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MATHEMATICAL STUDY OF RESONANT WIND-DRIVEN

OCEANIC MOTIONS

ANNE-LAURE DALIBARD1,2 AND LAURE SAINT-RAYMOND3

Abstract. We are interested here in describing the linear response of
the ocean to some wind forcing, which admits fast time oscillations and
may be resonant with the Coriolis force. In addition to the usual Ekman
layer, we exhibit another - much larger - boundary layer, and some
global vertical profile. That means in particular that the wind effect is
no longer localized in the vicinity of the surface.

From a mathematical point of view, the main novelty here is to in-
troduce some systematic approach for the study of boundary effects.

The goal of this paper is to understand the influence of a wind - depending
on time - on the oceanic circulation. More precisely, we are interested in the
effects of a resonant forcing, i.e. of a wind oscillating with the same period
as the rotation of the Earth.

In the non-resonant case, the works by Desjardins and Grenier [4] then by
Masmoudi [14] show that the wind forcing creates essentially some boundary
layer in the vicinity of the surface, which contributes to the mean motion
by a source term, known as the Ekman pumping. For a precise description
of the method leading to such convergence results, we refer to the book [2]
by Chemin, Desjardins, Gallagher and Grenier.

Here the situation is much more complicated since the resonant part of
the wind will be proved to generate another boundary layer with a different
typical size, and overall to destabilize the whole fluid with the apparition of
a vertical profile. We give here a precise description of these (linear) effects
of the Coriolis force in presence of resonant wind.

1. Description of the wind-driven circulation

Let us first present the mathematical framework of our study and state
precisely our main results.

1.1. A Navier-Stokes model with suitable boundary conditions.
• Our starting point is the homogeneous incompressible Navier-Stokes
system in a rotating frame

(1.1)
∂tu + (u · ∇)u + ∇p = F + u ∧ Ω ,

∇ · u = 0 ,
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2 ANNE-LAURE DALIBARD AND LAURE SAINT-RAYMOND

where F denotes the frictional force acting on the fluid, Ω is the (vertical
component of the) Earth rotation vector, and p is the pressure defined as
the Lagrange multiplier associated with the incompressibility constraint.

We assume that the movement to be studied occurs at midlatitudes. At
such latitudes, the Coriolis acceleration can in a crude approximation be
considered as a constant. In other words, we can neglect the variations
of the Coriolis parameter Ω and use the f -plane approximation, which
makes the analysis much simpler than in the case of the full model.

The observed persistence over several days of large-scale waves in the
oceans shows that frictional forces F are weak, almost everywhere, when
compared with the Coriolis acceleration and the pressure gradient, but large
when compared with the kinematic viscous dissipation of water. One com-
mon but not very precise notion is that small-scale motions, which appear
sporadic or on longer time scales, act to smooth and mix properties on the
larger scales by processes analogous to molecular, diffusive transports. For
the present purposes it is only necessary to note that one way to estimate
the dissipative influence of smaller-scale motions is to retain the same rep-
resentation of the frictional force

F = Ah∆hu + Az∂zzu

where Az and Ah are respectively the vertical and horizontal turbulent vis-
cosities, of much larger magnitude than the molecular value, supposedly
because of the greater efficiency of momentum transport by macroscopic
chunks of fluid. Notice that Az 6= Ah is therefore natural in geophysical
framework (see [16]).

This paper is thus devoted to the analysis of the so-called “rotating fluid
equations”, consisting in the three-dimensional anisotropic Navier-Stokes
system in which a constant coefficient penalization operator has been added
to account for the Earth rotation.

• We consider the motion in a bounded domain

ω = ωh × [0, 1]

where the bottom and upper surface of the ocean are assumed to be flat at
z = 0 and z = 1 and where ωh is the horizontal domain to be studied.

As boundary conditions on the upper surface, we enforce

(1.2)
u3|z=1 = 0,

∂zuh|z=1 = Σ ,

where Σ is a given stress tensor, describing the wind on the surface of
the ocean. Notice that (1.2) is a rigid lid approximation since we assume
that the upper surface of the ocean remains at z = 1. This is a drastic, but
standard simplification, since it is actually a free surface, and a moving in-
terface between air and water, which has its own self consistent motion. The
justification of (1.2) starting from a free surface is open from a mathematical
point of view. Nevertheless, from a physical point of view, the simplification
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does not appear so dramatic, since in any case the free surface is so turbulent
with waves and foam, that only modelization is tractable and meaningful.
Condition (1.2) is a simple modelization which already catches most of the
physical phenomena (see [16]).

At the bottom we use the Dirichlet boundary condition

(1.3) u|z=0 = 0 ,

which is a braking condition at the interface ocean/earth’s crust.
Note that, for the sake of simplicity, we do not take into account here the
topography of the bottom. The topographic effects should actually modify
the Ekman boundary layer and consequently the limit equations, even if the
variations of the bottom are small (see [4] and [8] for instance).

In order to simplify the study and focus on the wind influence, we also
neglect the effects of the lateral boundary conditions by considering
the case when ωh is the two-dimensional torus. Of course such an assump-
tion is not physically relevant. It is well known for instance that the lateral
boundary layers, called Munk layers, play a crucial role in the oceanic cir-
culation, in particular in the western intensification of currents.

1.2. The dominating influence of the Coriolis force : a formal
asymptotics.
• We will study the following asymptotic behaviour

(1.4)

U

LΩ
= ǫ → 0,

Ah

ρUL
∼ 1,

LAz

ρUD2
= ν → 0

where L and D are the typical horizontal and vertical length scales, and ρ
denotes the (constant) density of the fluid. In other words, we will consider
the following system

(1.5)
∂tu + (u · ∇)u +

1

ǫ
e3 ∧ u − ∆hu − ν∂zzu + ∇p = 0

∇ · u = 0 ,

Such a scaling of parameters seems convenient for instance for the
mesoscale eddies that have been observed in western Atlantic. One has
indeed

U ∼ 5cm/s, L ∼ 100km, D ∼ 4km and Ω ∼ 10−4s−1

which leads to the following value for ǫ

ǫ = 5 × 10−3.

Possible values for the turbulent viscosities given in [16] are

Ah ∼ 107cm2/s and Az ∼ 10cm2/s

so that
ν = 10−3 .
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As mentioned above, we will supplement this equation with the following
boundary condition

∂zu|z=1 = βσ,

where β is the typical size of the scaled forcing and σ is of order one.

• The first step in the study of rotating fluids is to verify that the only
way to control the Coriolis force as ǫ → 0 is to balance it with the pressure
gradient term. Hence in the limit, e3 ∧ u must be a gradient

e3 ∧ ūint
mean = −∇p

which leads to

ūint
mean = ∇⊥

h p

where the limit pressure and thus the limit velocity are independent of z.
In particular, ūint

mean is a two-dimensional, horizontal, divergence-free vector-
field. The fluid being limited by rigid boundaries, from above and below, the
divergence-free condition leads indeed to u3 = 0 (at least to first order in ǫ).
In other words, all the particles which have the same xh have the same
velocity. The particles of fluid move in vertical columns, called Taylor-
Proudman columns. That is the main effect of rotation and a very strong
constraint on the fluid motion.

As the domain evolution is limited by two parallel planes, the height of
Taylor-Proudman columns is constant as time evolves, which is compatible
with the incompressibility constraint. We can then prove that the columns
move freely and in the limit of high rotation the fluid behaves like a two-
dimensional incompressible fluid. Integrating the motion equation (1.5)
with respect to z and taking formal limits as ǫ → 0 leads indeed to

(1.6)
∂tū

int
mean + (ūint

mean · ∇h)ūint
mean + ∇hp = ∆hūint

mean,

∇h · ūint
mean = 0 .

Note however that on the boundary of the domain, where the velocity is
prescribed, the z independence is violated. That leads to vertical bound-
ary layers modifying the limit equation (1.6), which will be investigated in
the rest of the paper.

• Before starting with the precise study of these boundary layers, let us now
describe what happens for the three-dimensional part of the initial data, i.e.
the part of the initial data that does not satisfy the geostrophic constraint.
The dominant process is then governed by the linear Coriolis operator

L : u ∈ V0 7→ P(e3 ∧ u) ∈ V0,

where V0 denotes the subspace of L2(ω) of divergence-free vector fields hav-
ing zero flux both through the bottom and through the surface

V0 = {u ∈ L2([0, 1] × T2) / ∇ · u = 0 and u3|z=0 = u3|z=1 = 0},
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and P denotes the orthogonal projection onto V0 in L2(ω). Notice that in
general, P is different from the Leray projector on divergence-free vector
fields in L2.

The equation
ǫ∂tu + Lu = 0

turns out to describe the propagation of waves, called Poincaré waves, with
the following dispersion law relating the pulsation λk to the wavenumber k

λk = − k3π
√

|kh|2 + (πk3)2
.

For the sake of completeness, we recall here - essentially without proof -
some fundamental properties of the Coriolis operator L For a detailed study
of these spectral properties we refer for instance to [2].

Extending any u ∈ V0 on [−1, 1] × T2 as follows

(1.7) uh(xh, z) = uh(xh,−z) and u3(xh, z) = −u3(xh,−z)

(which is compatible with the incompressibility constraint ∇ · u = 0) we
obtain a periodic function, so that it is possible to use some Fourier decom-
position.

Setting






























n1(k) =
1

2π|kh|
(ik2 + k1λk)

n2(k) =
1

2π|kh|
(−ik1 + k2λk)

n3(k) = i
|kh|

2π
√

|kh|2 + (πk3)2

if kh 6= 0,

and


















n1(k) =
sign(k3)

2π

n2(k) =
i

2π
n3(k) = 0

else,

what can be proved actually is that the family (Nk) defined by

Nk = exp(ikh · xh)





n1(k) cos(πk3z)
n2(k) cos(πk3z)
n3(k) sin(πk3z)





is an hilbertian basis of V0 constituted of eigenvectors of the linear penal-
ization

(1.8) P(e3 ∧ Nk) = iλkNk with λk = − k3π
√

|kh|2 + (πk3)2
.

Thus the three-dimensional part of the initial data generates waves, which
propagate very rapidly in the domain (with a speed of order ǫ−1). The time
average of these waves vanish, like their weak limit, but they carry a non-zero
energy.
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To handle with waves we therefore use some filtering method introduced
independently by Grenier [10] and Schochet [20]. Conjugating (1.5) by the
Poincaré group leads to

∂t

(

exp

(

tL

ǫ

)

u

)

+ exp

(

tL

ǫ

)

(Q(u, u) − ∆hu − ν∂zzu) = 0,

or equivalently, setting uL = exp
(

tL
ǫ

)

u,

∂tuL−∆huL−ν∂zzuL+exp

(

tL

ǫ

)

Q

(

exp

(

− tL

ǫ

)

uL, exp

(

− tL

ǫ

)

uL

)

= 0 .

Note that u can be retrieved from uL thanks to the formula

u = exp

(

− tL

ǫ

)

uL =
∑

〈Nk|uL〉 exp

(

−i
t

ǫ
λk

)

Nk .

The first order approximation, i.e. the envelope equation, is then
obtained by taking limits in that filtered system :

(1.9) ∂tū
int
L − ∆hūint

L + Q̃(ūint
L , ūint

L ) = 0

where Q̃ is defined as some projection of Q on the resonant modes of the
linear penalization L. The oscillatory profile uint

L thus satisfies a three-
dimensional parabolic equation, with special properties because of the rare
occurence of wave interactions (see [1] for a detailed study of the limiting
nonlinearity and the global wellposedness of the limit system.)

Note that the interaction between two Poincaré waves does not create
z independent field, meaning that the limit z independent field ūint

mean is
completely decoupled from the waves (see [7] for a simple proof of this result
based on compensated compactness).

2. General strategy and main results

The goal of this paper is to study the influence of the wind forcing on the
motion, in particular when this forcing has fast oscillations.

As usual in singular perturbation problems, the first step is to consider
the linear penalization problem, or in other words study the waves produced
by the Coriolis force. Our objective in this paper is to determine particular
solutions satisfying the boundary conditions, and to understand if the effects
of the forcing are local (in the vicinity of the surface) or global (in the whole
fluid).

We are thus interested in the following linear system

(2.1)
∂tu +

1

ǫ
P(e3 ∧ u) − ∆hu − ν∂zzu = 0,

∇ · u = 0,

supplemented with the boundary conditions

(2.2)
u|z=0 = 0,

u3|z=1 = 0, ∂zuh|z=1 = βσ,
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where β is a positive number and σ is some smooth function, periodic in xh

and almost periodic in t/ǫ.
In order to simplify the presentation, we will assume in all the sequel that

σ has only a finite number of Fourier modes in space and time, which is not
a restriction in the linear case since one can use a superposition principle.
We assume that the parameter β satisfies the following condition

(2.3) ∃(α0, α1) ∈ R2, α0 < 5/9, α1 > 2/9, β = O
(

ν−α0ǫα1
)

.

Our main result is the following:

Theorem 2.1. Let γ ∈ L2(ω). Let σ ∈ L∞(R+;L2(ω)) such that

σ(t, xh) =
∑

|kh|≤N

∑

µ∈M

σ̂(µ, kh)eiµ t
ǫ

where M ⊂ R is a finite set.
Let u be the solution of (2.1), (2.2). Assume that (2.3) is satisfied.
Then as ǫ, ν vanish, we have

u(t) −
[

exp

(

− t

ǫ
L

)

ūint
L + ustat

]

→ 0

in L∞
loc

(R+, L2(ω)), where ūint
L is the solution of the envelope equation (5.14),

and using is a singular profile, due to resonant forcing on the modes µ = ±1,
kh = 0; by definition, using = using,0 + using,1, where using,0 (resp. using,1)
is given by (5.20) (resp. (4.10)).

Remark 2.2. (i) That result extends previous works by Masmoudi [14] and
Chemin, Desjardins, Gallagher and Grenier [2]. They have indeed studied
analogous boundary problems for rotating fluids, but have used in a crucial
way a spectral assumption on the forcing modes, which ensures that the
forcing is non-resonant, or in other words that the boundary layers remain
stable.
(ii) If the horizontal viscosity, say α, did also depend on ǫ, it would change
neither the method of proof, nor the nature of the convergence, at least in
the linear case : we would just get a limit system with (possibly evanescent)
horizontal viscosity limǫ→0 α.

