (quasi-orthogonal) basis of C2,
and that we have uniform bounds (with respect to ǫ sufficiently small and
ν bounded) on the transition matrix P and its inverse.
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For µ = 1 we expect λ− to be given by (λ−)2 = 2i + η− with η− = o(1),
and λ+ to be given by (λ+)2 = η+ with η+ = o(1)

det(Aλ) =

(

iµ − λ2 + ǫk2
h +

ǫνk1k2

λ2 − ǫνk2
h

)(

iµ − λ2 + ǫk2
h − ǫνk1k2

λ2 − ǫνk2
h

)

−
(

−1 − ǫνk2
1

λ2 − ǫνk2
h

)(

1 +
ǫνk2

2

λ2 − ǫνk2
h

)

=

(

−i − η− + ǫk2
h +

ǫνk1k2

2i

)(

−i − η− + ǫk2
h − ǫνk1k2

2i

)

+

(

1 +
ǫνk2

1

2i

)(

1 +
ǫνk2

2

2i

)

+ o(ǫ)

and

det(Aλ) =

(

i − η+ + ǫk2
h +

ǫνk1k2

η+

)(

i − η+ + ǫk2
h − ǫνk1k2

η+

)

−
(

−1 − ǫνk2
1

η+

)(

1 +
ǫνk2

2

η+

)

+ O(ǫ2ν2/(η+)2)

from which we deduce that

η− = ǫk2
h +

1

4
ǫνk2

h + o(ǫ)

η+ = ǫk2
h +

ǫνk2
h

2iη+
+ o(

√
ǫν) + o(ǫ).

We have then

(λ−)2 = 2i + O(ǫ).

On the other hand, a discussion taking into account the relative sizes of ǫ
and ν shows that

(λ+)2 ∼ ǫk2
h if ν << ǫ, (λ+)2 ∼ ±1

2

√
ǫν|kh|(1 + i)

while an easy argument of homogeneity gives

(λ+)2 ∼ C(kh)ǫ if ν ∼ ǫ,

for some constant C(kh), depending only on kh. Thus there exists a constant
C(kh) such that

(3.6)
C(kh)−1 ≤ |λ−(1, kh)| ≤ C(kh),

C(kh)−1(ǫ +
√

ǫν)1/2 ≤ |λ+(1, kh)| ≤ C(kh)(ǫ +
√

ǫν)1/2.

Plugging these expansions in the formula of Aλ leads then to

wλ− = (1,−i + O(ǫ)),

wλ+ = (1, i + O(
√

ǫν) + O(ǫ))

In particular we have

det(wλ− , wλ+) = 2i + O(ǫ) + O(
√

ǫν)
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from which we deduce that (wλ− , wλ+) is a (quasi-orthogonal) basis of C2,
and that we have uniform bounds (with respect to ǫ and ν sufficiently small)
on the transition matrix P and its inverse.

For µ = −1 we have in the same way

(3.7)
C(kh)−1(ǫ +

√
ǫν)1/2 ≤ |λ−(−1, kh)| ≤ C(kh)(ǫ +

√
ǫν)1/2,

C(kh)−1 ≤ |λ+(−1, kh)| ≤ C(kh)

and

wλ− = (1,−i + O(
√

ǫν) + O(ǫ)), wλ+ = (1, i + O(ǫ))

from which we deduce uniform bounds (with respect to ǫ and ν sufficiently
small) on the transition matrix P and its inverse.

• We then define V 0(µ, kh) and V 1(µ, kh) by

(3.8) V j(µ, kh;x) exp

(

iµ
t

ǫ

)

= αj
−W j

λ−(t, x) + αj
+W j

λ+(t, x)

where W j
λ is defined in terms of wλ by (3.4) and the coefficients αj

− and αj
+

are defined by

(3.9) (αj
−, αj

+) = P−1δ̂j
h(µ, kh).

Case when kh = (0, 0).
That case is strongly different since there is no term of higher order in

(3.2) :

Aλ =

(

iµ − λ2 −1
1 iµ − λ2

)

For |µ| 6= 1 we use exactly the same arguments as previously and define

v̂j(µ, 0) by formulas (3.8)(3.9).

Remark 3.1. When |µ| = 1 we cannot find a basis of eigenvectors (wλ− , wλ+)
with ℜ(λ−) > 0 and ℜ(λ+) > 0. One of the eigenvalue is necessarily 0, and
thus the corresponding solution has no decay in z. In other words we do
not expect the boundary terms to be localized in the vicinity of the boundary
uniformly in time.

The assumption that the boundary condition is non resonant ensures
however that there is no such contribution.

If |µ| = 1 we have

λ−µ = 2µi and λµ = 0

with

wλ− = (1,−i) and wλ+ = (1, i) .

If we define as previously W j
λ−µ by (3.4), and αj

± by (3.9), we have

αj
µ = 0.
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Setting, for j = 0 or j = 1,

V j(µ, 0;x) exp

(

iµ
t

ǫ

)

= αj
−µW j

λ−µ(t, x)

we can check that it is an exact solution to (1.4), which further satisfies the
required horizontal boundary condition.

3.2. Resonant case.
Let us then focus on the resonant part of the motion. The singular com-

ponent uǫ,res of the velocity is a 2D vector field (depending only on t and
z), so that (1.4) can be rewritten

∂tuǫ,res +
1

ǫ
uǫ,res ∧ e3 − ν∂zzuǫ,res = 0,

meaning that the pressure is constant.

• Therefore the equation can be filtered by a simple change of unknown :

vν(t) =
1

2

〈





1
i
0





∣

∣uǫ,res

〉





1
i
0



 e−i t
ǫ +

1

2

〈





1
−i
0





∣

∣uǫ,res

〉





1
−i
0



 ei t
ǫ

A straightforward computation leads then to

(3.10) ∂tvν − ν∂zzvν = 0,

which is nothing else than the heat equation with small conductivity ν. We
therefore expect the boundary effects to remain localized (in L2 sense) in
layers of size O(

√
νt) near the boundaries.

• Let us then introduce a boundary layer approximation

vL,res = v0
L,res + v1

L,res

for vν . The heat equation on vj
L,res is supplemented with the boundary

condition

v0
L,res|z=0 = δ0

L,res, ∂zv
1
L,res|z=1 = δ1

L,res

and the initial condition

vj
L,res|t=0 = 0 .

Notice that once again we do not enforce boundary conditions on both sides

for vj
L,res : the trace of vj at z = 1 − j will be imposed by the exponential

profile condition. We indeed seek vj
L,res in the form of self similar profiles

(3.11) v0
L,res = ϕ0

(

z√
νt

)

, ∂zv
1
L,res = ϕ1

(

(1 − z)√
νt

)

.

We then get

−1

2
Xϕ′(X) − ϕ′′(X) = 0,



ROTATING FLUIDS WITH RESONANT SURFACE STRESS 17

from which we deduce that

ϕ′(X) = ϕ′(0) exp

(

−1

4
X2

)

,

and

ϕ(X) = −
∫ +∞

X
ϕ′(0) exp

(

−1

4
Y 2

)

dY .

We thus choose

(ϕj)′(0) = −δj
L,res

(∫ +∞

0
exp

(

−1

4
Y 2

)

dY

)−1

= − 1√
π

δj
L,res.

Note that, in order that v1
L,res satisfies the heat equation (3.10), we have to

further impose that v1
L,res(−∞) = 0.

• We deduce that

v0
L,res =

1√
π

δ0
L,res

∫ +∞

z√
νt

e−
Y 2

4 dY

∼z 6=0
2√
π

δ0
L,res

(

z√
νt

)−1

exp

(

−1

4

(

z√
νt

)2
)

Similarly, we have

v1
L,res(t, z) =

∫ z

−∞
ϕ1

(

1 − z′√
νt

)

dz′,

with

ϕ1

(

1 − z√
νt

)

∼z 6=1
2√
π

δ1
L,res

(

1 − z√
νt

)−1

exp

(

−1

4

(

1 − z√
νt

)2
)

.

Therefore

v1
L,res(t, z) ∼z 6=1 −4(νt)3/2

√
π

δ1
L,res(1 − z)−2 exp

(

−1

4

(

1 − z√
νt

)2
)

.

In particular vj
L,res is exponentially small outside from a layer of size O(

√
νt).

3.3. Continuity estimates.
We now turn to the derivation of the estimates of Theorem 2.2.
Thanks to the previous paragraph, the resonant part of the boundary

layer, namely vj
res defined by (3.11), satisfies the third estimate in (2.3).

We then split vj − vj
res according to the size of the boundary layers

v̄j =
∑

kh

∑

µσ 6=1

αj
σ(µ, kh)W j

λσ(µ,kh)
,

ṽj =
∑

kh 6=0

∑

µσ=1

αj
σ(µ, kh)W j

λσ(µ,kh)



18 ANNE-LAURE DALIBARD AND LAURE SAINT-RAYMOND

By definition of αj
σ(µ, kh) and W j

λσ(µ,kh), we then obtain the estimates

‖v̄j
h‖L2 + (ǫν)−1/2‖v̄j

3‖L2 ≤ Cβj(ǫν)
1+2j

4 ‖δj
h‖

for the classical boundary layer, and

‖ṽj
h‖L2(ω) +

√
ǫ + (ǫν)1/4

(ǫν)1/2
‖ṽ3‖L2(ω) ≤ Cβj

(

ǫν

ǫ +
√

ǫν

)
1+2j

4

‖δj
h‖

for the quasi-resonant boundary layer.

4. Study of the wind-driven part of the motion

This section is devoted to the proof of Theorem 2.5 in the case where
the initial data γ vanishes. In other words, we study here the asymptotic
behaviour of the system (2.8). Our goal is to prove that under a technical
scaling assumption which will be precised later on, the solution u of (2.8)
converges towards zero in L∞

loc(R+, L2(ω)) as ǫ, ν → 0.
As explained in section 2, the method of proof relies on the construction

of an approximate solution uapp, defined as the sum of boundary layer terms
obtained thanks to Theorem 2.2, and interior terms which will be determined
by a filtering process. The presence of these interior terms is due to the
fact that the vertical components of the boundary layer terms constructed
in Theorem 2.2 do not vanish on z = 0 and z = 1. More importantly,
the traces of these boundary layer terms do not satisfy the assumptions
of the stopping Lemma 1 in Appendix B, which quantifies the order of
approximation required for uapp. Hence in general, the approximate solution
is constituted of several correctors, which all vanish in L2 norm.

The different modes of the wind stress σ will be treated independently of
each other. Indeed, in the case where the stress σ does not have any quasi-
resonant mode, it will be sufficient to construct a very crude approximation,
constituted merely of one boundary layer term and one additional corrector.
On the other hand, the vertical components of the quasi-resonant boundary
layer terms have a much larger trace on z = 1 and z = 0 than the classical
ones, as can be seen in inequalities (2.3). Consequently, the quasi-resonant
part of the stress σ will require a much more refined approximation, with
several orders of boundary layer terms and interior terms.

The organization of this section is as follows: first, we give in paragraph
4.1 a general convergence result for the system (2.8). Then, in paragraph 4.2,
we construct the first orders of the approximate solution uapp. In paragraph
4.3, we conclude in the case when there is no quasi-resonant mode |µ| = 1,
kh 6= 0. At last, we prove the theorem for the quasi-resonant part of the
stress σ in paragraph 4.4. At each step, we give some sufficient assumptions
on the parameter β, and at the end of the proof, we only keep the most
restrictive ones, which will lead to the scaling assumption (4.17).
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4.1. Some stability inequality for the wind-driven system (2.8). As
mentioned in Section 2, for the non-resonant part of wind-driven system
(2.8), we will only need a rather crude approximation of the solution. We
have indeed the following

Proposition 4.1. Denote by uǫ the solution to (2.8) and by uapp any ap-
proximate solution in the sense that

(4.1)

∂tuapp +
1

ǫ
P(e3 ∧ uapp) − ∆huapp − ν∂zzuapp = η,

∇ · uapp = 0,

uapp|t=0 = ηini,

uapp,3|z=0 = 0, uapp,h|z=0 = ǫη0,

uapp,3|z=1 = 0, ∂zuapp,h|z=1 = βσǫ + η1,

with η → 0 in L2([0, T ]× ω), ηini → 0 in L2(ω) and η0, ν
3/4η1, ǫ∂tη0 → 0 in

L2([0, T ] × ωh). Then as ǫ, ν → 0,

‖uǫ − uapp‖L∞([0,T ],L2(ω)) → 0,

‖∇h(uǫ − uapp)‖L2([0,T ]×ω) +
√

ν‖∂z(uǫ − uapp)‖L2([0,T ]×ω) → 0.

Proof. • The first step consists in building a family w such that vapp
def
=

uapp + w satisfies

(4.2)

∂tvapp +
1

ǫ
P(e3 ∧ vapp) − ∆hvapp − ν∂zzvapp = ζ,

∇ · vapp = 0,

vapp|t=0 = ζini,

vapp,3|z=0 = 0, vapp,h|z=1 = 0,

vapp,3|z=1 = 0, ∂zvapp,h|z=1 = βσǫ + η1.

with ζini → 0 in L2(ω) and ζ → 0 in L2([0, T ] × ωh).
In order to do so, we just apply Lemma 1 in the Appendix with

δ0
h = −ǫη0, δ0

3 = 0 and δ1 = 0.

A simple computation allows then to establish all the properties (4.2).
• The convergence is then obtained by a standard energy estimate. Com-

bining (4.2) and (2.8), and integrating by parts lead indeed to

1

2
‖(uǫ − vapp)(t)‖2

L2 +

∫ t

0
‖∇h(uǫ − vapp)‖2

L2ds + ν

∫ t

0
‖∇h(uǫ − vapp)‖2

L2ds

≤ 1

2
‖ζini‖2

L2(ω) +

∫ t

0
‖uǫ − vapp‖L2(ω)‖ζ‖L2(ω)ds

+ν

∫ t

0
‖(uǫ − vapp)h|z=1(t)‖L2(ωh)‖η1‖L2(ωh)ds
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• To conclude we therefore need to estimate the trace (uǫ − vapp)h|z=1 in

L2(ωh) in terms of the H1 norm of uǫ − vapp. By Sobolev embeddings and
the Cauchy-Schwarz inequality, we have

ν1/2‖(uǫ − vapp)h|z=1‖2
L2(ωh) ≤ C‖uǫ − vapp‖2

L2(ω) + ν‖∂z(uǫ − vapp)‖2
L2(ω)

Plugging that estimate in the previous energy inequality, we get

1

2
‖(uǫ − vapp)(t)‖2

L2 +

∫ t

0
‖∇h(uǫ − vapp)‖2

L2ds +
ν

2

∫ t

0
‖∂z(uǫ − vapp)‖2

L2ds

≤1

2
‖ζini‖2

L2(ω) +
1

2

∫ t

0
‖ζ‖2

L2(ω)ds + ν3/2

∫ t

0
‖η1‖2

L2(ωh)ds

+
1

2

∫ t

0
‖(uǫ − vapp)(s)‖2

L2(ω)ds

using again the Cauchy-Schwarz inequality. We conclude by Gronwall’s
lemma

1

2
‖(uǫ − vapp)(t)‖2

L2 +

∫ t

0
‖∇h(uǫ − vapp)‖2

L2ds + ν

∫ t

0
‖∂z(uǫ − vapp)‖2

L2ds

≤ e2Ct

2
‖ζini‖2

L2(ω) +
1

2

∫ t

0
‖ζ‖2

L2(ω)e
2C(t−s)ds + ν3/2

∫ t

0
‖η1‖2

L2(ωh)e
2C(t−s)ds

which proves that uǫ − vapp converges to 0 in L∞
loc(R+, L2(ω)). Theorem

2.5 will be proved in the case when γ = 0 if we are able to build some
approximate solution uapp that converges strongly to 0 as ǫ, ν → 0. �

Remark 4.2. The above proposition can be slightly modified if one wishes
to work with a source term η belonging to L2([0, T ],H−1(ω)), for instance.
In this case, following exactly the same argument as in the proof above, the
relevant assumption on η is

(4.3)
1√
ν
‖η‖L2([0,T ],H−1(ω)) = o(1) as ǫ, ν → 0.

4.2. The first order terms of the approximate solution. In order to
obtain some approximate solution to (2.8) (in the sense (4.1) of the pre-
vious paragraph), we will essentially need to construct the boundary layer
term and some small corrector to account for the vertical component of the
boundary condition.

• We define with the notations of Proposition 2.2

uBL,1 = B(0, βσ) = ūBL,1 + ũBL,1 + uBL,1
res .

Since we assume that σ has a finite number of horizontal Fourier modes kh

and of oscillating modes µ, by Lemma 2.2, we have

‖ūBL,1
h ‖L2(ω) ≤ C‖σ‖L2(ωh)β(ǫν)3/4,

‖ūBL,1
3 ‖L2(ω) ≤ C‖σ‖L2(ωh)β(ǫν)5/4,
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and for the quasi-resonant modes with |µ| = 1, kh 6= 0,

‖ũBL,1
h ‖L2(ω) ≤ C‖σ‖L2(ωh)β

(

ǫν

ǫ +
√

ǫν

)3/4

≤ Cβν3/4,

‖ũBL,1
3 ‖L2(ω) ≤ C‖σ‖L2(ωh)β

(

ǫν

ǫ +
√

ǫν

)5/4

≤ Cβν5/4.

As for the resonant modes |µ| = 1, kh = 0, we get

‖uBL,1
res,h‖L2([0,T ]×ω) ≤ CβT 5/4‖σ‖L∞([0,T ],L2(ωh))ν

3/4,

uBL,1
res,3 ≡ 0.

Hence uBL,1 vanishes provided

(4.4) βν3/4 = o(1) as ǫ, ν → 0.

Furthermore, using the explicit formula for B, we get

‖ūBL,1
3|z=1‖Hs(ωh) = O(β(ǫν)) and ‖∂tū

BL,1
3|z=1‖Hs(ωh) = O(βν)

‖ūBL,1
3|z=0‖Hs(ωh) = O(β(ǫν)N ) and ‖∂tū

BL,1
3|z=0‖Hs(ωh) = O(β(ǫν)N ),

‖ũBL,1
3|z=1‖Hs(ωh) = O(β(ǫν)1/2) and ‖∂tū

BL,1
3|z=1‖Hs(ωh) = O

(

β

√

ν

ǫ

)

‖ũBL,1
3|z=0‖Hs(ωh) = O(β(ǫν)N ) and ‖∂tū

BL,1
3|z=0‖Hs(ωh) = O(β(ǫν)N )

for any integer N , and uniformly in time. As a consequence, ūBL,1
3|z=1, ūBL,1

3|z=0

and ũBL,1
3|z=0 satisfy the conditions of the stopping Lemma 1 in the Appendix

as soon as βν = o(1), which is always ensured by hypothesis (4.4). We
denote by w the function defined in Lemma 1 with

δ0
h = 0, δ1

h = 0

δ0
3 = −ūBL,1

3|z=0 − ũBL,1
3|z=0, δ1

3 = −ūBL,1
3|z=1.

• The term ũBL,1
3|z=1, on the other hand, does not match the conditions of

Lemma 1. We therefore introduce some corrector vint,1 to restore the zero-
flux condition. We first define its vertical component

vint,1
3 = −ũBL,1

3|z=1z ,

then its horizontal component in order that the divergence-free condition is
satisfied

vint,1
h = ∇h(∆h)−1ũBL,1

3|z=1.
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Note that for kh = 0, vint,1 is identically zero. In any case, we get easily
that

‖vint,1‖L∞([0,∞),Hs(ω)) = O

(

β
ǫν

ǫ +
√

ǫν

)

= O(βν),

‖∂tv
int,1‖L∞([0,∞),L2(ω)) = O

(

β

√

ν

ǫ

)

.

With the above notations, the first order of the approximate solution is given
by

u1
app = uBL,1 + w + vint,1.

4.3. Proof of Theorem 2.5 when there is no quasi-resonant mode.
If there is no quasi-resonant mode (see the precise definition in the previous
section), namely if ũBL,1 = 0, we then claim that u1

app satisfies the required
conditions. We indeed have clearly

u1
app,3|z=0 = u1

app,3|z=1 = 0

by definition of w. Notice that in this case vint,1 = 0. We further have

∂zu
1
app,h|z=1 − βσǫ = 0,

‖u1
app,h|z=0‖L2(ωh) = O(β(ǫν)N ) and ‖∂tu

1
app,h|z=0‖L2(ωh) = O(β(ǫν)N )

for all N . We also have for all t ≥ 0

‖u1
app(t)‖L2(ω) ≤ ‖uBL,1(t)‖L2(ω) + ‖w(t)‖L2(ω) = O(β(ǫν)3/4) = o(1).

It remains then to check that the evolution equation is approximately
satisfied. We have

∂tu
1
app +

1

ǫ
P(e3 ∧ u1

app) − ∆hu1
app − ν∂zzu

1
app = O(νβ)L2([0,T ]×ω) = o(1)

supplemented with some initial condition

u1
app|t=0 = O(β(ǫν)3/4)L2(ω).

We therefore apply Proposition 4.1 and conclude that u1
app has the same

asymptotic behaviour as the solution of

(4.5)

∂tu +
1

ǫ
P(e3 ∧ u) − ∆hu − ν∂zzu = 0,

∇ · u = 0,

u|t=0 = 0,

u3|z=0 = 0, uh|z=0 = 0,

u3|z=1 = 0, ∂zuh|z=1 = βσǫ.

Since u1
app vanishes in L∞

loc(R+, L2(ω)), Theorem 2.5 is proved when γ = 0
and when there is no quasi-resonant mode in the forcing σ.
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4.4. Proof of the Theorem in the quasi-resonant case. For the quasi-
resonant modes |µ| = 1, the influence of the forcing is much more extended
inside the domain. In particular, the defect

Σ =∂tv
int,1 +

1

ǫ
e3 ∧ vint,1 − ∆hvint,1

=
∑

µ=±1

∑

kh

(

i
µ

ǫ
+ |kh|2

)

v̂int,1(µ, kh, z)eikh·xheiµ t
ǫ

+
1

ǫ

∑

µ=±1

∑

kh





−v̂int,1
2 (µ, kh, z)

v̂int,1
1 (µ, kh, z)

0



 eikh·xheiµ t
ǫ

does not converge strongly to 0 in L2 norm. It is however expected to have
rapid oscillations, and thus to converge weakly to 0. The standard method
to deal with such a problem consists then in building some corrector which
will be small in L2 norm in contrast with its time derivative which has to
compensate the previous defect.

More precisely we will use the small divisor estimate stated in Appendix B.

For K > 0 arbitrary, denote by δuint,1
K =

∑

l ŵle
−i t

ǫ
λlNl the solution to

∂tδu
int,1
K +

1

ǫ
P(e3 ∧ δuint,1

K ) − ∆hδuint,1
K − ν∂zzδu

int,1
K = −PK(Σ),

supplemented with the initial condition

δuint,1
K|t=0 = 0.

The notation PK stands for the projection onto the vector space generated by
{Nl, |l| ≤ K}. The idea is the to choose carefully the truncation parameter

K, depending on ǫ and ν, so that both δuint,1
K and the error term P(Σ) −

PK(Σ) are small in suitable Sobolev norms as ǫ and ν vanish.