Indeed, as we consider some horizontal domain ωh without boundary and
the linear operator has constant coefficients, there is no coupling between
horizontal modes. We can then work with fixed kh. The horizontal viscosity
induces then some dissipation mechanism with rate α|kh|2, the limit of which
is trivial.

On the contrary, because of the boundary conditions at z = 0 and z = 1,
there is a strong coupling between the vertical modes. The Ekman pump-
ing obtained in the asymptotics ǫ ∼ ν is the expression of this coupling. It
corresponds in some sense to a result of non commutation between the pe-
nalization 1

ǫ L and the vertical dissipation ν∂zz supplemented with suitable
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boundary conditions at z = 0 and z = 1. More precisely, it is obtained as
the limit

lim
ǫ,ν→0
ǫ∼ν

(

e
tL
ǫ ν∂zze

− tL
ǫ

)

.

(iii) If ν = O(ǫ), then condition (2.3) can be relaxed into

∃(α0, α1) ∈ R2, α0 < 5/7, α1 > 2/7, β = O
(

ν−α0ǫα1
)

,

for technical reasons explained in the proof page 25.

The approximation of the function u obtained in the proof of Theorem
2.1 is actually much more precise than the mere function ūint

L . Indeed, we
will need to build boundary and corrector terms, which are all small in L2

norm, and thus do not play a role in the final convergence result, but are
necessary in order that equation (2.1) is approximately satisfied.

• We have seen in Remark 2.2(ii) that, at least in the linear case, the hori-
zontal viscosity is essentially a silent variable, in the sense that one has just
to take limits in the dissipation factor α|kh|2. Then, by a simple change
of time variable, one can always come down to the case when the vertical
viscosity is of the same order as the Rossby number. Setting

ũ(t, x) = u

(

( ǫ

ν

)1/2
t, x

)

we get indeed

∂tũ +
1

(ǫν)1/2
Lũ − (ǫν)1/2∂zzũ −

( ǫ

ν

)1/2
∆hũ = 0

Therefore the case when ν ∼ ǫ is the most relevant. Formally both other
cases can be deduced from this one, by considering either the asymptotics
t → ∞ (case ǫ ≪ ν), or the asymtotics t → 0 (case ǫ ≫ ν). That means that,
in the case when ǫ ≫ ν, the effects of the boundary terms, even damped by
the penalization, remain localized in the vicinity of the surface and thus do
not contribute to the mean motion

lim
ǫ,ν→0
ǫ∼ν

(

e
tL
ǫ ν∂zze

− tL
ǫ

)

= 0 .

In the case when ν ≫ ǫ, the vertical dissipation damped by the penalization
induces a strong relaxation mechanism, so that we expect the solution to
be well approximated, outside from some initial layer, by a “stationary”
solution to the wind-driven system. That initial layer should be of size
O
(√

ǫ
ν

)

and the relaxation should be governed by the Ekman dissipation
process (5.14). Note that in that case

lim
ǫ,ν→0
ǫ∼ν

(

e
tL
ǫ ν∂zze

− tL
ǫ

)

does not make sense.
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Remark 2.3. In the nonlinear case, the same argument cannot be directly
applied since the contribution of the convection term and of the horizontal
dissipation will be different depending on the asymptotic value of ǫ/ν. Nev-
ertheless, we expect to have the same balance between the two mechanisms,
or in other words the same limit for

lim
ǫ,ν→0
ǫ∼ν

(

e
tL
ǫ ν∂zze

− tL
ǫ

)

.

In the case when ν ≫ ǫ, that limit is not defined and the interaction of
both mechanisms produces a strong relaxation process leading to some initial
layer.

• As the evolution equation is linear, we will further use some superposi-
tion principle, meaning that we will deal separately with the forcing and
with the initial condition. More precisely, we will consider on the one hand
the wind-driven system

(2.4)

∂tu +
1

ǫ
P(e3 ∧ u) − ∆hu − ν∂zzu = 0,

∇ · u = 0,

u|t=0 = 0,

u|z=0 = 0,

u3|z=1 = 0, ∂zuh|z=1 = βσ.

For that system, we will construct an approximate solution constituted of
a boundary term uBL,1 localized near the surface, and of a singular term
using,1 in the case when the forcing is resonant (in a sense that will be defined
in the next section). The convergence of the modes such that |µ 6= 1| is then
proved using a somewhat soft argument, which can be applied with a crude
approximation. Concerning the quasi-resonant modes, for which |µ| = 1
and kh 6= 0, the situation is more complicated, and we have to build several
correctors before reaching the adequate order of approximation.

On the other hand, we will study the initial value problem

(2.5)

∂tu +
1

ǫ
P(e3 ∧ u) − ∆hu − ν∂zzu = 0,

∇ · u = 0,

u|t=0 = γ,

u|z=0 = 0,

u3|z=1 = 0, ∂zuh|z=1 = 0.

Here we will use, following [2], an energy method which requires to obtain a
very precise approximation. A quantitative result about the required preci-
sion is given in the stopping condition below (Lemma 1). The approximate
solution is actually obtained as the sum of two interior terms uint that we
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seek in the form
uint =

∑

clNle
−iλl

t
ǫ

coming from the analysis of the linear penalization as an operator of L2,
and two boundary terms uBL,0 the form of which will be determined in the
next section by a careful study of the boundary layer operator.

Remark 2.4. Of course, in the nonlinear case the superposition principle
does not hold anymore, and both systems (2.4) and (2.5) will be coupled.
However the construction of the boundary layers (which are obtained essen-
tially by a linear process) can be extended in that case.

The difficult point is to prove the convergence of the approximation, in
particular when the (resonant) forcing creates some singular profile which
is not localized in the vicinity of the surface, and thus is expected to modify
strongly the (nonlinear) convection. For a study on that topics we refer to
our forthcoming paper [5].

The next sections are then devoted to the construction of uapp. We start
with a precise description of the boundary layer operator B in Section 3.
We then build, in Section 4, the approximation and prove the convergence
for the (possibly resonant) wind-driven system (2.4). For the sake of com-
pleteness, we finally study the system (2.5) which has already been dealt
with in a number of mathematical papers. Let us recall that in both cases
we need a refined approximation with many orders. We have then to iterate
some process giving the successive correctors. Note however that we are
not able to really obtain an asymptotic expansion leading to a more accu-
rate approximation (in L2 sense). At each step of the process the order of
the resonances involved in the estimates is indeed increased, so that it is
not possible to obtain convergent series. For more precisions regarding that
point, we refer to the proof in Section 5.

3. The boundary layer operator

We recall that the boundary condition at the surface is given by (2.2) :

δ1,h(t, xh) =
∑

µ,kh

δ̂1,h(µ, kh) exp

(

iµ
t

ǫ

)

exp (ikh · xh) .

In the same way, as the Coriolis operator generates waves oscillating at a
frequency −λk/ǫ, from the Dirichlet boundary condition we deduce that the
boundary term at the bottom is of the form

δ0,h(t, xh) =
∑

µ,kh

δ̂0,h(µ, kh) exp

(

iµ
t

ǫ

)

exp (ikh · xh) .

Actually, δ̂0,h depends slowly on time, but this will be taken into account
later on.
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Thus it is natural to seek the boundary terms as a sum of oscillating
modes, rapidly decaying in z. Our goal in this paragraph is to characterize
these modes, or in other words to describe the propagation with respect to
z of the boundary conditions

v|z=0 = δ0,h, ∂zvh|z=1 = βδ1,h .

We will use the following Ansatz

v(t, x) = v0(t, x) + v1(t, x)

with

vj(t, x) =
∑

µ,kh

vj(µ, kh;x) exp

(

i
t

ǫ
µ

)

where µ and kh are the oscillation period and horizontal Fourier mode.
We further seek v0(µ, kh) and v1(µ, kh) in the form

(3.1)

v0(µ, kh;x) = v̂0(µ, kh) exp(ikh · xh) exp

(

−λ
z√
ǫν

)

,

v1(µ, kh;x) = v̂1(µ, kh) exp(ikh · xh) exp

(

−λ
(1 − z)√

ǫν

)

so that they are expected to be localized in a neighbourhood of size O(
√

ǫν)
respectively near the bottom and near the surface. Note in particular that,
with such a choice, v0 (resp. v1) introduces only exponentially small error
terms on the surface (resp. at the bottom).

Plugging this Ansatz in the system (2.1) we get actually

(3.2)

iµv̂1 − λ2v̂1 + ǫk2
hv̂1 − v̂2 + ǫν

k1k2v̂1 − k2
1 v̂2

λ2 − ǫνk2
h

= 0,

iµv̂2 − λ2v̂2 + ǫk2
hv̂2 + v̂1 + ǫν

−k1k2v̂2 + k2
2 v̂1

λ2 − ǫνk2
h

= 0,

√
ǫν(ik1v̂1 + ik2v̂2) ± λv̂3 = 0 .

which expresses the balance between the forcing, the viscosity, the Coriolis
force and the pressure.

Denote by Aλ the matrix corresponding to (3.2)

Aλ(µ, kh) =









iµ − λ2 + ǫk2
h +

ǫνk1k2

λ2 − ǫνk2
h

−1 − ǫνk2
1

λ2 − ǫνk2
h

1 +
ǫνk2

2

λ2 − ǫνk2
h

iµ − λ2 + ǫk2
h − ǫνk1k2

λ2 − ǫνk2
h









.

Classical results on boundary layers are then based on the fact that |µ| 6= 1,
which ensures that the matrix

(

µ i
−i µ

)
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is hyperbolic in the sense of dynamical systems, i.e. that its eigenvalues
have non zero real parts. This feature, as well as general properties of the
system, is therefore stable by small perturbation. The method consists then
in neglecting the perturbation, i.e. the pressure and horizontal viscosity
terms and to compute a solution to

∂tv + e3 ∧ v − ν∂zzv = 0

with suitable boundary conditions.
Now, if |µ| = 1, the matrix

(

µ i
−i µ

)

admits zero as an eigenvalue, and we expect its behaviour to be very sensitive
to perturbations. Actually we will distinguish between two cases

• either kh 6= (0, 0) and we will prove that the same type of behaviour
as previously occurs, with the difference that the decay rate λ of the
singular component is anomalously small. We will thus develop a
general method, which can be used independently of the size of λ
(the classical method fails since the error depends on 1/λ2).

• or kh = (0, 0) and we have a bifurcation. The solution v is not
localized anymore.

Case when kh 6= (0, 0).
• Let us first introduce some notations in order to define an abstract

framework to deal with. For the sake of simplicity, we omit here all the
parameters µ and kh.

If λ is such that det(Aλ) = 0, then there exists wλ such that

(3.3) Aλwλ = 0 .

In other words the vector fields W 0
λ and W 1

λ defined by
(3.4)

W 0
λ (t, x) =





wλ√
ǫν

λ
ikh · wλ



 exp(ikh · xh) exp(iµ
t

ǫ
) exp

(

−λ
z√
ǫν

)

W 1
λ (t, x) =





√
ǫν

λ
wλ

− ǫν

λ2
ikh · wλ



 exp(ikh · xh) exp(iµ
t

ǫ
) exp

(

−λ
(1 − z)√

ǫν

)

are exact solutions to (2.1) satisfying respectively the horizontal boundary
condition

W 0
λ,h|z=0 = wλexp(ikh · xh) exp(iµ

t

ǫ
),

∂zW
0
λ,h|z=1 = − λ√

ǫν
wλexp(ikh · xh) exp(iµ

t

ǫ
) exp

(

− λ√
ǫν

)

,
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and

∂zW
1
λ,h|z=1 = wλexp(ikh · xh) exp(iµ

t

ǫ
),

W 1
λ,h|z=0 =

√
ǫν

λ
wλexp(ikh · xh) exp(iµ

t

ǫ
) exp

(

− λ√
ǫν

)

.

We have moreover the following estimates (provided that λ√
ǫν

≫ 1)

(3.5)

W 0
λ = O(1)L∞(R+,L∞(Ω)), W 0

λ = O

(

( ǫν

λ2

)1/4
)

L∞(R+,L2(Ω))

,

W 1
λ = O

(

( ǫν

λ2

)1/2
)

L∞(R+,L∞(Ω))

, W 1
λ = O

(

( ǫν

λ2

)3/4
)

L∞(R+,L2(Ω))

.

We intend to build one particular solution to (2.1) satisfying the horizontal
boundary condition

vh|z=0 = δ0,h,

∂zvh|z=1 = βδ1,h.

Hence, we only have to find (for all µ and kh) some wλ− and wλ+ constituting
a basis of C2.

• In order to determine some suitable wλ− and wλ+ , we have to get some
asymptotic expansions of the eigenvalues and eigenvectors of Aλ(µ, kh).

In view of the previous paragraph, at leading order, we have

Aλ =

(

iµ − λ2 −1
1 iµ − λ2

)

+ o(1)

so that

det(Aλ) = (iµ − λ2)2 + 1 + o(1) = 0

for (λ−)2 = i(µ + 1) + o(1) or (λ+)2 = i(µ − 1) + o(1). We further have

wλ− = (1,−i) + o(1) and wλ+ = (1, i) + o(1)

For |µ| 6= 1, we choose λ− and λ+ to be the roots of det(Aλ) = 0 with non-
negative real parts. The previous asymptotic equivalences are then enough
to prove that

det(wλ− , wλ+) = 2i + o(1)

from which we deduce that (wλ− , wλ+) is a (quasi-orthogonal) basis of C2,
and that we have uniform bounds (with respect to ǫ and ν sufficiently small)
on the transition matrix P and its inverse.
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For µ = 1 we expect λ− to be given by (λ−)2 = 2i + η− with η− = o(1),
and λ+ to be given by (λ+)2 = η+ with η+ = o(1)

det(Aλ) =

(

iµ − λ2 + ǫk2
h +

ǫνk1k2

λ2 − ǫνk2
h

)(

iµ − λ2 + ǫk2
h − ǫνk1k2

λ2 − ǫνk2
h

)

−
(

−1 − ǫνk2
1

λ2 − ǫνk2
h

)(

1 +
ǫνk2

2

λ2 − ǫνk2
h

)

=

(

−i − η− + ǫk2
h +

ǫνk1k2

2i

)(

−i − η− + ǫk2
h − ǫνk1k2

2i

)

−
(

−1 − ǫνk2
1

2i

)(

1 +
ǫνk2

2

2i

)

+ o(ǫ)

and

det(Aλ) =

(

i − η+ + ǫk2
h +

ǫνk1k2

η+

)(

i − η+ + ǫk2
h − ǫνk1k2

η+

)

−
(

−1 − ǫνk2
1

η+

)(

1 +
ǫνk2

2

η+

)

+ O(ǫ2ν2/(η+)2)

from which we deduce that

η− = ǫk2
h +

1

4
ǫνk2

h + o(ǫ)

η+ = ǫk2
h +

ǫνk2
h

2iη+
+ o(

√
ǫν) + o(ǫ),

and thus there exists a constant C, depending only on kh, such that

(3.6)
C(kh)−1 ≤ |λ−(1, kh)| ≤ C(kh),

C(kh)−1(ǫ +
√

ǫν)−1/2 ≤ |λ+(1, kh)| ≤ C(kh)(ǫ +
√

ǫν)1/2.