• Let us first derive the equation on ŵl. For |l| ≤ K, ŵl is the solution of

∂tŵl + |lh|2ŵl + ν ′|l3|2ŵl = −eiλl
t
ǫ 〈Nl|Σ〉

where ν ′ = π2ν. Direct computations give for lh 6= 0, µ = ±1,

v̂int,1
h (µ, lh, z) = iδ̂3(µ, lh)

lh
|lh|2

,

v̂int,1
3 (µ, lh, z) = δ̂3(µ, lh)z,

where

δ̂3(µ, lh) = iβ(ǫν)
α1

µ(µ, lh)lh · wλµ

(λµ)2
,

where α1
µ and wλ were defined in the previous section by (3.9) and (3.3)

respectively. Notice moreover that λµ satisfies the estimates (3.6)-(3.7), so
that in general,

(λµ)(µ, kh)−2 = O((ǫν)−1/2).
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Moreover,

(4.6)

〈

Nl

∣

∣

∣

∣

∣

∣





il1
il2

|lh|2z



 eilh·xh

〉

= i
|lh|3

2π2|l|l3
(−1)l31l3 6=0

〈

Nl

∣

∣

∣

∣

∣

∣





−il2
il1
0



 eilh·xh

〉

=

{

0 if l3 6= 0,

−|lh|
2π

else.

We thus have

(4.7)

∂tŵl + (|lh|2 + ν ′|l3|2)ŵl

=
1

ǫ

∑

µ=±1

δ̂3(µ, lh)

2π

(

1l3 6=0
(µ − iǫ|lh|2)|lh|

π|l|l3
+

1l3=0

|lh|

)

ei(λl+µ) t
ǫ .

• We now estimate the different terms and explain how to choose the trun-
cation parameter K. Notice first that by truncating the large frequencies in

l, we have introduced a source term in the equation. Precisely, δuint,1
K +vint,1

is a solution of equation (1.4) with a source term equal to

(Σ − PΣ) + (PΣ − PKΣ).

The term Σ− PΣ belongs to V ⊥
0 by definition of P, and thus for all u ∈ V0,

we have
∫

ω
(Σ − PΣ) · u = 0.

As for the remainder term PΣ − PKΣ, we have

(4.8)

‖PΣ − PKΣ‖L∞((0,∞),L2(ω)) ≤ Cβ

√

ν

ǫ
K−3/2,

‖PΣ − PKΣ‖L∞((0,∞),H−1(ω)) ≤ Cβ

√

ν

ǫ
K−5/2.

With a view to apply Proposition 4.1, or its variant sketched in Remark
4.2, we need the source term PΣ − PKσ to be either o(1) in L2 norm or
o(
√

ν) in H−1 norm as ǫ, ν → 0 (see condition (4.3)). Precisely, according
to Proposition 4.1 and Remark 4.2, the parameter K should satisfy either

(4.9) β

√

ν

ǫ
K−3/2 = o(1) as ǫ, ν → 0 ,

or

(4.10)
1√
ν
β

√

ν

ǫ
K−5/2 =

β√
ǫ
K−5/2 = o(1) as ǫ, ν → 0 .

On the other hand, we apply Lemma 2 to get

‖δuint,1
K ‖Hs(ω) ≤ Cβ(ǫν)

1
2 Ks+ 1

2 .
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For further purposes, we have to choose K such that the Hs norm of δuint,1
K

satisfies
√

ν

ǫ
‖δuint,1

K ‖Hs(ω) = o(1) as ǫ, ν → 0 ,

and such that at least either (4.9) or (4.10) is satisfied. We distinguish
between the cases when ν is large (say ν ≥ ǫ) and ν is small (say ν ≤ ǫ),
which yield different values for K.
- If ν ≤ ǫ, we choose K so that

β

√

ν

ǫ
K−3/2 = β

√

ν

ǫ
(ǫν)1/2Ks+ 1

2

for some s > 3/2, which yields

K = (ǫν)
− 1

2(s+2) .

With this choice, we have

‖PΣ − PKΣ‖L2 ,

√

ν

ǫ
‖δuint,1

K ‖Hs(ω) ≤ Cβν
1− s+1

2
2(s+2) ǫ

− s+ 1
2

2(s+2) ;

Now, assume that β satisfies the following assumption

(4.11)
∃(α0, α1) ∈ (0,∞)2, α0 < 5/7 and α1 > 2/7, ∃C > 0,

ν ≤ ǫ ⇒ β ≤ Cν−α0ǫα1 .

We choose s0 > 3/2 such that

1 − s0 + 1
2

2(s0 + 2)
− α0 > 0,

α1 −
s0 + 1

2

2(s0 + 2)
> 0,

and we have, as ǫ, ν → 0,

(4.12) ‖PΣ − PKΣ‖L2 +

√

ν

ǫ
‖δuint,1

K ‖Hs0 (ω) = o(1).

- Else, we choose K so that

β
1√
ǫ
K−5/2 = βνKs+ 1

2

for some s > 3/2, which yields

K = (ν
√

ǫ)−
1

s+3 .

Assume now that β satisfies the following assumption

(4.13)
∃(α0, α1) ∈ (0,∞)2, α0 < 5/9 and α1 > 2/9, ∃C > 0,

ν ≥ ǫ ⇒ β ≤ Cν−α0ǫα1 .
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We then choose s0 > 3/2 such that

α1 −
s0 + 1

2

2(s0 + 3)
> 0,

1 − α0 −
s0 + 1

2

s0 + 3
> 0,

and we have, as ǫ, ν → 0,
(4.14)

1√
ν
‖PΣ − PKΣ‖L∞((0,∞),H−1(ω)) +

√

ν

ǫ
‖δuint,1

K ‖L∞((0,∞),Hs0 (ω)) = o(1).

We emphasize that this method remains valid when ν = O(ǫ); however,
if ν = ǫ, condition (4.13) is more restrictive than (4.11).

• Because of the terms vint,1 and δuint,1
K , the horizontal boundary condi-

tions are no longer satisfied at z = 0 (notice however that they are satisfied
at z = 1). Thus, we construct another boundary layer term, which we
denote by δuBL,1, such that

δuBL,1 = B(−vint,1
h|z=0 − δuint,1

K,h|z=0, 0).

The above definition is not entirely licit, since δuint,1
K,h|z=0 takes the form

δuint,1
K,h|z=0(t, xh) =

∑

|l|≤K

ŵl(t)e
−iλl

t
ǫ eikh·xh

(

n1(k)
n2(k)

)

,

where the vector n(k) is defined in Appendix A (see (6.7)-(6.8). Hence

δuint,1
K,h|z=0 depends on the fast time variable t/ǫ, but also on the slow time

variable t through the coefficient ŵl. In the definition of δuBL,1, we forget
the time dependance of ŵl, and consider the coefficients ŵl as constants.
Consequently, the boundary layer term δuBL,1 is not an exact solution of
equation (1.4), but there is an error term depending on ∂tŵl. This error
term will be estimated later on.

We now decompose δuBL,1 into δuBL,1 = δũBL,1 + δūBL,1 as in Lemma
2.2; the term δũBL,1 is due to the modes kh 6= 0, |µ| = 1, and thus depends

only on vint,1, since |λk| < 1 if kh 6= 0. Notice that there is no term δuBL,1
res

because v̂int,1(µ, lh, z) = 0 for kh = 0, ŵl = 0 for kh = 0.
According to the estimates (2.3), and provided (4.13) holds, we have, for

all t > 0,

‖δuBL,1
h (t)‖L2(ω) ≤ C‖vint,1(t)‖L2(ω) (ǫν)

1
8 + C‖δuint,1

K (t)‖Hs0 (ǫν)1/4

≤ C(ǫν)1/8,

‖δuBL,1
3 (t)‖L2(ω) ≤ ‖vint,1(t)‖L2(ω) (ǫν)

3
8 + C‖δuint,1

K (t)‖Hs0+1(ǫν)3/4

≤ C(ǫν)3/8 + C(ǫν)3/4(ν
√

ǫ)
− 1

s0+3 .

Thus δuBL,1 vanishes in L∞([0, T ], L2(ω)).
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Let us now estimate the error term in equation (1.4) due to the time
dependance of ŵl. According to (4.7), there exists a constant C such that

|∂twl| ≤
C

|l3|2
√

ν

ǫ
β,

so that δuBL,1 is an approximate solution of equation (1.4), with an error
term which is bounded from above in L2([0, T ] × ω) by

√

ν

ǫ
β(ǫν)1/4 = ν3/4ǫ−1/4β.

Hence, the new condition on β is

(4.15) β = o
(

ν−3/4ǫ1/4
)

as ǫ, ν → 0.

Notice that (4.15) immediately entails (4.4).
• Let us now check that the remaining boundary terms are all sufficiently

small to conclude. To begin with, the terms δuBL,1
h|z=1, δuBL,1

3|z=1 are exponen-

tially small, and thus satisfy the hypotheses of Proposition 4.1 and Lemma

1 respectively. We now prove that under conditions (4.11)-(4.13), δūBL,1
3|z=0

also satisfies the assumptions of Lemma 1. Using the construction of the
previous section, it can be checked that δūBL,1 is given by

δūBL,1(t) =
∑

|kh|≤N

∑

|k3|≤K

∑

µ∈{−1,1}
e−iλk

t
ǫ α0

µ(−λk, kh)W 0
λµ

+
∑

|kh|≤N

∑

µ∈{−1,1}
eiµ t

ǫ α0
−µ(µ, kh)W 0

λ−µ

where the coefficients α0
µ satisfy

∀k ∈ Z3,
∣

∣α0
µ(−λk, kh)

∣

∣ ≤ C|ŵk|,

and
∣

∣α0
−µ(µ, kh)

∣

∣ ≤ C
∣

∣

∣
δ̂3(µ, kh)

∣

∣

∣
.

Recalling the expression of W 0
λ (see (3.4)), we infer that for all t, xh

∣

∣

∣
δūBL,1

3|z=0(t, xh)
∣

∣

∣
≤ C

∑

|kh|≤N

∑

|k3|≤K

∑

µ∈{−1,1}
|ŵk|

√
ǫν

|λµ(−λk, kh)|

+ C
√

ǫν
∑

|kh|≤N

∑

µ∈{−1,1}

∣

∣

∣δ̂3(µ, kh)
∣

∣

∣

≤ C
√

ǫν
∑

|kh|≤N

∑

|k3|≤K

|k||ŵk| + Cβǫν,
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and thus, using the Cauchy-Schwarz inequality (recall that s0 > 3/2 and
that N is bounded)

∥

∥

∥
δūBL,1

3|z=0

∥

∥

∥

L∞([0,T ],L2(ωh))
≤ C

√
ǫν sup

t∈[0,T ]









∑

|kh|≤N,
|k3|≤K

|k|2s0 |ŵk(t)|2









1/2

+ Cβǫν

≤ C
√

ǫν
∥

∥

∥
δuint,1

K

∥

∥

∥

L∞([0,T ],Hs0)
+ Cβǫν.

Hence, under conditions (4.11)-(4.13) and by definition of K, the remaining

boundary term δūBL,1
3|z=0 satisfies the conditions of Lemma 1.

We now consider δũBL,1
3|z=0, which is due to the modes µ = ±1, kh 6= 0 in

vint,1; we have

‖δũBL,1
3|z=0‖L∞([0,T ],L2(ωh)) ≤ C

√
ǫν

(ǫν)1/4 +
√

ǫ
‖vint,1‖L∞([0,T ],L2(ω))

≤ Cβ

(

ǫν

(ǫν)1/2 + ǫ

)3/2

‖σ‖L∞([0,T ],L2(ωh))

≤ Cβ(ǫν)3/4.

Hence δũBL,1
3|z=0 satisfies the assumptions of Lemma 1, provided (4.15) is sat-

isfied.
Thus, we slightly modify the definition of the function w given by Lemma

1, so that the boundary conditions are now

δ0
h = 0, δ1

h = 0

δ0
3 = −uBL,1

3|z=0 − δuBL,1
3|z=0, δ1

3 = −ūBL,1
3|z=1 − δuBL,1

3|z=1.

• We then claim that under hypotheses (4.11), (4.13) and (4.15),

uapp = uBL,1 + w + vint,1 + δuint,1
K + δuBL,1

satisfies the assumptions of Proposition 4.1. We indeed have clearly

uapp,3|z=0 = uapp,3|z=1 = 0

by definition of vint,1 and w. We further have, for all N > 0

‖∂zuapp,h|z=1 − βσǫ‖L2(ωh) = O((ǫν)N ),

‖uapp,h|z=0‖L2(ωh) = O((ǫν)N ) and ‖∂tuapp,h|z=0‖L2(ωh) = O((ǫν)N ).

We also have for all t ≥ 0

‖uapp(t)‖L2(ω) ≤ C
(

βν3/4 + β(ǫν)1/2(
√

νǫ)
− 1

2s0+6

)

= o(1).

By definition of the different terms, the evolution equation is approxi-
mately satisfied, up to an error term of order o(

√
ν) in L∞((0,∞),H1(ω)),

and another one of order o(1) in L2((0, T ) × ω).
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We therefore apply the variant of Proposition 4.1 sketched in Remark 4.2
and conclude that uapp has the same asymptotic behaviour as the solution
of

(4.16)

∂tu +
1

ǫ
P(e3 ∧ u) − ∆hu − ν∂zzu = 0,

∇ · u = 0,

u|t=0 = 0,

u3|z=0 = 0, uh|z=0 = 0,

u3|z=1 = 0, ∂zuh|z=1 = βσǫ.

Thus the solution of (4.16) vanishes in L∞([0, T ], L2(ω)) norm as ǫ, ν → 0
with (ǫ, ν, β) satisfying (4.11), (4.13) and (4.15).

• We conclude this paragraph by giving a scaling assumption on β which
entails all three conditions (4.11), (4.13) and (4.15). Assume that the pa-
rameter β is such that

(4.17) ∃α0 ∈
(

0,
7

12

)

, β = O(ν−α0ǫ1/4) as ǫ, ν → 0;

we now check that each of the assumptions (4.11), (4.13) and (4.15) are
satisfied.

First, it is obvious that

ν3/4ǫ−1/4β = O(ν3/4−α0) = o(1)

since 3/4 − α0 > 1/6 > 0. Hence (4.15) is satisfied.
We now tackle condition (4.11); since α0 < 7/12, there exists positive

numbers (α′
0, α

′
1) such that

α′
0 < 5/7, α′

1 > 2/7, and α′
0 − α′

1 = α0 −
1

4
.

In view of (4.17), there exists a constant C such that

β ≤ Cν−α′
0+α′

1− 1
4 ǫ

1
4

≤ Cν−α′
0

( ǫ

ν

) 1
4
−α′

1
ǫα′

1 .

Notice that α′
1 > 1/4, and thus if ν ≤ ǫ, we deduce that

β ≤ Cν−α′
0ǫα′

1 .

Hence we have proved that (4.17)⇒ (4.11).
The treatment of (4.13) is similar. We first choose positive numbers α′′

0 , α
′′
1

such that

α′′
0 < 5/9, 2/9 < α′′

1 < 1/4, and α′′
0 − α′′

1 = α0 −
1

4
.
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Then if ν ≥ ǫ, we have

β ≤ Cν−α′′
0+α′′

1− 1
4 ǫ

1
4

≤ Cν−α′′
0

( ǫ

ν

)
1
4
−α′′

1
ǫα′′

1

≤ Cν−α′′
0 ǫα′′

1 .

Hence we also have (4.17)⇒ (4.13), and eventually, we deduce that under hy-
pothesis (4.17), the solution of (2.8) converges towards zero in L∞([0, T ], L2)
for all T > 0.

5. Study of the dissipating part of the motion

This section is dedicated to the rest of the proof of Theorem 2.5. Ac-
cording to the preceding section, there remains to define the term uDirichlet,
which is an approximate solution of (1.4), supplemented with the following
boundary conditions

uDirichlet
h|z=0 = 0, uDirichlet

3|z=0 = 0

∂zu
Dirichlet
h|z=1 = 0,uDirichlet

3|z=1 = 0,

uDirichlet
|t=0 = γ.

This point has already been investigated by several authors, see for in-
stance [4]: the idea is to construct an interior term, denoted by uint, which
satisfies the evolution equation up to error terms which are o(1), and a
boundary layer term, denoted by uBL, which restores the horizontal bound-
ary conditions violated by the interior term. We emphasize that in order
that the equation and the boundary conditions are satisfied up to sufficiently
small error terms, we need to build some second order terms in both uint

and uBL.
The organization of the section is as follows: in the spirit of Theorem

2.2 and Definition 2.3, we first define an operator U , which allows us to
construct an interior term, given arbitrary vertical boundary conditions.
Then we explain how to choose the boundary conditions for the boundary
layer term and the interior term in order to retrieve (1.2) and (1.3) with
σ ≡ 0. In the last paragraph, we build one additional boundary layer term,
and we prove Theorem 2.5 thanks to an energy estimate.

Throughout this section, we use repeatedly the following norm: if δ ∈
L∞([0,∞) × [0,∞), L2(ωh)) is such that

δ(t, τ, xh) =
∑

|kh|≤N

∑

k3∈Z

δ̂(−λk, kh; t)eikh·xhe−iλkτ ,

where τ stands for the fast time variable t/ǫ, then

‖δ(t, ·)‖s :=





∑

|kh|≤N

∑

k3∈Z

|k3|2s
∣

∣

∣δ̂(−λk, kh; t)
∣

∣

∣

2





1/2

.
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5.1. Construction of the operator U . Let δ1
3 and δ0

3 in L∞([0,∞) ×
[0,∞), L2(ωh)) be such that

δj
3(t, τ, xh) =

∑

|kh|≤N

∑

k3∈Z

δ̂j
3(−λk, kh; t)eikh·xhe−iλkτ ,(5.1)

and let γ ∈ V0. In practice, the functions δ1
3 and δ0

3 will not be arbitrary, and
will be dictated by the expression of the boundary layer operator constructed
in the third section. In fact, we will see that δ1

3 = 0, so that the expression
of uint below is simpler, but we have preferred to keep an arbitrary value
for δ1

3 in order not to anticipate on this result.
We define the operator U by

U(γ; δ0
3 , δ1

3) = uint,

where uint is an approximate solution of equation (1.4) and satisfies the
following boundary conditions

uint
3|z=1 =

√
ǫνδ1

3 ,(5.2)

uint
3|z=0 =

√
ǫνδ0

3 ,(5.3)

uint
|t=0 = γ + o(1).(5.4)

We emphasize that conditions (5.2)-(5.3) will be satisfied exactly (without
any error term). Of course the above conditions are not sufficient to define
the term uint unequivocally. We merely define here a particular solution of
this system, which is sufficient for our purposes.

The explicit construction of uint requires three steps: first, we exhibit a
divergence-free vector field vint,0 which satisfies the vertical boundary con-
ditions (5.2)-(5.3), but not equation (1.4), and then we define a function
δuint,0, which satisfies homogeneous boundary conditions, and such that

(5.5) uint := exp

(

− t

ǫ

)

uint
L + δuint,0 + vint,0

is an approximate solution of (1.4), supplemented with the initial condition
(5.4). As usual in this type of problem, we first assume that exp (−t/ǫ) uint

L

is the preponderant term in uint, and thus we begin by deriving an equation
for the corrector term δuint,0 involving uint

L . Ultimately, this will allow us
to write an equation for uint

L . In the third step, we prove that the function
δuint,0 thus defined is of order O(

√
νǫ) in L2.

• A natural choice for vint,0 is

(5.6)

{

vint,0
3 =

√
ǫν
[

δ1
3z + δ0

3(1 − z)
]

,

vint,0
h =

√
ǫν∇h∆−1

h

[

δ0
3 − δ1

3

]

.

(Note that vint,0 is not uniquely determined by (5.2)-(5.3)). We denote by
v̂int,0(µ, kh, t, z) the Fourier coefficient of vint,0, that is

vint,0(t, x) =
∑

µ,kh

v̂int,0(µ, kh, t, z) exp(ikh · xh) exp

(

i
t

ǫ
µ

)

.
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The fact that vint,0
3 6= 0 means that a small amount of fluid, of order

√
ǫνδj

3,
enters the domain (or the boundary layer, depending on the sign of the

coefficient). This phenomenon is called Ekman suction and vint,0
3 is called

Ekman transpiration velocity. This velocity will be responsible for global

circulation in the whole domain, of order (ǫν)
1
2 , but not limited to the

boundary layer.
Furthermore the Ekman suction at the bottom has a very important effect

in the energy balance. The order of magnitude of ν
∫

|∇uBL|2 in the Ekman

layer is indeed O(
√

ν
ǫ ), so that the Ekman layer damps the interior motion,

like a friction term. This phenomenon is called Ekman pumping. We
therefore expect that the weak limit flow of (1.4) in the high rotation limit
is not determined by the formal equations (1.6) but by a dissipative versions
of this equation.

• As in the previous section, we seek

exp

(

− t

ǫ
L

)

uint
L =

∑

l∈Z3

cl(t)e
−iλl

t
ǫ Nl,(5.7)

δuint,0 =
∑

l∈Z3

δcl(t)e
−iλl

t
ǫ Nl,(5.8)

so that
[

∂t +
1

ǫ
L − ν∂zz − ∆h

](

exp

(

− t

ǫ
L

)

uint
L + δuint,0

)

=
∑

l∈Z3

∂t(cl(t) + δcl(t))e
−iλl

t
ǫ Nl

+
∑

l∈Z3

(|lh|2 + ν ′|l3|2)(cl(t) + δcl(t))e
−iλl

t
ǫ Nl ,

where ν ′ = π2ν.
On the other hand,

[

∂t +
1

ǫ
e3 ∧ −ν∂zz − ∆h

]

vint,0

=
∑

µ,kh

[

∂tv̂
int,0(µ, kh, t, z) + |kh|2v̂int,0(µ, kh, t, z)

]

eikh·xheiµ t
ǫ

+
1

ǫ

∑

µ,kh

iµv̂int,0(µ, kh, t, z)eikh·xheiµ t
ǫ

+

√

ν

ǫ

∑

µ,kh

(δ̂1
3 − δ̂0

3)(µ, kh, t)

|kh|2





−ik2

ik1

0



 eikh·xheiµ t
ǫ .

In order that exp(−t/ǫ)L)uint
L + δuint,0 + vint,0 is an approximate solution

of (1.4), we project both equations on Nl for l ∈ Z3, multiply by exp(iλl
t
ǫ),
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and identify each term. We further apply the following rules in order to
determine the equations for δuint,0 and uint

L :

• all the terms which do not have fast oscillations and are of order
O(δj

3

√

ν
ǫ ) become source terms in the equation on cl,

• all the terms which are either o(δj
3

√

ν
ǫ ) or oscillating at a frequency

1/ǫ become source terms in the equation on δcl.

We work with a fixed l ∈ Z3. Recall that vint,0 has no purely vertical
component, i.e. v̂int,0(µ, lh, t, z) = 0 if lh = 0. Thanks to formulas (4.6), the
equation on cl reads
(5.9)

∂tcl + |lh|2cl + ν ′|l3|2cl = −
√

ν

ǫ

|lh|
2π|l|2

[

δ̂0
3(−λl, lh, t) − (−1)l3 δ̂1

3(−λl, lh, t)
]

,

supplemented with the initial condition

(5.10) cl(0) = 〈Nl|γ〉,

and the equation on δcl is

∂tδcl + (|lh|2 + ν ′|l3|2)δcl(5.11)

= −
∑

µ6=−λl

〈

Nl|(∂tv̂
int,0(µ, lh, t, z) + |lh|2v̂int,0(µ, lh, t, z))eilh·xh

〉

ei(λl+µ) t
ǫ

−
√

ν

ǫ

∑

µ6=−λl

δ̂0
3(µ, lh, t) − (−1)l3 δ̂1

3(µ, lh, t)

2π
×

×
(

1l3 6=0
µ|lh|
π|l|l3

+
1l3=0

|lh|

)

ei(λl+µ) t
ǫ .