Plugging these expansions in the formula of Aλ leads then to

wλ− = (1,−i + O(ǫ)),

wλ+ = (1, i + O(
√

ǫν) + O(ǫ))

In particular we have

det(wλ− , wλ+) = 2i + O(ǫ) + O(
√

ǫν)

from which we deduce that (wλ− , wλ+) is a (quasi-orthogonal) basis of C2,
and that we have uniform bounds (with respect to ǫ and ν sufficiently small)
on the transition matrix P and its inverse.

For µ = −1 we have in the same way

(3.7)
C(kh)−1(ǫ +

√
ǫν)−1/2 ≤ |λ−(−1, kh)| ≤ C(kh)(ǫ +

√
ǫν)1/2,

C(kh)−1 ≤ |λ+(−1, kh)| ≤ C(kh)

and

wλ− = (1,−i + O(
√

ǫν) + O(ǫ)), wλ+ = (1, i + O(ǫ))
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from which we deduce uniform bounds (with respect to ǫ and ν sufficiently
small) on the transition matrix P and its inverse.

• We then define v0(µ, kh) and v1(µ, kh) by

(3.8) vj(µ, kh;x) exp

(

iµ
t

ǫ

)

= βj(αj
−W j

λ−(t, x) + αj
+W j

λ+(t, x))

where W j
λ is defined in terms of wλ by (3.4) and the coefficients αj

− and αj
+

are defined by

(3.9) (αj
−, αj

+) = P−1δ̂j,h(µ, kh).

Case when kh = (0, 0).
That case is strongly different since there is no term of higher order in

(3.2) :

Aλ =

(

iµ − λ2 −1
1 iµ − λ2

)

meaning that when |µ| = 1 we cannot find a basis of eigenvectors (wλ− , wλ+)
with ℜ(λ−) > 0 and ℜ(λ+) > 0. One of the eigenvalue is necessarily 0, and
thus the corresponding solution has no decay in z. In other words we do not
expect the boundary terms to be localized in the vicinity of the boundary
uniformly in time.

For |µ| 6= 1 we use exactly the same arguments as previously and define
v̂j(µ, 0) by formulas (3.8)(3.9).

If µ = 1 we have

λ− = 2i and λ+ = 0

with

wλ− = (1,−i) and wλ+ = (1, i) .

Define as previously W j
λ− by (3.4), and αj

± by (3.9). Setting

[

v0(1, 0;x) + v1(1, 0;x)
]

exp

(

i
t

ǫ

)

= α0
−W 0

λ−(t, x) + βα1
−W 1

λ−(t, x) +
(

α0
+ + βα1

+z
)





1
i
0



 exp

(

i
t

ǫ

)

we can check that it is an exact solution to (2.1), which further satisfies the
required horizontal boundary condition.

We then define

W 0
λ+(1,0) =





1
i
0



 exp

(

i
t

ǫ

)

, W 1
λ+(1,0) =





1
i
0



 z exp

(

i
t

ǫ

)

so that formula (3.8) is still satisfied.
Note that the vertical component of the linear profile is identically zero.
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If µ = −1 we have in a similar way

λ− = 0 and λ+ = −2i

with

wλ− = (1,−i) and wλ+ = (1, i) .

Denoting by W 0
λ+ and W 1

λ+ the vector fields defined by (3.4), by

W 0
λ−(−1,0) =





1
−i
0



 exp

(

−i
t

ǫ

)

, W 1
λ−(−1,0) =





1
−i
0



 z exp

(

−i
t

ǫ

)

we define v̂0(−1, 0) and v̂1(−1, 0) by formulas (3.8)(3.9) and we can check
that it is an exact solution to (2.1), which further satisfies the required
horizontal boundary condition.

With that definition of the boundary layer operator B, we immediately
get the following continuity estimates :

Lemma 3.1. Let δ0,h, δ1,h be some rapidly oscillating 2D fields (with finite
numbers of horizontal Fourier modes and oscillating modes). Define

(3.10) v = B(δ0,h, δ1,h) =
∑

µ,kh

∑

j∈{0,1}

∑

±
αj
±(µ, kh)W j

λ±(µ,kh)

where αj
±(µ, kh) is given by (3.9).

Then v can be decomposed as

v = v̄ + ṽ + vsing

with
(3.11)

‖v̄h‖L2(ω) + (ǫν)−
1
2‖v̄3‖L2(ω) ≤ C

[

(ǫν)
1
4‖δ0,h‖H1(ωh) + β(ǫν)

3
4‖δ1,h‖H1(ωh)

]

,

‖ṽh‖L2(ω) ≤ C

[

(

ǫν

ǫ +
√

ǫν

)
1
4

‖δ0,h‖H1(ωh) + β

(

ǫν

ǫ +
√

ǫν

)
3
4

‖δ1,h‖H1(ωh)

]

,

‖ṽ3‖L2(ω) ≤ C

[

(

ǫν

ǫ +
√

ǫν

) 3
4

‖δ0,h‖H1(ωh) + β

(

ǫν

ǫ +
√

ǫν

)5
4

‖δ1,h‖H1(ωh)

]

,

‖vsing
h ‖L2(ω) ≤ C

(

‖δ0,h‖H1(ωh) + β‖δ1,h‖H1(ωh)

)

, vsing
3 ≡ 0 .

Remark 3.2. The constant C in the estimates above depends on the val-
ues of µ and kh. In the special case when (µ, kh) ∈ {(−λ(kh,k3), kh), k =

(kh, k3) ∈ Z3} , the inequality for v̄ can be slightly refined. Precisely, using
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estimate (6.3) in the Appendix, we obtain in this case that for all α > 1,
there exists a constant Cα > 0 (independent of kh, k3) such that

‖v̄h‖L2(ω) ≤ C(ǫν)1/4





∑

k∈Z3

|k|α+1
∣

∣

∣
δ̂0,h(−λk, kh)

∣

∣

∣

2





1/2

+ Cβ(ǫν)3/4





∑

k∈Z3

|k|α+3
∣

∣

∣
δ̂1,h(−λk, kh)

∣

∣

∣

2





1/2

,

and

‖v̄3‖L2(ω) ≤ C(ǫν)1/4





∑

k∈Z3

|k|α+3
∣

∣

∣
δ̂0,h(−λk, kh)

∣

∣

∣

2





1/2

+ Cβ(ǫν)3/4





∑

k∈Z3

|k|α+5
∣

∣

∣
δ̂1,h(−λk, kh)

∣

∣

∣

2





1/2

.

Proof. The profile vsing defined by

vsing =
∑

j

∑

µσ=1

βjαj
σ(µ, 0)W j

λσ(µ,0)

=
(

α0
+(1, 0) + βα1

+(1, 0)z
)





1
i
0



 exp

(

i
t

ǫ

)

+
(

α0
+(−1, 0) + βα1

+(−1, 0)z
)





1
−i
0



 exp

(

−i
t

ǫ

)

obviously satisfied the third estimate in (3.11).
We then split v − vsing according to the size of the boundary layers

v̄ =
∑

kh

∑

j

∑

µσ 6=1

βjαj
σ(µ, kh)W j

λσ(µ,kh),

ṽ =
∑

kh 6=0

∑

j

∑

µσ=1

βjαj
σ(µ, kh)W j

λσ(µ,kh)

By definition of αj
σ(µ, kh) and W j

λσ(µ,kh), we then obtain the estimates

‖v̄h‖L2 + (ǫν)−1/2‖v̄3‖L2 ≤ C
[

(ǫν)
1
4 ‖δ0,h‖H1(ωh) + β(ǫν)3/4‖δ1,h‖H1(ωh)

]



18 ANNE-LAURE DALIBARD AND LAURE SAINT-RAYMOND

for the classical boundary layer, and

‖ṽh‖L2(ω) +

√
ǫ + (ǫν)1/4

(ǫν)1/2
‖ṽ3‖L2(ω) ≤

C

[

(

ǫν

ǫ +
√

ǫν

)1/4

‖δ0,h‖H1(ωh) + β

(

ǫν

ǫ +
√

ǫν

)3/4

‖δ1,h‖H1(ωh)

]

for the quasi-resonant boundary layer. �

Definition 3.3. Assume that the wind-stress σ is given by

σ(t, xh) =
∑

kh

∑

µ

σ̂(µ, kh)eikh·xheiµ t
ǫ .

• We define the resonant part σres of the wind stress by

σres := σ+(1, 0)

(

1
i

)

exp

(

i
t

ǫ

)

+ σ−(1, 0)

(

1
−i

)

exp

(

−i
t

ǫ

)

,

where (σ−(µ, kh), σ+(µ, kh)) = P (µ, kh)−1σ̂(µ, kh), P (µ, kh) is the matrix
(wλ−(µ,kh), wλ+(µ,kh)), and wλ is defined by (3.3).

• We will say that a windstress σ is non-resonant if σres = 0, or in
other words, if it does not generate any O(β) singular profile.

Notice that if the wind-stress is non-resonant, then

‖B(v0
h, σ)‖L2 ≤ C.

Indeed, the singular profile reduces to

vsing = α0
+(1, 0)





1
i
0



 exp

(

i
t

ǫ

)

+ α0
−(−1, 0)





1
−i
0



 exp

(

−i
t

ǫ

)

and the third line in equation (3.11) becomes

||vsing
h ||L2 ≤ C||v0,h||H1(ωh).

4. Study of the wind-driven part of the motion

4.1. Some stability inequality for the wind-driven system (2.4).
As mentioned in Section 2, for the part of the wind-driven system (2.4)
corresponding to the modes µ 6= ±1, we will only need a rather crude ap-
proximation of the solution. We have indeed the following
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Proposition 4.1. Denote by u the solution to (2.4) and by uapp any ap-
proximate solution in the sense that

(4.1)

∂tu +
1

ǫ
P(e3 ∧ u) − ∆hu − ν∂zzu = η,

∇ · u = 0,

u|t=0 = ηt,

u3|z=0 = 0, uh|z=0 = ǫη0,

u3|z=1 = 0, ∂zuh|z=1 = βσ + η1,

with η → 0 in L2([0, T ] × ω), ηt → 0 in L2(ω) and η0, ν
3/4η1, ǫ∂tη0 → 0 in

L2([0, T ] × ωh). Then as ǫ, ν → 0,

‖u − uapp‖L∞([0,T ],L2(ω)) → 0,

‖∇h(u − uapp)‖L2([0,T ]×ω) +
√

ν‖∂z(u − uapp)‖L2([0,T ]×ω) → 0.

Proof. • The first step consists in building a family w such that ũapp
def
=

uapp + w satisfies

(4.2)

∂tu +
1

ǫ
P(e3 ∧ u) − ∆hu − ν∂zzu = η̃,

∇ · u = 0,

u|t=0 = η̃t,

u3|z=0 = 0, uh|z=1 = 0,

u3|z=1 = 0, ∂zuh|z=1 = βσ + η1.

with η̃t → 0 in L2(ω) and η̃ → 0 in L2([0, T ] × ωh).
In order to do so, we just apply Lemma 1 in the Appendix with

δ0,h = −ǫη0, δ0,3 = 0 and δ1 = 0.

We recall that we work with a finite number of horizontal frequencies kh, so
that all Sobolev norms in ωh are bequivalent to the L2 norm.

A simple computation allows then to establish all the properties (4.2).
• The convergence is then obtained by a standard energy estimate. Com-

bining (4.2) and (2.4), and integrating by parts lead indeed to

1

2
‖(u − ũapp)(t)‖2

L2 +

∫ t

0
‖∇h(u − ũapp)‖2

L2ds + ν

∫ t

0
‖∇h(u − ũapp)‖2

L2ds

≤ 1

2
‖η̃t‖2

L2(ω) +

∫ t

0
‖u − ũapp‖L2(ω)‖η̃‖L2(ω)ds

+ν

∫ t

0
‖(u − ũapp)h|z=1(t)‖L2(ωh)‖η1‖L2(ωh)ds

• To conclude we therefore need to estimate the trace (u − ũapp)h|z=1 in

L2(ωh) in terms of the H1 norm of u − ũapp. By Sobolev embeddings and
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the Cauchy-Schwarz inequality, we have

ν1/2‖(u − ũapp)h|z=1‖2
L2(ωh) ≤ C‖u − ũapp‖2

L2(ω) + ν‖∂z(u − ũapp)‖2
L2(ω)

Plugging that estimate in the previous energy inequality, we get

1

2
‖(u − ũapp)(t)‖2

L2 +

∫ t

0
‖∇h(u − ũapp)‖2

L2ds +
ν

2

∫ t

0
‖∇h(u − ũapp)‖2

L2ds

≤1

2
‖η̃t‖2

L2(ω) +
1

2

∫ t

0
‖η̃‖2

L2(ω)ds + ν3/2

∫ t

0
‖η1‖2

L2(ωh)ds

+ C

∫ t

0
‖(u − ũapp)(s)‖2

L2(ω)ds

using again the Cauchy-Schwarz inequality. We conclude by Gronwall’s
lemma

1

2
‖(u − ũapp)(t)‖2

L2 +

∫ t

0
‖∇h(u − ũapp)‖2

L2ds + ν

∫ t

0
‖∇h(u − ũapp)‖2

L2ds

≤ 1

2
‖η̃t‖2

L2(ω)e
2Ct +

1

2

∫ t

0
‖η̃‖2

L2(ω)e
2C(t−s)ds + ν3/2

∫ t

0
‖η1‖2

L2(ωh)e
2C(t−s)ds

which proves that u − ũapp converges to 0 in L∞
loc(R+, L2(ω)). Theorem

2.1 will be proved in the case when γ = 0 if we are able to build some
approximate solution uapp that converges strongly to 0 as ǫ, ν → 0. �

4.2. The approximate solution in the non-resonant case. In order
to obtain some approximate solution to (2.4) (in the sense (4.1) of the pre-
vious paragraph), we will essentially need to construct the boundary layer
term and some small corrector to account for the vertical component of the
boundary condition. Of course that process will be slightly different if the
forcing is resonant, i.e. if the boundary term B(0, σ) is not localized in the
vicinity of the surface. Thus let us first deal with the nonresonant case.