For the time being, we do not specify an initial condition for δcl. Indeed, we
shall see that it is convenient to choose another condition than −〈Nl, v

int,0〉,
in order to use the possible decay of δ̂j

3(µ, lh, t) with respect to t. This choice
will be made clear in paragraph 5.4.

As in the previous section, we truncate the large frequencies in δcl. This
creates an error term in the evolution equation, which is of order

O

(√

ν

ǫ

1

K3/2

)

L2

,

where K is the truncation parameter, to be chosen later on. We set

δuint,0
K =

∑

lh

∑

|l3|≤K

δclNl.
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• We now apply to δuint,0
K the small divisor estimate stated in Lemma 2

in the Appendix with

s(µ, l, t) = −
√

ǫν
[

δ̂0
3(µ, lh, t) − (−1)l3 δ̂1

3(µ, lh, t)
]

1l3 6=0
|lh|3
π|l|l3

−
√

ǫν
[

∂tδ̂
0
3(µ, lh, t) − (−1)l3∂tδ̂

1
3(µ, lh, t)

]

1l3 6=0
|lh|

π|l|l3

−
√

ν

ǫ

δ̂0
3(µ, lh, t) − (−1)l3 δ̂1

3(µ, lh, t)

2π

(

1l3 6=0
µ|lh|
π|l|l3

+
1l3=0

|lh|

)

,

from which we deduce that if s ≤ 2,

‖δuint,0
K (t)‖Hs ≤ CK1/2√ǫν

∑

j

{

‖δj
3(0)‖4 + ‖δj

3(t)‖4

}

+ CK1/2√ǫν
∑

j

{

∫ t

0
‖∂sδ

j
3(s)‖4 ds + sup

s∈[0,t]
‖δj

3(s)‖4

}

+ ‖δuint,0
K|t=0‖Hs .

We now choose K such that
√

ν

ǫ

1

K3/2
= K1/2√ǫν,

i.e. K = ǫ−1/2. We infer that the error term in the evolution equation is of
order ǫ1/4ν1/2 in L∞([0, T ), L2(ω)), and that

‖δuint,0
K ‖L∞([0,T ],H2(ω)) ≤ Cǫ1/4ν1/2

∑

j

sup
t∈[0,T ]

‖δj
3(t)‖4

+ Cǫ1/4ν1/2
∑

j

∫ T

0
‖∂sδ

j
3(s)‖4 ds

+ ‖δuint,0
K|t=0‖H2(ω).

The operator U is thus defined by

U(γ; δ0, 3, δ1
3)(t) = exp

(

− t

ǫ
L

)

uint
L (t) + vint,0 + δuint,0

K ,

where ūint, vint,0, δuint,0
K are defined by (5.7), (5.6) and (5.8) respectively.

5.2. Choice of the boundary conditions for uBL and uint. We now
explain how the boundary conditions are chosen. As before, we work with
kh fixed. Also, since the boundary conditions are all almost-periodic with
respect to the fast time variable t/ǫ, we work with a fixed frequency µ ∈ R.
Note that this decomposition is allowed by the linearity of the equation.

We set
uBL = B(δ0

h, δ1
h),

where the boundary conditions δ0
h, δ1

h are yet to be defined.
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In order to match the boundary conditions (1.2)-(1.3) with σ = 0, we
must take uBL and uint such that

(

uBL
h + uint

h

)

|z=0
= o(δ),

∂z

(

uBL
h + uint

h

)

|z=1
= o(δ),

(

uBL
3 + uint

3

)

|z=0
= o(

√
ǫνδ),

(

uBL
3 + uint

3

)

|z=1
= o(

√
ǫνδ),

denoting by δ the order of magnitude of δ0, δ1, in a sense to be made clear
later on.

We now examine each of the boundary conditions independently.

• At z = 0, the horizontal boundary condition yields

(5.12) δ̂0
h(µ, kh, t) + 1µ=−λk

ck(t)

(

n1(k)
n2(k)

)

= 0,

where the vector n(k) is defined in Appendix A (see (6.7),(6.8)).
Since kh is fixed, note that for all µ ∈ R, there exists at most one
k3 ∈ Z such that λkh,k3 = −µ, and thus the expression above is
well-defined.

• Let us now tackle the vertical boundary condition at z = 0. Ac-
cording to the third section, the vertical component of uBL at z = 0
depends on δ0

h. Precisely, we recall that

ûBL
3 (µ, kh)|z=0 =

√
ǫν

∑

σ∈{−1,1}

α0
σ

λσ
(ik1wλσ ,1 + ik2wλσ ,2),

(up to exponentially small terms), and

(α0
−, α0

+) = P−1δ̂0
h(µ, kh).

As a consequence, in order that the vertical boundary condition at
z = 0 is approximately satisfied, we choose

(5.13) δ̂0
3 = −

∑

σ∈{−1,1}

α0
σ

λσ
(ik1wλσ ,1 + ik2wλσ ,2).

• At z = 1, ∂zu
int
h is identically zero by construction of the operator

U , and thus we infer δ1
h = 0.

• Concerning the vertical component at z = 1, the calculation is the
same as before. Since δ1

h = 0, we deduce that δ1
3 = 0.

The above relations (5.12)-(5.13) allow us to write δ0 in terms of uint
L . Con-

versely, the equation (5.9) on uint
L depends on δ0

3 , and thus on δ0
h through

the operator B. In other words, there is a coupling between the boundary
condition at the bottom for uBL, and the equation satisfied by uint

L . Since
uint

L is the only non-vanishing term in L2 norm, we choose (as is usually
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done in the rotating fluids literature) to write an explicit equation for uint
L ,

and to express uBL in terms of uint
L .

5.3. Derivation of the equation for uint
L . We now compute the Ekman

pumping term, that is, the right-hand side in the equation satisfied by ck

(see (5.9)). Notice that if k ∈ Z3 and kh 6= 0, then |λk| 6= 1. In other words,
the source term in (5.9) involves only the part ūBL of the boundary layer;
precisely, with the notations of section 3, the decay rate of uBL(t, λk, kh) is

(

λ±
k

)2
= i (−λk ∓ 1) + o(1),

which yields (remember that ℜ(λ±
k ) > 0)

λ±
k =

√

1 ± λk exp
(

∓i
π

4

)

+ o(1).

Moreover,

(α0
−, α0

+) = P−1 [−ck(t)(n1(k), n2(k))]

= −ck(t)(n−(k), n+(k)),

where

(n−(k), n+(k)) := P−1(n1(k), n2(k))

=
1

2
(n1(k) + in2(k), n1(k) − in2(k)) + o(1).

Replacing these expressions in the formula giving δ0
3 , we infer

δ̂0
3(−λk, kh, t) = ck(t)

∑

σ∈{−1,1}

nσ(k)

λσ
k

(ik1wλσ ,1 + ik2wλσ ,2).

We deduce that ck satisfies a linear evolution equation with a damping term,
namely

(5.14)
dck

dt
+ |kh|2ck + ν ′|k3|2ck +

√

ν

ǫ
Akck(t) = 0,

where ν ′ = π2ν and

Ak := 1kh 6=0
|kh|

2π|k|2
∑

σ∈{−1,1}

nσ(k)

λσ
k

(ik1wλσ ,1 + ik2wλσ ,2).

An estimate of ℜ(Ak), where ℜ(x) denotes the real part of a complex
number x, is computed in Remark 5.2 below. Using Duhamel’s formula, we
deduce that

(5.15) |ck(t)| ≤ exp

(

−t

(

|kh|2 + ν ′|k3|2 +

√

ν

ǫ
ℜ(Ak)

))

|〈Nk, γ〉|.

We deduce the following Lemma:



ROTATING FLUIDS WITH RESONANT SURFACE STRESS 37

Lemma 5.1. Assume that γ ∈ V0. Then there exists a unique solution
ūint

L ∈ L∞
loc

(R+, V0) ∩ L2
loc

(R+,H1
h(ω)) of the equation

(5.16)







∂tu
int
L − ∆huint

L +

√

ν

ǫ
S
[

uint
L

]

= 0,

uint
L|t=0 = γ,

where the operator S is defined by

(5.17) S
[

uint
L

]

=
∑

k∈Z3

Ak〈Nk, u
int
L 〉Nk.

Hence, in the rest of the section, we take

(5.18) ck(t) = γ̂k exp

(

−
(

|kh|2 +

√

ν

ǫ
Ak

)

t

)

.

By doing so, we have neglected the vertical viscosity term ν∂2
z .

Remark 5.2. (i) Notice that with the scaling we have chosen for the wind-
stress, there is no Ekman pumping due to the wind. Indeed, the Ekman
pumping term is of order νβ, which vanishes as ǫ, ν → 0 according to hy-
pothesis (4.17).

(ii) We emphasize that the operator S constructed above depends on ν and
ǫ through the matrix P , the vectors wλ± and the eigenvalues λ±

k . However,
it is useful, for later purposes, to compute the leading order terms in Ak,
which amounts to deriving an equation for the limit of the term uint

L as ǫ, ν
vanish. Hence we now compute the limit of Ak as ǫ, ν → 0.

Recall that n1(k) and n2(k) are given by (1.8). Thus, at first order,

Ak =
|kh|

2π|k|2
∑

σ∈{−1,1}

n1(k) − iσn2(k)

2λσ
k

(ik1 − σk2)

=
|kh|2

8
√

2π2|k|2

[

1 − λk√
1 + λk

(1 − i) +
1 + λk√
1 − λk

(1 + i)

]

+ o(1)

= Rk + iIk + o(1)

where Rk and Ik are real numbers given by

Rk :=
1 − λ2

k

8
√

2π2

(

1 + λk√
1 − λk

+
1 − λk√
1 + λk

)

> 0(5.19)

Ik :=
1 − λ2

k

8
√

2π2

(

1 + λk√
1 − λk

− 1 − λk√
1 + λk

)

.(5.20)

The Ekman operator appearing in equation (2.5) is thus given by the
following formula, for u ∈ V0

(5.21) SEkman [u] :=
∑

k∈Z3

(Rk + iIk)〈Nk, u〉Nk.
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(iii) Recalling the definition of λk, we deduce that

Rk ≥ C
|kh|
|k| ,

and thus for every k, for ǫ, ν small enough, we have

ℜ(Ak) ≥ C
|kh|
|k| ,

|ℑ(Ak)| ≤ C.

To conclude this paragraph, we now give estimates on the boundary con-
ditions δ0

h, δ0
3 in the norm ‖ · ‖s.

Lemma 5.3. Assume that δ0
h, δ0

3 are given by (5.12)-(5.13). Then the fol-
lowing estimates hold

‖δ0
h(t)‖s ≤

(

∑

k

|k|2(s+1)|ck(t)|2
)1/2

≤ C‖γ‖Hs+1 ,

and

‖δ0
3(t)‖s ≤ ‖δ0

h(t)‖s+1 ≤ C‖γ‖Hs+2(ω).

Proof. The bound on δ0
h is easily deduced from inequality (5.15) together

with formula (5.12) and the Cauchy-Schwarz inequality. Concerning the
other bound, let us recall that if µ = −λk, for k ∈ Z3, then the decay rates
λ±(−λk, kh) satisfy

|λ±| ≤ C

( |k3|
|kh|

+ 1

)

.

Plugging all this estimate into (5.13) yields the desired inequality. �

5.4. Estimates on the boundary layer and corrector terms. Now
that uint

L is rigorously defined by Lemma 5.1, we may define the other terms
vint,0, δuint,0 and uBL,0. We have gathered in this paragraph some estimates
which are needed in the proof of Theorem 2.5.