• We define with the notations of Proposition 3.1

uBL,1 = B(0, σ − σres) = ūBL,1 + ũBL,1 .

Since we assume that σ has a finite number of horizontal Fourier modes kh

and of oscillating modes µ, by Lemma 3.1, we have

‖ūBL,1
h ‖L2(ω) ≤ C‖σ‖L2(ωh)β(ǫν)3/4,

‖ūBL,1
3 ‖L2(ω) ≤ C‖σ‖L2(ωh)β(ǫν)5/4,

and for the modes with |µ| = 1,

‖ũBL,1
h ‖L2(ω) ≤ C‖σ‖L2(ωh)β

(

ǫν

ǫ +
√

ǫν

)3/4

,

‖ũBL,1
3 ‖L2(ω) ≤ C‖σ‖L2(ωh)β

(

ǫν

ǫ +
√

ǫν

)5/4

.
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It can be checked that hypothesis (2.3) ensures that the right-hand sides of
the above equation are all o(1) Furthermore, using the explicit formula for
B, we get, for the classical part of the system (i.e. the modes µ 6= ±1)

‖ūBL,1
3|z=1‖Hs(ωh) = O (βǫν) and ‖∂tū

BL,1
3|z=1‖Hs(ωh) = O(βν)

‖ūBL,1
3|z=0‖Hs(ωh) = O(β(ǫν)N ) and ‖∂tū

BL,1
3|z=0‖Hs(ωh) = O(β(ǫν)N ),

and for the quasi-resonant part of the system

‖ũBL,1
3|z=1‖Hs(ωh) = O(β(ǫν)1/2) and ‖∂tū

BL,1
3|z=1‖Hs(ωh) = O

(

β

√

ν

ǫ

)

‖ũBL,1
3|z=0‖Hs(ωh) = O(β(ǫν)N ) and ‖∂tū

BL,1
3|z=0‖Hs(ωh) = O(β(ǫν)N )

for any integer N . As a consequence, ūBL,1
3|z=1, ūBL,1

3|z=0 and ũBL,1
3|z=0 satisfy the

conditions of the stopping Lemma 1 in the Appendix as soon as βν = o(1),
which is always ensured by hypothesis (2.3). We denote by wstop the function
defined in Lemma 1 with

δ0,h = 0, δ1,h = 0

δ0,3 = −ūBL,1
3|z=0

− ũBL,1
3|z=0

, δ1,3 = −ūBL,1
3|z=1

.

The term ũBL,1
3|z=1, on the other hand, does not match the conditions of

Lemma 1. We therefore introduce some corrector vint,1 to restore the zero-
flux condition. We first define its vertical component

vint,1
3 = −ũBL,1

3|z=1z ,

then its horizontal component in order that the divergence-free condition is
satisfied

vint,1
h = ∇h(∆h)−1ũBL,1

3|z=1.

Note that for kh = 0, vint,1 is identically zero. The fact that vint,1
3 6= 0 means

that a small amount of fluid, of order
√

ǫνδj,3, enters the domain (or the
boundary layer, depending on the sign of the coefficient). This phenomenon

is called Ekman suction and vint,1
3 is called Ekman transpiration velocity.

This velocity will be responsible for global circulation in the whole domain,

of order β(ǫν)
1
2 , but not limited to the boundary layer.

In any case, we get easily that

‖vint,1‖L∞([0,∞),Hs(ω)) = O(β(ǫν)1/2),

‖∂tv
int,1‖L∞([0,∞),L2(ω)) = O

(

β

√

ν

ǫ

)

.

• If there is no quasi-resonant mode |µ| = 1, we then claim that uapp =
ūBL,1 + wstop satisfies the required conditions. We indeed have clearly

uapp,3|z=0 = uapp,3|z=1 = 0
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by definition of wstop. Notice that in this case ũBL = 0 and vint,1 = 0. We
further have

∂zuapp,h|z=1 − βσ = 0,

‖uapp,h|z=0‖L2(ωh) = O(β(ǫν)N ) and ‖∂tuapp,h|z=0‖L2(ωh) = O(β(ǫν)N )

for all N . We also have for all t ≥ 0

‖uapp(t)‖L2(ω) ≤ ‖ūBL,1(t)‖L2(ω) + ‖wstop(t)‖L2(ω) = O(β(ǫν)3/4) = o(1).

It remains then to check that the evolution equation is approximately
satisfied. We have

∂tuapp +
1

ǫ
P(e3 ∧ uapp) − ∆huapp − ν∂zzuapp = O(νβ)L2([0,T ]×ω) = o(1)

supplemented with some initial condition

uapp|t=0 = O(β(ǫν)3/4)L2(ω).

We therefore apply Proposition 4.1 and conclude that uapp has the same
asymptotic behaviour as the solution of

(4.3)

∂tu +
1

ǫ
P(e3 ∧ u) − ∆hu − ν∂zzu = 0,

∇ · u = 0,

u|t=0 = 0,

u3|z=0 = 0, uh|z=0 = 0,

u3|z=1 = 0, ∂zuh|z=1 = βσ.

• For the quasi-resonant modes |µ| = 1, the influence of the forcing is much
more extended inside the domain. In particular, the defect

Σ =∂tv
int,1 +

1

ǫ
e3 ∧ vint,1 − ∆hvint,1

=
∑

µ=±1

∑

kh

(

i
µ

ǫ
+ |kh|2

)

v̂int,1(µ, kh, z)eikh·xheiµ t
ǫ

+
1

ǫ

∑

µ=±1

∑

kh





−v̂int,1
2 (µ, kh, z)

v̂int,1
1 (µ, kh, z)

0



 eikh·xheiµ t
ǫ

does not converge strongly to 0 in L2 norm. It is however expected to have
rapid oscillations, and thus to converge weakly to 0. The standard method
to deal with such a problem consists then in building some corrector which
will be small in L2 norm in contrast with its time derivative which has to
compensate the previous defect.

More precisely we will use the small divisor estimate stated in Appendix B.

For K > 0 arbitrary, denote by δuint,1
K =

∑

l ŵle
−i t

ǫ
λlNl the solution to

∂tδu
int,1
K +

1

ǫ
P(e3 ∧ δuint,1

K ) − ∆hδuint,1
K − ν∂zzδu

int,1
K = −PK(Σ),
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supplemented with the initial condition

δuint,1
K|t=0 = 0.

The notation PK stands for the projection onto the vector space generated
by {Nl, |l| ≤ K}.

In other words, for |l| ≤ K, ŵl is the solution of

∂tŵl + |lh|2ŵl + ν ′|l3|2ŵl = −eiλl
t
ǫ 〈Nl|Σ〉

where ν ′ = π2ν. Direct computations give for lh 6= 0, µ = ±1,

v̂int,1
h (µ, lh, z) = iδ̂3(µ, lh)

lh
|lh|2

,

v̂int,1
3 (µ, lh, z) = δ̂3(µ, lh)z,

where

δ̂3(µ, lh) = iβ(ǫν)
α1

µ(µ, lh)lh · wλµ

(λµ(µ, kh))2
,

with the same notations as in the previous section. We recall that

|λµ(µ, kh)|−2 ≤ C(
√

ǫν + ǫ)−1.

Moreover,

(4.4)

〈

Nl

∣

∣

∣

∣

∣

∣





il1
il2

|lh|2z



 eilh·xh

〉

= i
|lh|3

2π2|l|l3
(−1)l31l3 6=0

〈

Nl

∣

∣

∣

∣

∣

∣





−il2
il1
0



 eilh·xh

〉

=

{

0 if l3 6= 0,

−|lh|
2π

else,

where |l|2 = |lh|2 + (πl3)
2. We thus have

(4.5)

∂tŵl + (|lh|2 + ν ′|l3|2)ŵl

=
1

ǫ

∑

µ=±1

δ̂3(µ, lh)

2π

(

1l3 6=0
(µ − iǫ|lh|2)|lh|

π|l|l3
+

1l3=0

|lh|

)

ei(λl+µ) t
ǫ .

Notice that by truncating the large frequencies in l, we have introduced a

source term in the equation. Precisely, δuint,1
K +vint,1 is a solution of equation

(2.1) with a source term equal to

(Σ − PΣ) + (PΣ − PKΣ).

The term Σ− PΣ belongs to V ⊥
0 by definition of P, and thus for all u ∈ V0,

we have
∫

ω
(Σ − PΣ) · u = 0.
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As for the remainder term PΣ − PKΣ, since the horizontal frequency kh is
bounded, we have, according to formulas (4.4)

(4.6)
‖PΣ − PKΣ‖L∞((0,∞),L2(ω)) ≤ Cβ

√

ν

ǫ
K−3/2,

1√
ν
‖PΣ − PKΣ‖L∞((0,∞),H−1(ω)) ≤ Cβ

1√
ǫ
K−5/2.

The first estimate in (4.6) will be useful when ν is not too large, for instance
ν = O(ǫ). On the other hand, we have, for all u ∈ L2

loc([0,∞),H1(ω) ∩ V0))
∫ t

0

∫

ω
(PΣ − PKΣ) · u ≤ ‖u‖L2((0,t);H1(ω)) ‖PΣ − PKΣ‖L∞((0,∞),H−1(ω))

≤ Cβ
1√
ǫ
K−5/2 ;

√
ν‖u‖L2((0,t);H1(ω)).

Thus, using a slightly modified version of Proposition 4.1, when ν is large,
it is sufficient to take K such that

β√
ǫ
K−5/2 = o(1).

We now apply Lemma 2; notice that all the terms s(µ, l) in PΣ are such
that |µ| = 1, kh 6= 0 ans thus satisfy, with the notations of Lemma 2

‖s‖2
r,K ≤

∑

|l|≤K

∑

µ∈{−1,1}
|l|2(r+2)|s(µ, l)|2

≤ Cβ2 ν

ǫ

∑

|l|≤K

∑

µ∈{−1,1}
|l|2r|σ̂µ(µ, lh)|2

≤ Cβ2 ν

ǫ
K2r+1.

Thus, we get, for all r > 0

‖δuint,1
K ‖Hr(ω) ≤ Cβ(ǫν)

1
2 Kr+ 1

2 .

For further purposes, we have to choose K such that the Hs norm of wint
K

is o
(√

ǫ
ν

)

for some r > 3/2, and such that at least one of the right-hand
sides in (4.6) is o(1) as ǫ, ν → 0. Indeed, the remainder term (P − PK)Σ
will eventually be included in the remainder term η of Proposition 4.1. We
distinguish between the cases when ν is large (say ν ≫ ǫ) and ν is small
(say ν = O(ǫ)), which yield different values for K.
- If ν = O(ǫ), we choose K so that

β

√

ν

ǫ
K−3/2 = β

√

ν

ǫ
(ǫν)1/2Kr+ 1

2

for some r > 3/2, which yields

K = (ǫν)
− 1

2(r+2) .
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With this choice, we have

‖PΣ − PKΣ‖L2 ,

√

ν

ǫ
‖δuint,1

K ‖Hr(ω) ≤ Cβν
1− r+1

2
2(r+2) ǫ

− r+1
2

2(r+2) ;

hence we can take β = O(ν−α0ǫα1) as long as α0 < 5/7 and α1 > 2/7.
Notice that when ν = O(ǫ), hypothesis (2.3) ensures that we can find such
a couple (α0, α1). We then choose r0 > 3/2 such that

1 − r0 + 1
2

2(r0 + 2)
− α0 > 0,

α1 −
r + 1

2

2(r + 2)
> 0,

and we have

(4.7) ‖PΣ − PKΣ‖L2 ,

√

ν

ǫ
‖δuint,1

K ‖Hr0 (ω) = o(1).

- Else, we choose K so that

β
1√
ǫ
K−5/2 = β

√

ν

ǫ
(ǫν)1/2Ks+ 1

2

for some s > 3/2, which yields

K = (ν
√

ǫ)−
1

s+3 .

In this case, the same calculations as above show that we can take β =
O(ν−α0ǫα1) as long as α0 < 5/9 and α1 > 2/9. We emphasize that this
method remains valid when ν = O(ǫ), but gives a more restrictive condition
than the previous one. Moreover, when ν ≥ ǫ, hypothesis (2.3) ensures that
there exists α0 < 5/9 and α1 > 2/9 such that β = O(ν−α0ǫα1).

With α0, α1 fixed, we then choose r0 > 3/2 such that

1 − α0 −
r0 + 1

2

r0 + 3
> 0,

α1 −
r0 + 1

2

2(r0 + 3)
> 0,

and we have

(4.8)
1√
ν
‖PΣ−PKΣ‖L∞((0,∞),H−1(ω)),

√

ν

ǫ
‖δuint,1

K ‖L∞((0,∞),Hr0 (ω)) = o(1).

• Because of the terms vint,1 and δuint,1
K , the horizontal boundary condi-

tions are no longer satisfied at z = 0. Thus, we construct another boundary
layer term, which we denote by δuBL,1, such that

δuBL,1 = B(−vint,1
h|z=0 − δuint,1

K,h|z=0, 0).

We decompose δuBL,1 into δuBL,1 = δũBL,1 + δūBL,1 as in Lemma 3.1; the
term δũBL,1 is due to the modes kh 6= 0, |µ| = 1, and thus depends only on
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vint,1, since |λk| < 1 if kh 6= 0. Notice that there is no term δvsing because
v̂int,1(µ, lh, z) = 0, ŵl = 0 for lh = 0.