• The boundary layer term of order zero, denoted by uBL, is defined by

uBL,0 = B(δ0
h, 0),

where δ0
h is given by (5.12). Thus we deduce that the decay rates λ±(µ, kh) in

the non-resonant part of the boundary layer term uBL,0 are all of order one.
Consequently, according to (2.3), the boundary layer term ūBL,0 satisfies

‖ūBL,0
h (t)‖L2(ω) + (ǫν)−1/2‖ūBL,0

3 (t)‖L2(ω) ≤ C‖δ0
h(t)‖H1(ωh)(ǫν)1/4

≤ C‖γ‖H1(ω)(ǫν)1/4.(5.22)

Moreover, the definition of ck entails that ūBL,0 is an approximate solution
of (1.4), with an error term (due to the fact that ∂tck does not vanish)
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bounded in L2([0, T ] × ω) by

(ǫν)1/4

(

∫ T

0

∑

k

|∂tck(t)|2 dt

)1/2

≤ 2(ǫν)1/4

(

∫ T

0

∑

k

(

|kh|2 +
ν

ǫ
|Ak|2

)

|γ̂k|2e−2t(|kh|2+
√

ν
ǫ
ℜ(Ak)) dt

)1/2

≤ C(ǫν)1/4

(

1 +

√

ν

ǫ

)1/2
(

∑

k

(1 + |k|)3|γ̂k|2
)1/2

.

The right-hand side of the above inequality vanishes as ǫ, ν → 0, and thus
the error term satisfies the assumption of Proposition 4.1.

Notice that the Dirichlet boundary condition at z = 0 also generates a
resonant boundary layer term, namely

uBL,0 = − 1

2π

∑

µ∈{−1,1}

∑

k3∈2Z+1

∑

l3∈Z,
sign(l3)µ=1

c(0,0,l3)(t)e
iµ t

ǫ
−νk2

3t (−1)
k3−1

2

k2
3

Mµ
k3

.

We have clearly

‖uBL,0‖L∞([0,∞),L2(ω)) ≤ C‖γ‖L2(ω).

• The term vint,0 is given by (5.6), in which δ1
3 = 0 and δ0

3 is defined in
(5.13). As a consequence, vint,0 satisfies the estimate

||vint,0(t)||L2(ω) ≤ C‖δ0
3(t)‖L2(ωh)(ǫν)1/2

≤ C‖γ‖H2(ω)(ǫν)1/2.(5.23)

• At last, the term δuint,0 is given by equation (5.11). As stated earlier, we
choose a special solution of (5.11) in order to keep track of the exponential
decay of δ0

3 . Indeed, we have, for all k ∈ Z3 \ {0},

δ̂0
3(−λk, kh, t) = iγ̂k exp

(

−
(

|kh|2 +

√

ν

ǫ
Ak

)

t

)

∑

σ∈{−1,1}

nσ(k)

λσ
k

kh · wλσ
k .

Thus we choose for δcl, |l| ≤ K, the special solution constructed in Remark
6.1 in Appendix C. With this choice, we obtain

‖δuint,0
A (t)‖H2 ≤

Cǫ1/4ν1/2







∑

k∈Z3

(1 + |k3|)4
∣

∣

∣

1
|k3|3 −√

ǫν|ℑ(Ak)|
∣

∣

∣

2 |γk|2 exp

(

−2

√

ν

ǫ
ℜ(Ak)t

)







1/2

.

Moreover, we recall (see Remark 5.2) that there exists a constant C such
that |ℑ(Ak)| ≤ C for all k; and in the sequel, we will choose γ so that γ̂k = 0
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for k3 large enough. In this case, we have

1

|k3|3
−

√
ǫν|ℑ(Ak)| ≥

1

2|k3|3
for ǫ, ν small enough and for all k such that γ̂k 6= 0. The above estimate
then becomes
(5.24)

‖δuint,0
A (t)‖H2 ≤ Cǫ1/4ν1/2





∑

k∈Z3

(1 + |k3|)10|γk|2 exp

(

−2

√

ν

ǫ
ℜ(Ak)t

)





1/2

.

5.5. Conclusion: proof of Theorem 2.5 when σ = 0. The idea is to
use the construction of the previous paragraphs in order to compute an
approximate solution of the evolution equation (1.4), which satisfies the
boundary conditions up to sufficiently small error terms. We now have to
quantify the order of approximation required on the boundary condition.
This is done in Lemma 1 in the Appendix, and thus we build interior and
boundary layer terms until the conditions of the Lemma 1 are met.

Let us emphasize that equation (1.4) supplemented with homogeneous
boundary conditions at z = 0 and z = 1 is a contraction in L2. As a
consequence, it is sufficient to prove the Theorem for arbitrarily smooth
initial data. Thus, without any loss of generality, we assume from now on
that the initial data γ only has a finite number of Fourier modes, that is

γ =
∑

|kh|≤N

∑

|k3|≤N ′

γ̂kNk.

Let us now explain the construction in detail.
• First, we set

u0 := uint + uBL,0,

where uint and uBL,0 have been defined in the previous paragraphs. We have
seen that u0 is an approximate solution of the evolution equation (1.4), with
error terms which are all o(1) in L2. We now evaluate the error on the
boundary conditions. Indeed, setting δu := u − u0, we have proved that ũ
is an approximate solution of (1.4), with some boundary conditions η0, η1,
namely

δuh|z=0 = η0
h, ∂zδuh|z=1 = η1

h,
δu3|z=0 = η0

3 , δu3|z=1 = η1
3 .

Thus we have to estimate δγ := δu|t=0, together with the terms η0, η1.

First, since uint
L|t=0 = γ and uBL,0

res|t=0 = 0, we obtain

(5.25) δγ = −ūBL,0
|t=0 − vint,0

|t=0 − δuint,0
|t=0 ,

where uBL,0
|t=0 , vint,0

|t=0 and δuint,0
|t=0 satisfy the estimates (5.22), (5.23), and (5.24)

respectively. Thus

‖δγ‖L2 ≤ C
(

‖γ‖H1(ǫν)1/4 + ‖γ‖H2(ǫν)1/2 + ‖γ‖H5ǫ1/4ν1/2
)

.
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Then, by construction of the operators U and B, the horizontal remainder
boundary term at z = 1 is exponentially small: indeed, we have ∂zu

int
h|z=1 =

0, and consequently,

(5.26) η1
h = −

∑

µ,kh

∑

σ∈{−1,1}
α0

σ

λσ

√
ǫν

e
− λσ

√
ǫν wλσeikh·xheiµ t

ǫ .

We infer that

‖η1
h‖2

0 ≤ C exp

(

− C

N ′√ǫν

)

∑

|kh|≤N

∑

|k3|≤N ′

|δ̂0
h(−λk, kh, t)|2(5.27)

≤ C‖δ0
h‖2

0 exp

(

− C

N ′√ǫν

)

.

Similarly,

(5.28) η1
3 =

∑

µ,kh

∑

σ∈{−1,1}
α0

σ

√
ǫν

λσ
ikh · wλσe

− λσ
√

ǫν eikh·xheiµ t
ǫ ,

and thus

(5.29) ‖η1
3‖0 ≤ CN ′√ǫν exp

(

− C

N ′√ǫν

)

‖δ0
h‖2.

The treatment of the vertical boundary condition at z = 0 is easier.
Indeed, since δ1 = 0, we have η0

3 = 0, because

(5.30) η0
3 = −

∑

µ,kh

∑

σ∈{−1,1}
α1

σ

ǫν

(λσ)2
ikh · wλσe

− λσ
√

ǫν eikh·xheiµ t
ǫ = 0.

There remains to compute η0
h; because of the terms δuint,0

K and vint,0, η0
h is

the largest term of all. Precisely, we have

η0
h(t) = −

[

vint,0
h|z=0(t) + δuint,0

K,h|z=0(t)
]

(5.31)

= −
√

ǫν
∑

µ,kh 6=0

ikh · δ̂0
3(µ, kh, t)

|kh|2
eikh·xheiµ t

ǫ

−
∑

kh

∑

|k3|≤K

δck(t)e
ikh·xhe−iλk

t
ǫ nh(k),(5.32)

and thus there exists a constant c > 0 such that for all t ≥ 0

‖η0
h(t)‖L2 ≤ C

(√
ǫν‖δ0

3(t)‖0 + ‖δuint,0
K (t)‖H1

)

≤ Cǫ1/4ν1/2‖γ‖H6 exp

(

−c

√

ν

ǫ
t

)

.

Now, the remaining boundary terms η1
h, η1

3 , η
0
3 are all of order o(ǫ) accord-

ing to (5.27)-(5.30). Notice furthermore that by construction,
∫

ωh

ηj
3 = 0 for j = 0, 1.
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Consequently, η1
h, η1

3 , η
0
3 all match the conditions of the stopping Lemma 1.

• We now have to continue the construction with the “bad” part of the
remaining boundary conditions, i.e. η0

h. Let us define the boundary layer
term

δuBL,0 := B(η0
h, 0).

According to (2.3),

‖δuBL,0‖L∞([0,∞),L2(ω)) ≤ C(ǫν)1/4‖η0
h‖0 ≤ Cǫ1/2ν3/4‖γ‖H6 ,

and δuBL,0 is an approximate solution of equation (1.4) with a o(1) error
term. Moreover, notice that for all t ≥ 0, for all s ≥ 0,

‖δuBL,0
3|z=0(t)‖Hs(ωh) ≤ Cǫ3/4ν‖γ‖H7 exp

(

−c

√

ν

ǫ
t

)

.

We deduce that for all T > 0, for all s ≥ 0

‖δuBL,0
3|z=0‖L2((0,T ),Hs(ωh)) ≤ Cǫ3/4ν‖γ‖H7

( ǫ

ν

)1/4
= o(ǫ).

Thus δuBL,0
3|z=0 satisfies the hypotheses of Lemma 1. Additionnally, δuBL,0

|z=1 is

exponentially small, and thus also satisfies the conditions of Lemma 1.
• We now define the approximate solution uapp by

uapp := uint + uBL,0 + δuBL,0 + w,

where w is defined by Lemma 1 with the remaining boundary conditions.
By construction, uapp is an approximate solution of the evolution equation
(1.4), with

uapp|t=0 = u|t=0 + o(1),

and uapp satisfies homogeneous boundary conditions at z = 0 and z = 1. By
a simple energy estimate analogous to that of Proposition 4.1, we deduce
that

‖u − uapp‖L∞((0,T ),L2) → 0 ∀T > 0.

Since all the terms in uapp except uint
L and using,0 are o(1) in L2 norm,

Theorem 2.5 is proved.

Remark 5.4. The proof of Theorem 2.5 for σ = 0 is valid for all ranges
of ǫ, ν such that ǫ, ν → 0. In particular, we do not assume that ν = O(ǫ).
However, in the case ν ≫ ǫ, all the modes such that kh 6= 0 in uint

L are of

order exp(−c
√

ν/ǫt), and vanish exponentially for all t > 0. Thus the effect
of the heterogeneous horizontal modes of the initial data vanishes outside an
initial layer of size

√

ǫ/ν. On the other hand, the modes corresponding to

kh = 0 are not damped, and give rise to resonant boundary layer term uBL,0
res .

Eventually, for t ≫
√

ǫ/ν, we have

u(t) ≈
∑

k3∈Z∗

γ̂(0,0,k3)N(0,0,k3) + uBL,0
res .
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6. Towards more realistic models

6.1. Justification of equation (1.4) for geophysical models. We now
explain how our results may give some insight on models of wind-driven
oceanic circulation, which we recall below. In general, these equations are
too difficult to deal with in complete mathematical generality, and thus
crude assumptions are necessary in order to focus on some special phenom-
ena. Since our aim in this paper is to describe particular kinds of boundary
layers occurring at the top and the bottom of rotating fluids, we give in this
regard a few elements on the derivation of the system (1.4) supplemented
with (1.2)-(1.3). We emphasize that this derivation is rigourous neither phys-
ically (since a number of important physical phenomena will be neglected
in the process), nor mathematically. Our sole purpose is to present some
motivations for the study of equation (1.1), and more generally to derive
mathematical tools wich may be useful in models of physical oceanography.

• As a starting point, we recall that the ocean can be considered as
an incompressible fluid with variable density ρ; hence, neglecting in a first
approximation the temperature and salinity variations, the velocity u of the
oceanic currents satisfies the Navier-Stokes equations, with a Coriolis term
accounting for the rotation of the Earth

(6.1)

∂tρ + u · ∇ρ = 0,

ρ [∂tu + (u · ∇)u] + ∇p = F + ρu ∧ Ω ,

∇ · u = 0 ,

where F denotes as in the first section the frictional force acting on the fluid,
Ω is the (vertical component of the) Earth rotation vector, and p is the pres-
sure defined as the Lagrange multiplier associated with the incompressibility
constraint.

We assume that the movement to be studied occurs at midlatitudes. At
such latitudes, we can neglect the variations of the Coriolis parame-
ter Ω and use the f -plane approximation, which makes the analysis much
simpler than in the case of the full model.

The observed persistence over several days of large-scale waves in the
oceans shows that frictional forces F are weak, almost everywhere, when
compared with the Coriolis acceleration and the pressure gradient, but large
when compared with the kinematic viscous dissipation of water. One com-
mon but not very precise notion is that small-scale motions, which appear
sporadic or on longer time scales, act to smooth and mix properties on the
larger scales by processes analogous to molecular, diffusive transports. For
the present purposes it is only necessary to note that one way to estimate
the dissipative influence of smaller-scale motions is to retain the same rep-
resentation of the frictional force

F = Ah∆hu + Az∂zzu
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where Az and Ah are respectively the vertical and horizontal turbulent vis-
cosities, of much larger magnitude than the molecular value, supposedly
because of the greater efficiency of momentum transport by macroscopic
chunks of fluid. Notice that Az 6= Ah is therefore natural in geophysical
framework (see [19]). Moreover, models of oceanic circulation usually as-
sume that the vertical viscosity Az is not constant (see [3, 18]); we will
come back on this point later on.

• Let us now describe the boundary conditions associated with (6.1): typi-
cally, Dirichlet boundary conditions are enforced at the bottom of the ocean
and on the lateral boundaries of the horizontal domain ωh (the coasts), i.e.

(6.2)
u|z=hB(xh) = 0 (bottom),

u|x∈∂ωh
= 0 (coasts).

In equation (1.1), we have neglected the effects of the lateral boundary
conditions by considering the case when ωh is the two-dimensional torus.
Of course such an assumption is not physically relevant. It is well known for
instance that the lateral boundary layers, called Munk layers, play a crucial
role in the oceanic circulation, in particular in the western intensification of
currents. Moreover, for the sake of simplicity, we did not take into account
the topography of the bottom in (1.3). The topographic effects described
by the function hB should actually modify the Ekman boundary layer and
consequently the limit equations, even if the variations of the bottom are
small (see [5] and [8] for instance).

We assume that the upper surface, which we denote by Γs, has an equation
of the type z = hS(t, xh). As boundary conditions on Γs, we enforce (see
[9])

(6.3)

Σ · nΓs = σw,

∂

∂t
10≤z≤hS(t,x) + divx(10≤z≤hS(t,xh)u) = 0

where Σ is the total stress tensor of the fluid, and σw is a given stress tensor
describing the wind on the surface of the ocean. In general, Γs is a free
surface, and a moving interface between air and water, which has its own
self consistent motion. In (1.2), we have assumed that

hS(t, xh) ≡ D,

where D is the typical depth of the ocean. Hence (1.2) is a rigid lid approx-
imation, which is a drastic, but standard simplification. The justification of
(1.2) starting from a free surface is mainly open from a mathematical point
of view; we refer to [1] for the derivation of Navier-type wall laws for the
Laplace equation, under general assumptions on the interface, and to [13] for
some elements of justification in the case of the great lake equations. Nev-
ertheless, from a physical point of view, the simplification does not appear
so dramatic, since in any case the free surface is so turbulent with waves
and foam, that only modelization is tractable and meaningful. Condition
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(1.2) is a simple modelization which already catches most of the physical
phenomena (see [19]).
• Let us now evaluate the order of magnitude of the different parameters
occuring in (6.1), and write the equations in a nondimensionalized form.
First, since the variations of density are of order 10−3, we neglect the effects
of the variations of ρ in (6.1) and we assume that

ρ ≡ ρ0 = 103 kg · m−3.

Moreover, we set

uh = Uu′
h, u3 = Wu′

3,

xh = Hx′
h, z = Dz′,

where U (resp. W ) is the typical value of the horizontal (resp. vertical)
velocity, H is the horizontal length scale, and D the depth of the ocean. In
order that u′(x′) remains divergence-free, we choose

W =
UD

H
.

Typical values for the mesoscale eddies that have been observed in western
Atlantic (see for instance [19]) are

U ∼ 1 cm · s−1, H ∼ 100 km, and D ∼ 4 km.

With these values, we get

ǫ :=
U

HΩ
∼ 10−3,

and hence ǫ ≪ 1 (notice that the parameter ǫ is dimensionless). Thus the
asymptotic of fast rotation (small Rossby number) is valid.

A typical value of the horizontal turbulent velocity is Ah ∼ 106 kg · m−1 · s−1

(see [3]), which yields
Ah

ρ0UH
∼ 1.

In general, the vertical eddy viscosity Az is not assumed to be constant; in
[3, 18], the authors consider a vertical viscosity which takes the form

Az = ρ0

(

νb + ν0

(

1 − 5g∂zρ

ρ0|∂zuh|2
)−2

)

and they assume in their numerical computations that Az ≥ 1 kg · m−1 · s−1.
The quantify

(6.4) Ri := −(g∂zρ)/(ρ0|∂zuh|2)
is called the local Richardson number. Equation (1.4) corresponds to a con-
stant approximation for the viscosity Az; this is largely inaccurate, since
according to [18], measurements show that the value of Az is usually large
inside the boundary layer (say, 3 to 10 kg · m−1 · s−1), but substantially
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smaller in the interior (under the thermocline). However, since we are pri-
marily interested in the boundary layer behaviour, we only retain the typical
boundary layer value Az ∼ 5 kg · m−1 · s−1, which yields

ν :=
HAz

ρ0UD2
∼ 5 · 10−3.

Hence we also have ν ≪ 1, which justifies our assumption of vanishing
vertical viscosity. Notice that the parameter ν is also dimensionless.

Thus the nondimensionalized system (see for instance [19, 10]) becomes

(6.5)
∂tu

′ + u′ · ∇u′ +
1

ǫ
e3 ∧ u′ +

(

∇hp′
1
δ2 ∂zp

′

)

− ∆hu′ − ν∂zzu
′ = 0,

∇ · u′ = 0,

where δ := D/H is the aspect ratio. The boundary conditions are (1.2),
(1.3), with

β :=
|Σ|D
AzU

.

The equation for the boundary layers at z = 1 and z = 0 in the above
system is exactly the same as in (1.4). Thus, we believe that the phenomena
we have highlighted (atypical size of boundary layers for resonant forcing,
possible destabilization of the fluid for large times) may prove to be useful
when studying models of oceanic circulation. However, we do not claim
that our results truly apply as such to realistic geophysical models, since,
as mentionned above, a series of drastic simplifications have been made.
Furthermore, some assumptions of Theorem 2.5, such as (4.17), are purely
technical, and do not have any physical ground. Thus, we now turn to some
possible mathematical extensions of Theorem 2.5 to more realistic models.

6.2. Possible extensions. The previous study allows to characterize the
linear response of a rotating incompressible fluid to some surface stress,
which admits fast time oscillations and may be resonant with the Coriolis
force. In addition to the usual Ekman layer, we have exhibited another -
much larger - boundary layer, and a resonant boundary layer term, the size
of which depends on time. Note that these effects do not modify the mean
motion (i.e. the L2 asymptotics) when considering moderate times, say for
instance t ≪ 1

ν .
• Extensions to nonlinear equations. In order to take into account

more physics in our model, the first point is to understand the nonlinear
response of the fluid to the same surface stress. In other words, we are in-
terested in the asymptotic behaviour of the full Navier-Stokes-Coriolis equa-
tion (6.5)-(1.2)-(1.3) including in particular the nonlinear contribution of the
convection.

In the case of a non-resonant forcing, the asymptotic motion of the fluid is
obtained by some filtering method : there is indeed two time scales, a rapid
time scale at which the fluid oscillates according to the modes of the linear
penalization, and a slow one which characterizes the nonlinear evolution
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of the wave enveloppes. The boundary effects do not play any role in the
nonlinear process since they are localized in the vicinity of the surface. They
contribute to the envelope equations only by the Ekman pumping. In the
case of a resonant forcing, the boundary effects - which are not expected to
be localized in the same way - could play a different role.

• Towards more physically relevant models. The present theory of
the wind-driven circulation of a fluid of uniform density is actually inade-
quate to capture the velocity structure of the oceans. We indeed expect the
wind forcing to modify in depth the circulation. The profile arising from the
resonant part of the forcing and the Ekman pumping are not enough to get
a relevant description of that vertical structure.

We will mention here many phenomena that have been neglected in our
study and which seem to be crucial to obtain realistic models.

(i) we first need to consider the variations of the Coriolis parameter,
keeping at least the β-plane approximation :

Ω = f + βy

where y is the coordinate measuring the latitude. Such a spatial de-
pendence of Ω is necessary to derive Sverdrup’s theory of horizontal
transport, which is still one of the foundations of all theories of the
ocean circulation (see [20] for instance).

From a mathematical point of view, we refer to [5][7] and references
therein for some preliminary studies on inhomogeneous rotating fluids.

(ii) the vertical structure of the ocean cicrulation is also related to the vari-
ations of the density ρ, the so-called stratification of the oceans. The
theoretical works of Rhines and Young [21] have brought some under-
standing about geostrophic contours, potential vorticity homogeneiza-
tion and their role in shaping the pattern of circulation. Luyten,
Pedlosky and Stommel [15] have then developped a theory for the
full density and velocity structure of the wind-driven circulation by
going beyond the quasi-geostrophic approximation to consider the im-
portant effect of the ventilation of the thermocline which occurs as
oceanic density surfaces rise to intersect the oceanic mixed layer.

However, to our knowledge, there is no mathematical contribution
on that topics, the first difficulty being to determine some suitable
functional framework to deal with the inhomogeneous incompressible
Navier-Stokes equations. Moreover, the behaviour of the fluid is ex-
pected to depend in a crucial way on the order of magnitude of the
Richardson number Ri, defined in (6.4) above: when Ri is small (say,
Ri < 1/4), instabilities may develop, leading in turn to some turbu-
lent mixing across layers of equal density. We refer to [24] for more
details.

(iii) we finally have to take into account the bottom topography which may
have an important contribution to the mean circulation as proved for
instance in [5] or [8].
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The crucial point to understand these features from a mathematical point
of view is to get a description of the boundary layer operator which is not
based on the Fourier transform, but on the spectral decomposition of the
Coriolis operator. The Coriolis penalization becomes indeed in the two first
cases a skew-symmetric operator with non-constant coefficients (depending
on Ω and ρ). We therefore have to develop new tools to obtain the asymp-
totic expansions in a more abstract and systematic way.

Appendix A: spectral results on the Coriolis operator

For the sake of completeness, we recall here - essentially without proof -
some fundamental properties of the Coriolis operator leading to (1.8). For
a detailed study of these spectral properties we refer for instance to [4].