According to the estimates (3.11) and Remark 3.2, we have, for all r > 1,

‖δuBL,1
h ‖L2(ω) ≤ C‖vint,1‖L2(ω)

(

ǫν

ǫ + (ǫν)1/2

) 1
4

+ C‖δuint,1
K ‖Hr(ǫν)1/4

≤ C(ǫν)1/8 + Cβν(ǫν)1/4(ν
√

ǫ)
− r+1

2
r0+3 ,

‖δuBL,1
3 ‖L2(ω) ≤ ‖vint,1‖L2(ω)

(

ǫν

ǫ + (ǫν)1/2

)
3
4

+ C‖δuint,1
K ‖Hr+1(ǫν)3/4

≤ C(ǫν)3/8 + Cβν(ǫν)3/4(ν
√

ǫ)
− r+3

2
r0+3 .

Thus, choosing for instance r = r0 − 1/2, we infer that δuBL,1 vanishes in
L2 norm. According to (4.5), there exists a constant C such that

|∂tŵl| ≤
C

|l3|2
√

ν

ǫ
β,

so that δuBL,1 is an approximate solution of equation (2.1), with an error
term of order

√

ν

ǫ
β(ǫν)1/4 ≤ Cǫα′

1− 1
4 ν

3
4
−α′

0

according to hypothesis (2.3); we recall that by assumption, α′
1 > 1/4 and

α′
0 < 7/12, so that the error term is always o(1) in L2.

Furthermore, δuBL,1
h|z=1, δuBL,1

3|z=1 are exponentially small, and thus satisfy

the hypotheses of Proposition 4.1 and Lemma 1 respectively. Moreover,

‖δūBL,1
3|z=0‖L2(ωh) ≤ C

√
ǫν‖δuint,1

K ‖Hr0 + C
√

ǫν‖vint,1‖L2 .

Thus, by definition of the truncation parameter K, δūBL,1
3|z=0 satisfies the

hypotheses of Lemma 1.

We now consider δũBL,1
3|z=0, which is due to the modes µ = ±1, kh 6= 0 in

vint,1; we have

‖δũBL,1
3|z=0‖L2(ωh) ≤ C

√
ǫν

(ǫν)1/4 +
√

ǫ
‖vint,1‖L2 ≤ Cβ(ǫν)3/4.

Hence δũBL,1
3|z=0 does not match the conditions of Lemma 1, and we need

to construct additionnal correctors δvint,1, δ2uint,1
K . We do not go into the

details of the construction, since it is rigorously analogous to the one of vint,1

and δuint,1
K ; for instance, δvint,1 is given by

δvint,1
3 = −(1 − z)δũBL,1

3|z=0,

δvint,1
h = −∇h∆−1

h δũBL,1
3|z=0,
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so that

‖δvint,1‖L2(ω) ≤ Cβ(ǫν)3/4.

Thus a factor (ǫν)1/4 is gained by replacing vint,1 by δvint,1; as a consequence,
the trace at z = 0 of the vertical component of the atypical boundary term
at the next order, namely δ2ũBL,1, is of order

√
ǫν

(ǫν)1/4 +
√

ǫ
‖δvint,1‖L2 = O (βǫν) ,

so that the conditions of Lemma 1 are now met.
Thus, we slightly modify the definition of the function wstop given by

Lemma 1, so that the boundary conditions are now

δ0,h = 0, δ1,h = 0

δ0,3 = −uBL,1
3|z=0 − δūBL,1

3|z=0 − δ2uBL,1
3|z=0, δ1,3 = −ūBL,1

3|z=1 − δuBL,1
3|z=1 − δ2uBL,1

3|z=0,

where we have denoted by δ2uBL,1 the boundary term due to the construc-

tion of the additionnal corrector terms δvint,1 + δ2uint,1
K .

• We then claim that

uapp = uBL,1 + wstop + vint,1 + δuint,1
K + δuBL,1 + δvint,1 + δ2uint,1

K + δ2uBL,1

satisfies the assumptions of Proposition 4.1. We indeed have clearly

uapp,3|z=0 = uapp,3|z=1 = 0

by definition of vint,1, δvint,1 and w. We further have, for all N > 0

‖∂zuapp,h|z=1 − βσ‖L2(ωh) = O((ǫν)N ),

‖uapp,h|z=0‖L2(ωh) = O((ǫν)N ) and ‖∂tuapp,h|z=0‖L2(ωh) = O((ǫν)N ).

We also have for all t ≥ 0

‖uapp(t)‖L2(ω) ≤ C
(

(ǫν)1/8 + β(ǫν)1/2(
√

νǫ)
− 1

2r0+6

)

= o(1).

By definition of the different terms, the evolution equation is approxi-
mately satisfied, up to an error term of order o(

√
ν) in L∞((0,∞),H1(ω)),

and another one of order o(1) in L2((0, T ) × ω).
We therefore apply a variant of Proposition 4.1 and conclude that uapp

has the same asymptotic behaviour as the solution of

(4.9)

∂tu +
1

ǫ
P(e3 ∧ u) − ∆hu − ν∂zzu = 0,

∇ · u = 0,

u|t=0 = 0,

u3|z=0 = 0, uh|z=0 = 0,

u3|z=1 = 0, ∂zuh|z=1 = βσ.

Thus the solution of (4.9) vanishes in L2 norm as ǫ, ν → 0 with (ǫ, ν, β)
satisfying (2.3).
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4.3. Construction of the singular term using,1. We have seen in section
3 that the boundary operator has a very singular behaviour on the modes
(µ, kh, σ, j) with kh = 0 and µσ = 1. In particular it creates unbounded
terms in the whole domain in infinite time (t ∼ 1/ν.) For finite time,
what is observed is a boundary layer of size O(

√
νt), corresponding to the

propagation of boundary data according to the heat equation.

• We thus start by solving exactly the corresponding part of the equation.
We proceed in two steps. We first build some profile vsing,1 satisfying the

boundary conditions

vsing,1 = βσ+(1, 0)z





1
i
0



 exp

(

i
t

ǫ

)

+ βσ−(−1, 0)z





1
−i
0



 exp

(

−i
t

ǫ

)

where the coefficients σ±(±1, 0) are given in terms of σ by (3.9).

The second step is then to determine - using explicit computations - some 2D
corrector ūsing,1 (depending only on t and z) to match the initial condition :

(ūsing,1 + vsing,1)|t=0 = 0

Note that ūsing,1 will be also very large (since β ≫ 1 in general), meaning
that the resonant forcing destabilizes the whole fluid.

Let us first remark that, for the 2D vector field ūsing,1 (depending only
on t and z), (2.1) can be rewritten

∂tū
sing,1 +

1

ǫ
ūsing,1 ∧ e3 − ν∂zzū

sing,1 = 0.

As we further have

ūsing,1
|z=0 = 0, ∂zū

sing,1
|z=1 = 0,

we can decompose ūsing,1 according to the following family

M+
k3

=





sin(π
2 k3z)

i sin(π
2 k3z)
0



 M−
k3

=





sin(π
2 k3z)

−i sin(π
2 k3z)

0



 with k3 ∈ 2Z + 1 .

We obtain the following decomposition for vsing,1 in L2([0, 1])

∑

k3

(

(

2

k3π

)2

(−1)(k3−1)/2βσ+(1, 0)

)

M+
k3

+

(

(

2

k3π

)2

(−1)(k3−1)/2βσ−(−1, 0)

)

M−
k3
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and thus

ūsing,1(t, z) = −β
∑

k3

(

2

k3π

)2

(−1)
k3−1

2 σ+(1, 0)M+
k3

exp(−i
t

ǫ
− νk2

3t)

+

(

2

k3π

)2

(−1)
k3−1

2 σ−(−1, 0)M−
k3

exp(i
t

ǫ
− νk2

3t).

We then check that the vector field

(4.10) using,1 = ūsing,1 + vsing,1

satisfies exactly both the evolution equation (2.1) and the “bad” part of the
boundary conditions.

• We then establish an approximation of “boundary layer” type.
The solution computed in the previous paragraph is exact, but the cor-

responding formula does not give precise informations on its asymptotic
behaviour as ǫ and ν tend to zero. We are thus interested in deriving some
approximation of “boundary layer” type, where the main term does not
depend neither on ǫ, nor on ν.

As mentioned previously, the singular component using,1 of the velocity is
a 2D vector field (depending only on t and z), so that (2.1) can be rewritten

∂tu
sing,1 +

1

ǫ
using,1 ∧ e3 − ν∂zzu

sing,1 = 0.

• As there is no more pressure in the equation, it can be filtered by a
simple change of unknown :

using,1
L =

1

2

〈





1
i
0





∣

∣using,1

〉





1
i
0



 e−i t
ǫ +

1

2

〈





1
−i
0





∣

∣using,1

〉





1
−i
0



 ei t
ǫ

A straightforward computation leads then to

∂tu
sing,1
L − ν∂zzu

sing,1
L = 0,

which is nothing else than the heat equation with small conductivity ν.
It is supplemented with the boundary condition

using
L|z=0 = 0, ∂zu

sing
L|z=1 = βσ+(1, 0)





1
i
0



+ βσ−(−1, 0)z





1
−i
0



 ,

and the initial condition

using
L|t=0

= 0 .

• Standard results on the heat kernel show therefore that the boundary
effects will remain localized (in L2 sense) in a layer of size O(

√
νt) near the

surface.
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Seeking ∂zu
sing,1
L in the form of a self similar profile

∂zu
sing,1
L = ϕ

(

1 − z√
νt

)

we get indeed

−1

2
Xϕ′(X) − ϕ′′(X) = 0,

from which we deduce that

ϕ′(X) = ϕ′(0) exp

(

−1

4
X2

)

,

and

ϕ(X) = −
∫ +∞

X
ϕ′(0) exp

(

−1

4
Y 2

)

dY .

We then have

∂zu
sing,1
L (t, z) =

β
√

2√
π



σ+(1, 0)





1
i
0



+ σ−(−1, 0)z





1
−i
0









∫ +∞

(1−z)√
νt

e−
Y 2

4 dY

∼ βσres

(

1 − z√
νt

)−1

exp

(

−1

4

(

1 − z√
νt

)2
)

and thus using the bottom boundary condition

using,1
L (t, z) =

∫ z

0
∂zu

sing,1
L (t, z′)dz′,

we deduce that using,1
L is exponentially small outside from a layer of size

O(
√

νt).

5. Study of the dissipating part of the motion

This section is dedicated to the rest of the proof of Theorem 2.1. Ac-
cording to the preceding section, there remains to define the term uDirichlet,
which is an approximate solution of (2.1), supplemented with the following
boundary conditions

uDirichlet
h|z=0 = 0, uDirichlet

3|z=0 = 0

∂zu
Dirichlet
h|z=1 = 0, uDirichlet

3|z=1 = 0,

uDirichlet
|t=0 = γ.

This point has already been investigated by several authors, see for in-
stance [2]: the idea is to construct an interior term, denoted by uint, which
satisfies the evolution equation up to error terms which are o(1), and a
boundary layer term, denoted by uBL, which restores the horizontal bound-
ary conditions violated by the interior term. We emphasize that in order
that the equation and the boundary conditions are satisfied up to sufficiently
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small error terms, we need to build some second order terms in both uint

and uBL.
The organization of the section is as follows: in the spirit of the third

section, we first define an operator U , which allows us to construct an interior
term, given arbitrary vertical boundary conditions. Then we explain how
to choose the boundary conditions for the boundary layer term and the
interior term in order to retrieve (2.2). In the last paragraph, we build one
additionnal boundary layer term, and we prove Theorem 2.1 thanks to an
energy estimate.

Throughout this section, we use repeatedly the following norm: if δ ∈
L∞([0,∞) × [0,∞), L2(ωh)) is such that

δ(t, τ, xh) =
∑

|kh|≤N

∑

k3∈Z

δ̂(−λk, kh; t)eikh·xhe−iλkτ ,

then

‖δ(t, ·)‖s :=





∑

|kh|≤N

∑

k3∈Z

|k3|2s
∣

∣

∣
δ̂(−λk, kh; t)

∣

∣

∣

2





1/2

.

5.1. Construction of the operator U . Let δ1,3 and δ0,3 in L∞([0,∞) ×
[0,∞), L2(ωh)) be such that

δi,3(t, τ, xh) =
∑

|kh|≤N

∑

k3∈Z

δ̂i,3(−λk, kh; t)eikh·xhe−iλkτ ,(5.1)

and let γ ∈ V0. In practice, the functions δ1,3 and δ0,3 will not be arbi-
trary, and will be dictated by the expression of boundary layer operator
constructed in the third section. In fact, we will see that δ1,3 = 0, so that
the expression of uint below is simpler, but we have preferred to keep an
arbitrary value for δ1,3 = 0 in order not to anticipate on this result.

We define the operator U by

U(γ; δ0,3, δ1,3) = uint,

where uint is an approximate solution of equation (2.1) and satisfies the
following boundary conditions

uint
3|z=1 =

√
ǫνδ1,3,(5.2)

uint
3|z=0 =

√
ǫνδ0,3,(5.3)

uint
|t=0 = γ + o(1).(5.4)

We emphasize that conditions (5.2)-(5.3) will be satisfied exactly (without
any error term). Of course the above conditions are not sufficient to define
the term uint unequivocally. We merely define here a particular solution of
this system, which is sufficient for our purposes; the construction is very
similar to what has been done in section 4.



32 ANNE-LAURE DALIBARD AND LAURE SAINT-RAYMOND

The explicit construction of uint requires three steps: first, we exhibit a
divergence-free vector field vint,0 which satisfies the vertical boundary con-
ditions (5.2)-(5.3), but not equation (2.1), and then we define a function
δuint,0, which satisfies homogeneous boundary conditions, and such that

(5.5) uint := ūint + δuint,0 + vint,0

is an approximate solution of (2.1), supplemented with the initial condition
(5.4). As usual in this type of problem, we first assume that ūint is the
preponderant term in uint, and thus we begin by deriving an equation for
the corrector term δuint involving ūint. Ultimately, this will allow us to write
an equation for ūint. In the third step, we prove that the function δuint thus
defined is of order O(

√
νǫ) in L2.

• A natural choice for vint,0 is

(5.6)

{

vint,0
3 =

√
ǫν [δ1,3z + δ0,3(1 − z)] ,

vint,0
h =

√
ǫν∇h∆−1

h [δ0,3 − δ1,3] .