Extending any u ∈ V0 on [−1, 1] × T2 as follows

(6.6) uh(xh, z) = uh(xh,−z) and u3(xh, z) = −u3(xh,−z)

(which is compatible with the incompressibility constraint ∇ · u = 0) we
obtain a periodic function, so that it is possible to use some Fourier decom-
position.

Setting

(6.7)































n1(k) =
1

2π|kh|
(ik2 + k1λk)

n2(k) =
1

2π|kh|
(−ik1 + k2λk)

n3(k) = i
|kh|

2π
√

|kh|2 + (πk3)2

if kh 6= 0,

and

(6.8)



















n1(k) =
sign(k3)

2π

n2(k) =
i

2π
n3(k) = 0

else,

what can be proved actually is that the family (Nk) defined by

Nk = exp(ikh · xh)





n1(k) cos(πk3z)
n2(k) cos(πk3z)
n3(k) sin(πk3z)





is an hilbertian basis of V0 constituted of eigenvectors of the linear penal-
ization, satisfying (1.8).

Appendix B: the stopping condition

We have postponed here the statement and the proof of the stopping
condition since it is just a technical result (based on straightforward com-
putations) which is used in several places (Sections 4 and 5).
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Lemma 1 (Stopping condition). Let δ0, δ1 ∈ L∞(R+,H3(ωh)) be two fam-
ilies such that

∫

(δ1
3 − δ0

3)dxh = 0

and

1

ǫ
‖δi‖H1(ωh) → 0, ‖δi‖H3(ωh) → 0 and ‖∂tδ

i‖H1(ωh) → 0 as ǫ → 0

Then there exists a family w ∈ L∞(R+, L2(Ω)) with ∇ · w = 0 such that

w|z=0 = δ0, w3|z=1 = δ1
3 and ∂zwh|z=1 = δ1

h

and satisfying the following estimates

‖w‖L2(Ω) → 0 and

∥

∥

∥

∥

∂tw +
1

ǫ
Lw − ν∂zzw − ∆hw

∥

∥

∥

∥

L2(Ω)

→ 0 as ǫ → 0.

Proof. Here we have to build a family w ∈ L∞(R+, L2(Ω)) with ∇ · w = 0
such that

w|z=0 = δ0, w3|z=1 = δ1
3 and ∂zwh|z=1 = δ1

h.

Of course it is not uniquely defined. We just want to obtain one such family
satisfying further suitable continuity estimates.

Given any two-dimensional vector field wh, we get a divergence- free vector
field by setting

w3(xh, z) = w3(xh, 0) −
∫ z

0
(∂1w1 + ∂2w2)(xh, z′)dz′.

In order that the boundary conditions on w3 are satisfied, the only condition
on wh is therefore

∫ 1

0
(∂1w1 + ∂2w2)(xh, z′)dz′ + δ1

3(xh) − δ0
3(xh) = 0 .

We therefore choose

w1(xh, z) = δ0
1(xh) + δ1

1(xh)z + ∂1φ(xh)z(1 − z)2,

w2(xh, z) = δ0
2(xh) + δ1

2(xh)z + ∂2φ(xh)z(1 − z)2,

with

∇h · δ0
h +

1

2
∇h · δ1

h +
1

12
∆hφ + δ1

3 − δ0
3 = 0 .

Standard elliptic estimates give for any s ≥ 0

‖φ‖Hs+1(ωh) ≤ C(‖δ0‖Hs(ωh) + ‖δ1‖Hs(ωh)).

Therefore

‖w‖H2(Ω) ≤ C(‖δ0‖H3(ωh) + ‖δ1‖H3(ωh))

so that, using the assumptions on δ0, δ1,

‖w‖H2(Ω) → 0 as ǫ → 0.
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Furthermore, since w is given in terms of δ0, δ1 by linear relations with
constant coefficients,

‖∂tw‖L2(Ω) ≤ C(‖∂tδ
0‖H1(ωh) + ‖∂tδ

1‖H1(ωh)).

We conclude, using again the assumptions on δ0, δ1 that
∥

∥

∥

∥

∂tw +
1

ǫ
Lw − ν∂zzw − ∆hw

∥

∥

∥

∥

L2(Ω)

→ 0 as ǫ → 0.

�

Appendix C: the small divisor estimate

We recall here the by-now standard arguments used to obtain some es-
timate for the solution to fast-oscillating linear equation with non-resonant
source terms :

(6.9) ∂tw +
1

ǫ
P(w) − ν∆hw − ν∂2

zzw = Σ

where the horizontal Fourier mode lh is fixed and

Σ(t) = eilh·xh

∑

µ

∑

k3∈Z

µ6=−λk

s(µ, k, t)eiµ t
ǫ Nk.

We further assume that the frequencies µ belong either to {−λl, l3 ∈ Z3},
or to some finite set M .

The small divisor estimate is the following:

Lemma 2. Let w be the solution of (6.9), i.e. for all l = (lh, l3) with l3 ∈ Z,

∂twl + (|lh|2 + ν ′|l3|2)wl =
∑

µ6=−λl

s(µ, l, t)ei(µ+λl)
t
ǫ

where ν ′ = π2ν.
Then there exists a constant C such that for all t > 0, r > 0, for all

K > 0, we have

‖PKw(t)‖Hr(ω) ≤ Cǫ
{

‖s|t=0‖r,K exp
(

−(|lh|2 + ν ′l23)t
)

+ ‖s(t)‖r,K

}

+ Cǫ

∫ t

0
‖∂us(u)‖r,K exp

(

−(|lh|2 + ν ′l23)(t − u)
)

du

+ Cǫ sup
u∈[0,t]

‖s(u)‖r,K

+ ‖PKw|t=0‖Hr(ω),

where the norm ‖ · ‖r,K is defined by

‖s(t)‖2
r,K :=

∑

|l|≤K

∑

k3∈Z

k3 6=l3

|k3|8|l|2r|s(−λk, l, t)|2

+
∑

|l|≤K

∑

µ∈M
µ6=−λl

(

1 + 1|µ|=1|l|4
)

|l|2r|s(µ, l, t)|2.
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We recall that the notation PK stands for the projection onto the vector
space generated by Nk for |k| ≤ K.

Proof. For all K > 0, define

wK := PKw =
∑

|k|≤K

wlNl.

We deduce from Duhamel’s formula that

|wl(t)| ≤ |wl(0)| exp(−(|lh|2 + ν ′l23)t)

+

∣

∣

∣

∣

∣

∣

∫ t

0

∑

µ6=−λl

s(µ, l, u)ei(µ+λl)
s
ǫ exp(−(|lh|2 + ν ′l23)(t − u)) du

∣

∣

∣

∣

∣

∣

.(6.10)

Integrating by parts, we get
∣

∣

∣

∣

∫ t

0
s(µ, l, u)ei(λl+µ)u

ǫ exp(−(|lh|2 + ν ′l23)(t − u)) du

∣

∣

∣

∣

≤ ǫ

|λl + µ| |s(µ, l, t)| + ǫ

|λl + µ| |s(µ, lh, 0)|e−(|lh|2+ν′l23)t

+
ǫ

|λl + µ|

∫ t

0
|(|lh|2 + ν ′|l3|2)|s(µ, l, u)| exp(−(|lh|2 + ν ′l23)(t − u)) du

+
ǫ

|λl + µ|

∫ t

0
|∂us(µ, l, u)| exp(−(|lh|2 + ν ′l23)(t − u)) du.

Plugging this inequality back into (6.10), we deduce that

|wl(t)| ≤ |wl(0)| exp(−(|lh|2 + ν ′l23)t)

+Cǫ
∑

µ6=−λl

|s(µ, l, t)|
|λl + µ|

+Cǫ
∑

µ6=−λl

|s(µ, lh, 0)|
|λl + µ| exp(−(|lh|2 + ν ′l23)t)

+Cǫ

∫ t

0
Fl(u) exp(−(|lh|2 + ν ′l23)(t − u)) du,

where

Fl(u) :=
∑

µ6=−λl

1

|λl + µ| |∂us(µ, l, u)|

+ (|lh|2 + ν ′|l3|2)
∑

µ6=−λl

1

|λl + µ| |s(µ, l, u)|.

There remains to derive bounds for quantities of the type
∑

µ6=−λl

1

|µ + λl|
|s(µ, l, u)|.
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Remember that either µ = −λk for some k = (lh, k3) ∈ Z3 with k3 6= −l3,
or µ ∈ M , where M is a finite set. Thus





∑

µ6=−λl

1

|µ + λl|
|s(µ, l, u)|





2

≤ 2





∑

k3 6=l3

1

|λl − λk|
|s(−λk, l, u)|





2

+2





∑

µ∈M

1

|µ + λl|
|s(µ, l, u)|





2

≤ C
∑

k3 6=l3

|k3|2
1

|λl − λk|2
|s(−λk, l, u)|2

+C
∑

µ∈M

1

|µ + λl|2
|s(µ, l, u)|2.

Notice that the function l3 7→ λl is monotonous for lh fixed. Hence |λl −λk|
is minimal for k3 = l3 ± 1. Consequently, is is easily checked that for all
l3 ∈ Z,

|λl − λk|−1 ≤ C
|k|3
|lh|2

.

Moreover, if µ ∈ M , then either µ /∈ {0, 1,−1}, and in this case

|λl − µ|−1 ≤ C,

or µ = 0, and then

|λl − µ|−1 ≤ C
|l|
|l3|

,

or µ ∈ {1,−1}, and then

|λl − µ|−1 ≤ C
|l|2
|lh|2

.

Gathering all these results we get

|wl(t)| ≤ |wl(0)| + CǫD0
l (t)

+Cǫ

∫ t

0
D1

l (u) exp

(

−
( |lh|2

2
+ ν ′l23

)

(t − u)

)

du,(6.11)
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where

D0
l (t) :=





∑

k3

|k3|8|s(−λk, l, 0)|2




1/2

exp
(

−(|lh|2 + ν ′l23)t
)

+
∑

µ∈M,
µ6=−λl

(

1 + 1|µ|=1|l|2
)

|s(µ, l, 0)| exp
(

−(|lh|2 + ν ′l23)t
)

+





∑

k3

|k3|8|s(−λk, l, t)|2




1/2

+
∑

µ∈M,
µ6=−λl

(

1 + 1|µ|=1|l|2
)

|s(µ, l, t)|

and

D1
l (u) :=





∑

k3

|k3|8|∂us(−λk, l, u)|2




1/2

+
∑

j

∑

µ∈M,
µ6=−λl

(

1 + 1|µ|=1|l|2
)

|∂us(µ, l, u)|

+ (|lh|2 + ν ′|l3|2)





∑

k3

|k3|8|s(−λk, l, u)|2




1/2

+ (|lh|2 + ν ′|l3|2)
∑

µ∈M,
µ6=−λl

(

1 + 1|µ|=1|l|2
)

|s(µ, lh, u)|.

The estimate of Lemma 2 follows. �

Remark 6.1. Assume that the Fourier coefficients of s have exponential
decay, meaning that for all (µ, l), there exists s0(µ, l) ∈ C, and c(µ, l) ∈ C
with nonnegative real part such that

s(µ, l, t) = s0(µ, l) exp(−c(µ, l)t).

Then provided the sequence s0(µ, l) is sufficiently convergent, a special so-
lution of (6.9) can be built, which preserves the exponential decay property.
Indeed, for all l ∈ Z3, set

wl(t) :=
∑

µ6=−λl

s0(µ, l)
exp

(

i(λl + µ) t
ǫ − c(µ, l)t

)

iλl+µ
ǫ − c(µ, l) + |lh|2 + ν|l3|3

.

Then it can be readily checked that w is a solution of (6.9), and moreover

|wl(t)| ≤ ǫ
∑

µ6=−λl

1

|λl + µ − ǫℑ(c(µ, l))| |s0(µ, l)| exp (−ℜ(c(µ, l))t) .
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