(Note that vint,0 is not uniquely determined by (5.2)-(5.3)). We denote by
v̂int,0(µ, kh, t, z) the Fourier coefficient of vint,0, that is

vint,0(t, x) =
∑

µ,kh

v̂int,0(µ, kh, t, z) exp(ikh · xh) exp

(

i
t

ǫ
µ

)

.

Note that the Ekman suction at the bottom has a very important effect
in the energy balance. The order of magnitude of ν

∫

|∇uBL|2 in the Ekman

layer is indeed O(
√

ν
ǫ ), so that the Ekman layer damps the interior motion,

like a friction term. This phenomenon is called Ekman pumping. We
therefore expect that the limit flow of (1.5) in the high rotation limit is
not determined by the formal equations (1.6) and (1.9) but by dissipative
versions of these equations.

• As in the previous section, we seek

ūint =
∑

l∈Z3

cl(t)e
−iλl

t
ǫ Nl,

δuint,0 =
∑

l∈Z3

δcl(t)e
−iλl

t
ǫ Nl,

so that
[

∂t +
1

ǫ
L − ν∂zz − ∆h

]

(

ūint + δuint,0
)

=
∑

l∈Z3

∂t(cl(t) + δcl(t))e
−iλl

t
ǫ N l

+
∑

l∈Z3

(|lh|2 + ν ′|l3|2)(cl(t) + δcl(t))e
−iλl

t
ǫ N l .
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On the other hand,
[

∂t +
1

ǫ
e3 ∧ −ν∂zz − ∆h

]

vint,0

=
∑

µ,kh

[

∂tv̂
int,0(µ, kh, t, z) + |kh|2v̂int,0(µ, kh, t, z)

]

eikh·xheiµ t
ǫ

+
1

ǫ

∑

µ,kh

iµv̂int,0(µ, kh, t, z)eikh·xheiµ t
ǫ

+

√

ν

ǫ

∑

µ,kh

(δ̂1,3 − δ̂0,3)(µ, kh, t)

|kh|2





−ik2

ik1

0



 eikh·xheiµ t
ǫ .

In order that ūint + δuint,0 + vint,0 is an approximate solution of (2.1), we
project both equations on Nl for l ∈ Z3, multiply by exp(iλl

t
ǫ), and identify

each term. We further apply the following rules in order to determine the
equations for δuint,0 and ūint:

• all the terms which do not have fast oscillations and are of order
O(δj,3

√

ν
ǫ ) become source terms in the equation on cl,

• all the terms which are either o(δj,3

√

ν
ǫ ) or oscillating at a frequency

1/ǫ become source terms in the equation on δcl.

We work with a fixed l ∈ Z3. Recall that vint,0 has no purely vertical
component, i.e. v̂int,0(µ, lh, t, z) = 0 if lh = 0. Thanks to formulas (4.4), the
equation on cl reads
(5.7)

∂tcl+|lh|2cl+ν ′|l3|2cl = −
√

ν

ǫ

|lh|
2π|l|2

[

δ̂0,3(−λl, lh, t) − (−1)l3 δ̂1,3(−λl, lh, t)
]

,

supplemented with the initial condition

(5.8) cl(0) = 〈Nl|γ〉

and the equation on δcl is

∂tδcl + (|lh|2 + ν ′|l3|2)δcl(5.9)

= −
∑

µ6=−λl

〈

Nl|(∂tv̂
int,0(µ, lh, t, z) + |lh|2v̂int,0(µ, lh, t, z))eilh·xh

〉

ei(λl+µ) t
ǫ

−
√

ν

ǫ

∑

µ6=−λl

δ̂0,3(µ, lh, t) − (−1)l3 δ̂1,3(µ, lh, t)

2π
×

×
(

1l3 6=0
µ|lh|
π|l|l3

+
1l3=0

|lh|

)

ei(λl+µ) t
ǫ .

For the time being, we do not specify an initial condition for δcl. Indeed, we
shall see that it is convenient to choose another condition than −〈Nl, v

int,0〉,
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in order to use the decay of δ̂j,3(µ, lh, t) with respect to t. This choice will
be precised in paragraph 5.4.

As in the previous section, we truncate the large frequencies in δcl. This
creates an error term in the evolution equation, which is of order

O

(
√

ν

ǫ

1

A3/2

)

L2

,

where A is the truncation parameter, to be chosen later on. We set

δuint,0
A =

∑

lh

∑

|l3|≤A

δclNl.

• We now apply to δuint,0
A the small divisor estimate stated in Lemma 2

in the Appendix with

s(µ, l, t) = −
√

ν

ǫ

δ̂0,3(µ, lh, t) − (−1)l3 δ̂1,3(µ, lh, t)

2π

(

1l3 6=0
µ|lh|
π|l|l3

+
1l3=0

|lh|

)

,

and we merely include the terms

−
√

ǫν
[

δ̂0,3(µ, lh, t) − (−1)l3 δ̂1,3(µ, lh, t)
]

1l3 6=0
|lh|3
π|l|l3

−
√

ǫν
[

∂tδ̂0,3(µ, lh, t) − (−1)l3∂tδ̂1,3(µ, lh, t)
]

1l3 6=0
|lh|

π|l|l3
in the remainder η of Proposition 4.1. We deduce that if r ≤ 2,

‖δuint,0
A (t)‖Hr(ω) ≤ CA1/2√ǫν

∑

j

{‖δj,3(0)‖4 + ‖δj,3(t)‖4}

+ CA1/2√ǫν
∑

j

{

∫ t

0
‖∂sδj,3(s)‖4 ds + sup

s∈[0,t]
‖δj,3(s)‖4

}

+ ‖δuint,0
A|t=0‖Hr(ω).

We now choose A such that
√

ν

ǫ

1

A3/2
= A1/2√ǫν,

i.e. A = ǫ−1/2. We infer that the error term in the evolution equation is of
order ǫ1/4ν1/2 in L∞([0, T ), L2(ω)), and that

‖δuint,0
A ‖L∞([0,T ],H2(ω)) ≤ Cǫ1/4ν1/2

∑

j

sup
t∈[0,T ]

‖δj,3(t)‖4

+ Cǫ1/4ν1/2
∑

j

∫ T

0
‖∂sδj,3(s)‖4 ds

+ ‖δuint,0
A|t=0‖H2(ω).
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5.2. Choice of the boundary conditions for uBL and uint. We now
explain how the boundary conditions are chosen. As before, we work with
kh fixed. Also, since the boundary conditions are all almost-periodic with
respect to the fast time variable t/ǫ, we work with a fixed frequency µ ∈ R.
Note that this decomposition is allowed by the linearity of the equation.

We set
uBL = B(δ0,h, δ1,h),

where the boundary conditions δ0,h, δ1,h are yet to be defined.
In order to match the boundary conditions (2.2) with σ = 0, we must

take uBL and uint such that
(

uBL
h + uint

h

)

|z=0
= o(δ),

∂z

(

uBL
h + uint

h

)

|z=1
= o(δ),

(

uBL
3 + uint

3

)

|z=0
= o(

√
ǫνδ),

(

uBL
3 + uint

3

)

|z=1
= o(

√
ǫνδ),

denoting by δ the order of magnitude of δj , in a sense to be precised later
on.

We now examine each of the boundary conditions independently.

• At z = 0, the horizontal boundary condition yields

(5.10) δ̂0,h(µ, kh, t) + 1µ=−λk
ck(t)

(

n1(k)
n2(k)

)

= 0.

Since kh is fixed, note that for all µ ∈ R, there exists at most one
k3 ∈ Z such that λkh,k3 = −µ, and thus the expression above is
well-defined.

• Let us now tackle the vertical boundary condition at z = 0. Ac-
cording to the third section, the vertical component of uBL at z = 0
depends on δ0,h. Precisely, we recall that

ûBL
3 (µ, kh)|z=0 =

√
ǫν
∑

±

α0
σ

λ± (ik1wλ±,1 + ik2wλ±,2),

(up to exponentially small terms), and

(α0
−, α0

+) = P−1δ̂0,h(µ, kh).

As a consequence, in order that the vertical boundary condition at
z = 0 is approximately satisfied, we choose

(5.11) δ̂0,3 = −
∑

±

α0
±

λ± (ik1wλ±,1 + ik2wλ±,2).

• At z = 1, ∂zu
int
h is identically zero by construction of the operator

U , and thus we infer δ1,h = 0.
• Concerning the vertical component at z = 1, the calculation is the

same as before. Since δ1,h = 0, we deduce that δ1,3 = 0.



36 ANNE-LAURE DALIBARD AND LAURE SAINT-RAYMOND

The above relations (5.10)-(5.11) allow us to write δ0 in terms of ūint. Con-
versely, the equation (5.7) on ūint depends on δ0,3, and thus on δ0,h through
the operator B. In other words, there is a coupling between the boundary
condition at the bottom for uBL, and the equation satisfied by ūint. Since
ūint is the only non-vanishing term in L2 norm, we choose (as is usually
done in the rotating fluids literature) to write an explicit equation for ūint,
and to express uBL in terms of ūint.

5.3. Derivation of the equation for ūint. We now compute the Ekman
pumping term, that is, the right-hand side in the equation satisfied by ck

(see (5.7)). Notice that if k ∈ Z3 and kh 6= 0, then |λk| 6= 1. In other words,
the source term in (5.7) involves only the part ūBL of the boundary layer;
precisely, with the notations of section 3, the decay rate of uBL(t, λk, kh) is

(

λ±
k

)2
= i (−λk ∓ 1) + o(1),

which yields (remember that ℜ(λ±
k ) > 0)

λ±
k =

√

1 ± λk exp
(

∓i
π

4

)

+ o(1).

Moreover,

(α0
−, α0

+) = P−1 [−ck(t)(n1(k), n2(k))]

= −ck(t)(n−(k), n+(k)),

where

(n−(k), n+(k)) := P−1(n1(k), n2(k))

=
1

2
(n1(k) + in2(k), n1(k) − in2(k)) + o(1).

Replacing these expressions in the formula giving δ0,3, we infer

δ̂0,3(−λk, kh, t) = ck(t)
∑

σ∈{−1,1}

nσ(k)

λσ
k

(ik1wλσ ,1 + ik2wλσ ,2).

We deduce that ck satisfies a linear evolution equation with a damping term,
namely

(5.12)
dck

dt
+ |kh|2ck + ν ′|k3|2ck +

√

ν

ǫ
Akck(t) = 0,

where

Ak := 1kh 6=0
|kh|

2π|k|2
∑

±

n±(k)

λ±
k

(ik1wλ±,1 + ik2wλ±,2).

An estimate of ℜ(Ak), where ℜ(x) denotes the real part of a complex
number x, is computed in Remark 5.2 below. Using Duhamel’s formula, we
deduce that

(5.13) |ck(t)| ≤ exp

(

−t

(

|kh|2 + ν ′|k3|2 +

√

ν

ǫ
ℜ(Ak)

))

|〈Nk, γ〉|.

We deduce the following Lemma:
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Lemma 5.1. Assume that γ ∈ V0. Then there exists a unique solution
ūint

L ∈ L∞
loc

(R+, V0) ∩ L2
loc

(R+,H1
h(ω)) of the envelope equation

(5.14)







∂tū
int
L − ∆hūint

L +

√

ν

ǫ
SEkman

[

ūint
L

]

= 0,

ūint
L|t=0 = γ,

where the Ekman pumping term SEkman is defined by

SEkman

[

ūint
L

]

=
∑

k∈Z3

Ak〈Nk, ū
int
L 〉Nk.

Hence, in the rest of the section, we take

(5.15) ck(t) = γ̂k exp

(

−
(

|kh|2 +

√

ν

ǫ
Ak

)

t

)

.

By doing so, we have neglected the vertical viscosity term ν∂2
z .

Remark 5.2. (i) Notice that with the scaling we have chosen for the wind-
stress, there is no Ekman pumping due to the wind. Indeed, the Ekman
pumping term is of order

√
ǫνβ, which vanishes as ǫ, ν → 0 according to

hypotheses (2.3).
(ii) We emphasize that the operator SEkman constructed above depends

on ν and ǫ through the matrix P , the vectors wλ± and the eigenvalues λ±
k .

However, it is useful, for later purposes, to compute the leading order terms
in Ak, which amounts to deriving an equation for the limit of the term ūint

L
as ǫ, ν vanish. Hence we now compute the limit of Ak as ǫ, ν → 0.

Recall that n1(k) and n2(k) are given by (1.8). Thus, at first order,

Ak =
|kh|

2π|k|2
∑

σ∈{−1,1}

n1(k) − iσn2(k)

2λσ
k

(ik1 − σk2) + o(1)

=
|kh|2

8
√

2π2|k|2

[

1 − λk√
1 + λk

(1 − i) +
1 + λk√
1 − λk

(1 + i)

]

+ o(1)

= Rk + iIk + o(1)

where Rk and Ik are real numbers given by

Rk :=
1 − λ2

k

8
√

2π2

(

1 + λk√
1 − λk

+
1 − λk√
1 + λk

)

> 0(5.16)

Ik :=
1 − λ2

k

8
√

2π2

(

1 + λk√
1 − λk

− 1 − λk√
1 + λk

)

.(5.17)

Recalling the definition of λk, we deduce that

Rk ≥ C
|kh|2
|k|2 ,

and thus

ℜ(Ak) ≥ C
|kh|2
|k|2
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for ǫ, ν small enough.

To conclude this paragraph, we now give estimates on the boundary con-
ditions δ0,h, δ0,3 in the norm ‖ · ‖s.

Lemma 5.3. Assume that δ0,h, δ0,3 are given by (5.10)-(5.11). Then the
following estimates hold

‖δ0,h(t)‖s ≤
(

∑

k

|k|2(s+1)|ck(t)|2
)1/2

≤ C‖γ‖Hs+1(ω),

and

‖δ0,3(t)‖s ≤ ‖δ0,h(t)‖s+1 ≤ C‖γ‖Hs+2(ω).

Proof. The bound on δ0,h is easily deduced from inequality (5.13) together
with formula (5.10) and the Cauchy-Schwarz inequality. Concerning the
other bound, let us recall that if µ = −λk, for k ∈ Z3, then the decay rates
λ±(−λk, kh) satisfy

|λ±| ≤ C

( |k3|
|kh|

+ 1

)

.

Plugging this estimate into (5.11) yields the desired inequality. �

5.4. Estimates on the boundary layer and corrector terms. Now
that ūint is rigorously defined by Lemma 5.1, we may define the other terms
vint,0, δuint,0 and uBL,0. We have gathered in this paragraph some esti-
mates which are needed in the proof of Theorem 2.1. Before deriving theses
estimates, let us emphasize that equation (2.1) supplemented with homoge-
neous boundary conditions at z = 0 and z = 1 is a contraction in L2. As
a consequence, it is sufficient to prove the Theorem for arbitrarily smooth
initial data. Thus, without any loss of generality, we assume from now on
that the initial data γ only has a finite number of Fourier modes, that is

γ =
∑

|kh|≤N

∑

|k3|≤K

γ̂kNk,

and we do not keep track of the regularity of γ, since all Hr norms are
controlled by the L2 norm (with constants depending on N and K).

• The boundary layer term of order zero, denoted by uBL, is defined by

uBL,0 = B(δ0,h, 0),

where δ0,h is given by (5.10). Thus we deduce that the decay rates λ±(µ, kh)

in the boundary layer term uBL,0 are all of order one. Consequently, accord-
ing to (3.11), the boundary layer term ūBL,0 satisfies

‖ūBL,0
h (t)‖L2(ω) + (ǫν)−1/2‖ūBL,0

3 (t)‖L2(ω)

≤ C‖δ0,h(t)‖H1(ωh)(ǫν)1/4(5.18)

≤ C‖γ‖L2(ω)(ǫν)1/4.(5.19)
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Moreover, the definition of ck entails that ūBL,0 is an approximate solution
of (2.1), with an error term (due to the fact that ∂tck does not vanish),
which is bounded in L2(ω) by

C(ǫν)1/4
∥

∥∂tū
int
L

∥

∥

L2([0,T ]×ω)

≤ C(ǫν)1/4

(

∑

k

∫ T

0
|γ̂k|2

(

|kh|4 +
ν

ǫ
|Ak|2

)

exp

(

−c

√

ν

ǫ
t

)

dt

)1/2

≤ C(ǫν)1/4

[

1 +

√

ν

ǫ

]1/2

‖γ‖L2(ω)

≤ C((ǫν)1/4 + ν1/2).

Thus we may include the corresponding error term in the function η of
Proposition 4.1.

Notice that the Dirichlet boundary condition at z = 0 also generates a
bounded vertical profile, namely

vsing,0(t, x) := − 1

2π

∑

k3∈Z∗

c(0,0,k3)(t)e
i sign(k3) t

ǫ





sign(k3)
i
0





= − 1

2π

∑

k3∈Z∗

γ̂(0,0,k3)e
i sign(k3) t

ǫ





sign(k3)
i
0





Exactly as in paragraph 4.3, we then define a corrector ūsing,0 and a
function

(5.20) using,0 = ūsing,0 + vsing,0

such that

∂tū
sing,0 +

1

ǫ
e3 ∧ ūsing,0 − ν∂2

z ūsing,0 = 0

ūsing,0
|t=0 = −vsing,0

|t=0 ,

ūsing,0
|z=0 = 0, ∂zū

sing,0
|z=1 = 0.

We have

‖using,0‖L∞([0,∞),L2(ω)) ≤ C‖γ‖L2(ω)

and

‖using,0(t)‖L2(ω)) ≤ C‖γ‖L2(ω)(νt)1/4.

• The term vint,0 is given by (5.6), in which δ1,3 = 0 and δ0,3 is defined in
(5.11). As a consequence, vint,0 satisfies the estimate

||vint,0(t)||L2(ω) ≤ C‖δ0,3(t)‖L2(ωh)(ǫν)1/2

≤ C‖γ‖L2(ω)(ǫν)1/2.(5.21)
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• At last, the term δuint,0 is given by equation (5.9). As stated earlier, we
choose a special solution of (5.9) in order to keep track of the exponential
decay of δ0,3. Indeed, we have, for all k ∈ Z3 \ {0},

δ̂0,3(−λk, kh, t) = iγ̂k exp

(

−
(

|kh|2 +

√

ν

ǫ
Ak

)

t

)

∑

σ∈{−1,1}

nσ(k)

λσ
k

kh · wλσ
k .

Thus we choose for δcl, |l| ≤ A, the special solution constructed in Remark
6.1 in the Appendix. With this choice, we obtain

‖δuint,0
A (t)‖H2 ≤

Cǫ1/4ν1/2







∑

k∈Z3

(1 + |k3|)4
∣

∣

∣

1
|k3|3 −√

ǫν|ℑ(Ak)|
∣

∣

∣

2 |γk|2 exp

(

−2

√

ν

ǫ
ℜ(Ak)t

)







1/2

,

where ℑ(x) denotes the imaginary part of a complex number x. According
to Remark 5.2, ℑ(Ak) = Ik + o(1), and thus, using the explicit formula for
Ik derived in Remark 5.2, ℑ(Ak) = O(1). Moreover, since γ̂k = 0 for k large
enough, we deduce that

1

|k3|3
−

√
ǫν|ℑ(Ak)| ≥

1

2|k3|3
for ǫ, ν small enough and for all k such that γ̂k 6= 0. The above estimate
then becomes

(5.22) ‖δuint,0
A (t)‖H2 ≤ Cǫ1/4ν1/2‖γ‖L2(ω) exp

(

−c

√

ν

ǫ
t

)

.

5.5. Conclusion: proof of Theorem 2.1 when σ = 0. The idea is to use
the construction of the previous paragraphs in order to compute an approx-
imate solution of the evolution equation (2.1), which satisfies the boundary
conditions up to sufficiently small error terms. The order of approxima-
tion required on the boundary condition is quantified by Lemma 1 in the
Appendix, and thus we build interior and boundary layer terms until the
conditions of the Lemma 1 are met.

Let us now explain the construction in detail.
• First, we set

u0 := uint + using,0 + uBL,0,

where uint, using,0 and uBL,0 have been defined in the previous paragraphs.
We have seen that u0 is an approximate solution of the evolution equation
(2.1), with error terms which are all o(1) in L2. We now evaluate the error
on the boundary conditions. Indeed, setting u′ := u − u0, we have proved
that u′ is an approximate solution of (2.1), with some boundary conditions

δ̃0, δ′1, namely

uh|z=0 = δ′0,h, ∂zu
′
h|z=1 = δ′1,h,

u′
3|z=0 = δ′0,3, u′

3|z=1 = δ′0,1.
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Thus we have to estimate γ′ := u′
|t=0, together with the terms δ′0, δ′1.

First, since ūint
|t=0 = γ and using,0

|t=0 = 0, we obtain

(5.23) γ′ = −uBL,0
|t=0 − vint,0

|t=0 − δuint,0
|t=0 ,

where uBL,0
|t=0 , vint,0

|t=0 and δuint,0
|t=0 satisfy the estimates (5.18), (5.21), and (5.22)

respectively. Thus, remembering that γ has a finite number of Fourier
modes, we have

‖γ′‖L2 ≤ C
(

‖γ‖L2(ǫν)1/4 + ‖γ‖L2(ǫν)1/2 + ‖γ‖L2ǫ1/4ν1/2
)

.

Then, by construction of the operators U and B, the horizontal remainder
boundary term at z = 1 is exponentially small: indeed, we have ∂zu

int
h|z=1 =

0, and consequently,

(5.24) δ′1,h = −
∑

µ,kh

∑

σ∈{−1,1}
α0

σ

λσ

√
ǫν

e
− λσ

√
ǫν wλσeikh·xheiµ t

ǫ .

We infer that

‖δ′1,h‖2
0 ≤ C exp

(

− C

K
√

ǫν

)

∑

|kh|≤N

∑

|k3|≤K

|δ̂0,h(−λk, kh, t)|2(5.25)

≤ C‖δ0,h‖2
0 exp

(

− C

K
√

ǫν

)

.

Similarly,

(5.26) δ′1,3 =
∑

µ,kh

∑

σ∈{−1,1}
α0

σ

√
ǫν

λσ
ikh · wλσe

− λσ
√

ǫν eikh·xheiµ t
ǫ ,

and thus

(5.27) ‖δ′1,3‖0 ≤ CK
√

ǫν exp

(

− C

K
√

ǫν

)

‖δ0,h‖2.

The treatment of the vertical boundary condition at z = 0 is easier.
Indeed, since δ1 = 0, we have δ′0,3 = 0, because

(5.28) δ′0,3 = −
∑

µ,kh

∑

σ∈{−1,1}
α1

σ

ǫν

(λσ)2
ikh · wλσe

− λσ
√

ǫν eikh·xheiµ t
ǫ = 0.

There remains to compute δ′0,h; because of the terms δuint,0
A and vint,0, δ′0,h

is the largest term of all. Precisely, we have

δ′0,h(t) = −
[

vint,0
h|z=0(t) + δuint,0

A,h|z=0(t)
]

(5.29)

= −
√

ǫν
∑

µ,kh 6=0

ikh · δ̂0,3(µ, kh, t)

|kh|2
eikh·xheiµ t

ǫ

−
∑

kh

∑

|k3|≤A

δck(t)e
ikh·xhe−iλk

t
ǫ nh(k),(5.30)
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and thus there exists a constant c > 0 such that for all t ≥ 0

‖δ′0,h(t)‖L2 ≤ C
(√

ǫν‖δ0,3(t)‖0 + ‖δuint,0
A (t)‖H1

)

≤ Cǫ1/4ν1/2‖γ‖L2 exp

(

−c

√

ν

ǫ
t

)

.

Now, the remaining boundary terms δ′1,h, δ′1,3, δ
′
0,3 are all of order o(ǫ)

according to (5.25)-(5.28). Notice furthermore that by construction,
∫

ωh

δ′j,3 = 0 for j = 0, 1.

Consequently, δ′1,h, δ′1,3, δ
′
0,3 all match the conditions of the stopping Lemma

1.
• We now have to continue the construction with the “bad” part of the
remaining boundary conditions, i.e. δ′0,h. Let us define the boundary layer
term

δuBL,0 := B(δ′0,h, 0).

According to (3.11),

‖δuBL,0‖L∞([0,∞),L2(ω)) ≤ C(ǫν)1/4‖δ′0,h‖0 ≤ Cǫ1/2ν3/4‖γ‖L2 ,

and δuBL,0 is an approximate solution of equation (2.1) with a o(1) error
term. Moreover, notice that for all t ≥ 0, for all s ≥ 0,

‖δuBL,0
3|z=0(t)‖Hs(ωh) ≤ Cǫ3/4ν‖γ‖L2 exp

(

−c

√

ν

ǫ
t

)

.

We deduce that for all T > 0,

‖δuBL,0
3|z=0‖L2((0,T ),Hs(ωh)) ≤ Cǫ3/4ν‖γ‖L2

( ǫ

ν

)1/4
= o(ǫ).

Thus δuBL,0
3|z=0 satisfies the hypotheses of Lemma 1. Additionnally, δuBL,0

|z=1 is

exponentially small, and thus also satisfies the conditions of Lemma 1.
• We now define the approximate solution uapp by

uapp := uint + ūBL,0 + using,0 + δuBL,0 + wstop,

where wstop is defined by Lemma 1 with the remaining boundary conditions.
By construction, uapp is an approximate solution of the evolution equation
(2.1), with

uapp|t=0 = u|t=0 + o(1),

and uapp satisfies homogeneous boundary conditions at z = 0 and z = 1. By
a simple energy estimate analogous to that of Proposition 4.1, we deduce
that

‖u − uapp‖L∞((0,T ),L2(ω)) → 0 ∀T > 0.

Since all the terms in uapp except ūint
L and using,0 are o(1) in L2 norm,

Theorem 2.1 is proved.
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Remark 5.4. The proof of Theorem 2.1 for σ = 0 is valid for all ranges of
ǫ, ν such that ǫ, ν → 0. In particular, we do not assume that ν = O(ǫ). How-
ever, in the case ν ≫ ǫ, all the modes such that kh 6= 0 in ūint

L are of order

exp(−c
√

ν/ǫt), and vanish exponentially for all t > 0. Thus the effect of the
heterogeneous horizontal modes of the initial data vanishes outside an initial
layer of size

√

ǫ/ν. On the other hand, the modes corresponding to kh = 0
are not damped, and give rise to the singular profile using,0. Eventually, for
t ≫

√

ǫ/ν, we have

u(t) ≈
∑

k3∈Z∗

γ̂(0,0,k3)N(0,0,k3) + using,0.

6. Concluding remarks

The previous study allows to characterize the linear response of the ocean
to some wind forcing, which admits fast time oscillations and may be reso-
nant with the Coriolis force. In addition to the usual Ekman layer, we have
exhibited another - much larger - boundary layer, and some global vertical
profile. Note that these effects do not modify the mean motion (i.e. the L2

asymptotics) when considering moderate times, say for instance t << 1
ν .

The destabilization will appear for longer times. If the forcing is resonant,
the penalization by the Coriolis force has no averaging effect on σres and we
are brought back to the study of a heat equation with small conductivity ν.
The point is therefore to study the long time behaviour of this equation, for
which the vertical profile is a stationary solution, and a global attractor.

6.1. Nonlinear stability of the singular profile vsing. In order to take
into account more physics in our model, the first point is to understand the
nonlinear response of the ocean to the same wind forcing. In other words, we
are interested in the asymptotic behaviour of the full Navier-Stokes-Coriolis
equation (1.5)(2.2) including in particular the nonlinear contribution of the
convection.

In the case of a non-resonant forcing, the asymptotic motion of the fluid
is obtained by some filtering method : there is indeed two time scales, a
rapid time scale at which the fluid oscillates according to the modes of
the linear penalization, and a slow one which characterizes the nonlinear
evolution of the wave envelopes. The boundary effects do not play any role
in the nonlinear process since they are localized in the vicinity of the surface.
They contribute to the envelope equations only by the Ekman pumping. In
the case of a resonant forcing, the boundary effects - which are not expected
to be localized in the same way - could play a different role.
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In a forthcoming paper [5], we investigate in particular the role of the
stationary profile

vsing = βσ+(1, 0)z





1
i
0



 ei t
ǫ + βσ−(−1, 0)z





1
−i
0



 e−i t
ǫ

The first observation is that it is also a stationary solution to the nonlinear
equation (1.5). We indeed check that the convection term

(vsing · ∇)vsing = (vsing
h · ∇h)vsing + vsing

3 ∂zv
sing = 0.

We are then able to prove that vsing is nonlinearly stable in the sense that
solutions to (1.5)-(2.2) with

σ = σ+(1, 0)

(

1
i

)

ei t
ǫ + σ−(−1, 0)

(

1
−i

)

e−i t
ǫ

remain close to vsing in a suitable norm and on a time interval independent
of ǫ, ν.

The difficulty here comes from the fact that we have no uniform a priori
bound on u. The energy estimate on u has indeed a source term - coming
from the surface boundary condition - which is of order O(βν1/2|σ|). The L2

bound on u is therefore exponentially increasing, with a rate depending on ǫ,
ν and β. Instead of a priori estimates, we have thus to use loop estimates,
and to conclude by some Gronwall’s argument.

6.2. Towards a more physically relevant model. The present theory
of the wind-driven circulation of a fluid of uniform density is actually inade-
quate to capture the velocity structure of the oceans. We indeed expect the
wind forcing to modify in depth the circulation. The profile arising from the
resonant part of the forcing and the Ekman pumping are not enough to get
a relevant description of that vertical structure.

We will mention here many phenomena that have been neglected in our
study and which seem to be crucial to obtain realistic models.

• we first need to consider the variations of the Coriolis parame-
ter, keeping at least the β-plane approximation :

Ω = f + βy

where y is the coordinate measuring the latitude. Such a spatial de-
pendence of Ω is necessary to derive Sverdrup’s theory of horizontal
transport, which is still one of the foundations of all theories of the
ocean circulation (see [17] for instance).

From a mathematical point of view, we refer to [4][7] and refer-
ences therein for some preliminary studies on inhomogeneous rotat-
ing fluids.

• the vertical structure of the ocean cicrulation is also related to the
variations of the density ρ, the so-called stratification of the oceans.
The theoretical works of Rhines and Young [18] have brought some
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understanding about geostrophic contours, potential vorticity ho-
mogeneization and their role in shaping the pattern of circulation.
Luyten, Pedlosky and Stommel [13] have then developed a theory for
the full density and velocity structure of the wind-driven circulation
by going beyond the quasi-geostrophic approximation to consider the
important effect of the ventilation of the thermocline which occurs
as oceanic density surfaces rise to intersect the oceanic mixed layer.

However, to our knowledge, there is no mathematical contribution
on that topics, the first difficulty being to determine some suitable
functional framework to deal with the inhomogeneous incompressible
Navier-Stokes equations. We refer to [3] and [12] for more precisions
on the inhomogeneous incompressible Navier-Stokes equations.

• we finally have to take into account the bottom topography which
may have an important contribution to the mean circulation as
proved for instance in [4] or [8].

The crucial point to understand these features from a mathematical point
of view is to get a description of the boundary layer operator which is not
based on the Fourier transform, but on the spectral decomposition of the
Coriolis operator. The Coriolis penalization becomes indeed in the two first
cases a skew-symmetric operator with non-constant coefficients (depending
on Ω and ρ). We therefore have to develop new tools to obtain the asymp-
totic expansions in a more abstract and systematic way.

Appendix A : the stopping condition

We have postponed here the statement and the proof of the stopping
condition since it is just a technical result (based on straightforward com-
putations) which is used in several places (Sections 4 and 5).

Lemma 1 (Stopping condition). Let δ0, δ1 ∈ L∞(R+,H2(ωh)) be two fam-
ilies such that

∫

(δ1,3 − δ0,3)dxh = 0

and
1

ǫ
‖δi‖H1(ωh) → 0, ‖δi‖H3(ωh) → 0 and ‖∂tδi‖H1(ωh) → 0 as ǫ → 0

Then there exists a family w ∈ L∞(R+, L2(Ω)) with ∇ · w = 0 such that

w|z=0 = δ0, w3|z=1 = δ1,3 and ∂zwh|z=1 = δ1,h

and satisfying the following estimates

‖w‖L2(Ω) → 0 and

∥

∥

∥

∥

∂tw +
1

ǫ
Lw − ν∂zzw − ∆hw

∥

∥

∥

∥

L2(Ω)

→ 0 as ǫ → 0.

Proof. Here we have to build a family w ∈ L∞(R+, L2(Ω)) with ∇ · w = 0
such that

w|z=0 = δ0, w3|z=1 = δ1,3 and ∂zwh|z=1 = δ1,h.
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Of course it is not uniquely defined. We just want to obtain one such family
satisfying further suitable continuity estimates.

Given any two-dimensional vector field wh, we get a divergence- free vector
field by setting

w3(xh, z) = w3(xh, 0) −
∫ z

0
(∂1w1 + ∂2w2)(xh, z′)dz′.

In order that the boundary conditions on w3 are satisfied, the only condition
on wh is therefore

∫ 1

0
(∂1w1 + ∂2w2)(xh, z′)dz′ + δ1,3(xh) − δ0,3(xh) = 0 .

We therefore choose

w1(xh, z) = δ0,1(xh) + δ1,1(xh)z + ∂1φ(xh)z(1 − z)2,

w2(xh, z) = δ0,2(xh) + δ1,2(xh)z + ∂2φ(xh)z(1 − z)2,

with

∇h · δ0,h +
1

2
∇h · δ1,h +

1

12
∆hφ + δ1,3 − δ0,3 = 0 .

Standard elliptic estimates give for any s ≥ 0

‖φ‖Hs+1(ωh) ≤ C(‖δ0‖Hs(ωh) + ‖δ1‖Hs(ωh)).

Therefore

‖w‖H2(Ω) ≤ C(‖δ0‖H3(ωh) + ‖δ1‖H3(ωh))

so that, using the assumptions on δ0, δ1,

‖w‖H2(Ω) → 0 as ǫ → 0.

Furthermore, since w is given in terms of δ0, δ1 by linear relations with
constant coefficients,

‖∂tw‖L2(Ω) ≤ C(‖∂tδ0‖H1(ωh) + ‖∂tδ1‖H1(ωh)).

We conclude, using again the assumptions on δ0, δ1 that
∥

∥

∥

∥

∂tw +
1

ǫ
Lw − ν∂zzw − ∆hw

∥

∥

∥

∥

L2(Ω)

→ 0 as ǫ → 0.

�
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Appendix B : the small divisor estimate

We recall here the by-now standard arguments used to obtain some es-
timate for the solution to fast-oscillating linear equation with non-resonant
source terms :

(6.1) ∂tw +
1

ǫ
P(w) − ν∆hw − ν∂2

zzw = Σ

where the horizontal Fourier mode lh is fixed and

Σ(t) = eilh·xh

∑

µ

∑

k3∈Z

µ6=−λk

s(µ, k, t)eiµ t
ǫ Nk.

We further assume that the frequencies µ belong either to {−λl, l3 ∈ Z3},
or to some finite set M . The integer k in the right-hand side above stands
for (lh, k3).

The small divisor estimate is the following:

Lemma 2. Let w be the solution of (6.1), i.e. for all l = (lh, l3) with l3 ∈ Z,

∂twl + (|lh|2 + ν ′|l3|2)wl =
∑

µ6=−λl

s(µ, l, t)ei(µ+λl)
t
ǫ .

Then there exists a constant C such that for all t > 0, r > 0, for all
K > 0, we have

‖PKw(t)‖Hr(ω) ≤ Cǫ
{

‖s|t=0‖r,K exp
(

−(|lh|2 + ν ′l23)t
)

+ ‖s(t)‖r,K

}

+ Cǫ

∫ t

0
‖∂ts(u)‖r,K exp

(

−(|lh|2 + ν ′l23)(t − u)
)

du

+ Cǫ sup
u∈[0,t]

‖s(u)‖r,K

+ ‖PKw|t=0‖Hr(ω),

where the norm ‖ · ‖r,K is defined by

‖s(t)‖2
r,K :=

∑

|l|≤K

∑

k3∈Z

k3 6=l3

|k3|8|l|2r|s(−λk, l, t)|2

+
∑

|l|≤K

∑

µ∈M
µ6=−λl

(

1 + 1|µ|=1|l|4
)

|l|2r|s(µ, l, t)|2.

We recall that the notation PK stands for the projection onto the vector
space generated by Nk for |k| ≤ K.

Proof. For all K > 0, define

wK := PKw =
∑

|k|≤K

wlNl.
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We deduce from Duhamel’s formula that

|wl(t)| ≤ |wl(0)| exp(−(|lh|2 + ν ′l23)t)

+

∣

∣

∣

∣

∣

∣

∫ t

0

∑

µ6=−λl

s(µ, l, u)ei(µ+λl)
s
ǫ exp(−(|lh|2 + ν ′l23)(t − u)) du

∣

∣

∣

∣

∣

∣

.(6.2)

Integrating by parts, we get

∣

∣

∣

∣

∫ t

0
s(µ, l, u)ei(λl+µ)u

ǫ exp(−(|lh|2 + ν ′l23)(t − u)) du

∣

∣

∣

∣

≤ ǫ

|λl + µ| |s(µ, l, t)| + ǫ

|λl + µ| |s(µ, lh, 0)|e−(|lh|2+ν′l23)t

+
ǫ

|λl + µ|

∫ t

0
|(|lh|2 + ν ′|l3|2)|s(µ, l, u)| exp(−(|lh|2 + ν ′l23)(t − u)) du

+
ǫ

|λl + µ|

∫ t

0
|∂us(µ, l, u)| exp(−(|lh|2 + ν ′l23)(t − u)) du.

Plugging this inequality back into (6.2), we deduce that

|wl(t)| ≤ |wl(0)| exp(−(|lh|2 + ν ′l23)t)

+Cǫ
∑

µ6=−λl

|s(µ, l, t)|
|λl + µ|

+Cǫ
∑

µ6=−λl

|s(µ, lh, 0)|
|λl + µ| exp(−(|lh|2 + ν ′l23)t)

+Cǫ

∫ t

0
Fl(u) exp(−(|lh|2 + ν ′l23)(t − u)) du,

where

Fl(u) :=
∑

µ6=−λl

1

|λl + µ| |∂ts(µ, l, u)|

+ (|lh|2 + ν ′|l3|2)
∑

µ6=−λl

1

|λl + µ| |s(µ, l, u)|.

There remains to derive bounds for quantities of the type

∑

µ6=−λl

1

|µ + λl|
|s(µ, l, u)|.
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Remember that either µ = −λk for some k = (lh, k3) ∈ Z3 with k3 6= −l3,
or µ ∈ M , where M is a finite set. Thus





∑

µ6=−λl

1

|µ + λl|
|s(µ, l, u)|





2

≤ 2





∑

k3 6=l3

1

|λl − λk|
|s(−λk, l, u)|





2

+2









∑

µ∈M,
µ6=−λl

1

|µ + λl|
|s(µ, l, u)|









2

≤ C
∑

k3 6=l3

|k3|2
1

|λl − λk|2
|s(−λk, l, u)|2

+C
∑

µ∈M,
µ6=−λl

1

|µ + λl|2
|s(µ, l, u)|2.

Notice that the function l3 7→ λl is monotonous for lh fixed. Hence |λl −λk|
is minimal for k3 = l3 ± 1. Consequently, is is easily checked that for all
l3 ∈ Z,

|λl − λk|−1 ≤ C
|k|3
|lh|2

.

Moreover, if µ ∈ M , then either µ /∈ {0, 1,−1}, and then µ is not an
accumulation point of sp(iL); in this case

|λl − µ|−1 ≤ C,

or µ = 0, and then

|λl|−1 ≤ C
|l|
|l3|

,

or µ ∈ {1,−1}, and then

(6.3) |λl − µ|−1 ≤ C
|l|2
|lh|2

.

Gathering all these results we get

|wl(t)| ≤ |wl(0)| + CǫD0
l (t)

+Cǫ

∫ t

0
D1

l (u) exp

(

−
( |lh|2

2
+ ν ′l23

)

(t − u)

)

du,(6.4)
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where the constant C depends on kh (C = O(|kh|2)) and

D0
l (t) :=





∑

k3

|k3|8|s(−λk, l, 0)|2




1/2

exp
(

−(|lh|2 + ν ′l23)t
)

+
∑

µ∈M,

µ6=−λl

(

1 + 1|µ|=1|l3|2
)

|s(µ, l, 0)| exp
(

−(|lh|2 + ν ′l23)t
)

+





∑

k3

|k3|8|s(−λk, l, t)|2




1/2

+
∑

µ∈M,

µ6=−λl

(

1 + 1|µ|=1|l3|2
)

|s(µ, l, t)|

and

D1
l (u) :=





∑

k3

|k3|8|∂ts(−λk, l, u)|2




1/2

+
∑

j

∑

µ∈M,

µ6=−λl

(

1 + 1|µ|=1|l3|2
)

|∂ts(µ, l, u)|

+ (|lh|2 + ν ′|l3|2)





∑

k3

|k3|8|s(−λk, l, u)|2




1/2

+ (|lh|2 + ν ′|l3|2)
∑

µ∈M,

µ6=−λl

(

1 + 1|µ|=1|l3|2
)

|s(µ, lh, u)|.

The estimate of Lemma 2 follows. �

Remark 6.1. Assume that the Fourier coefficients of s have exponential
decay with respect to time, meaning that for all (µ, l), there exists r0(µ, l) ∈
C, and c(µ, l) ∈ C with nonnegative real part such that

s(µ, l, t) = r0(µ, l) exp(−c(µ, l)t).

Then provided the sequence r0(µ, l) is sufficiently convergent, a special so-
lution of (6.1) can be built, which preserves the exponential decay property.
Indeed, for all l ∈ Z3, set

wl(t) :=
∑

µ6=−λl

r0(µ, l)
exp

(

i(λl + µ) t
ǫ − c(µ, l)t

)

iλl+µ
ǫ − c(µ, l) + |lh|2 + ν|l3|3

.

Then it can be readily checked that w is a solution of (6.1), and moreover

|wl(t)| ≤ ǫ
∑

µ6=−λl

1

|λl + µ − ǫℑ(c(µ, l))| |r0(µ, l)| exp (−ℜ(c(µ, l))t) .
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