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Assume that x ∈ [0, 1) admits its continued fraction expansion

j=1 log a j (x) when the limit exists. Khintchine spectrum dim E ξ is fully studied, where E ξ := {x ∈ [0, 1) : γ(x) = ξ} (ξ ≥ 0) and dim denotes the Hausdorff dimension. In particular, we prove the remarkable fact that the Khintchine spectrum dim E ξ , as function of ξ ∈ [0, +∞), is neither concave nor convex. This is a new phenomenon from the usual point of view of multifractal analysis. Fast Khintchine exponents defined by γ ϕ (x) := lim n→∞ 1 ϕ(n) n j=1 log a j (x) are also studied, where ϕ(n) tends to the infinity faster than n does. Under some regular conditions on ϕ, it is proved that the fast Khintchine spectrum dim({x ∈ [0, 1] : γ ϕ (x) = ξ}) is a constant function. Our method also works for other spectra like the Lyapunov spectrum and the fast Lyapunov spectrum.

Introduction and Statements

The continued fraction of a real number can be generated by the Gauss transformation T : [0, 1) → [0, 1) defined by T (0) := 0, T (x) := 1 x (mod 1), for x ∈ (0, 1) (1.1) in the sense that every irrational number x in [0, 1) can be uniquely expanded as an infinite expansion of the form

x = 1 a 1 (x) + 1 a 2 + . . . + 1 a n (x) + T n (x) = 1 a 1 (x) + 1 a 2 (x) + 1 a 3 (x) + . . . (1.2) 
where a 1 (x) = ⌊1/x⌋ and a n (x) = a 1 (T n-1 (x)) for n ≥ 2 are called partial quotients of x (⌊x⌋ denoting the integral part of x). For simplicity, we will denote the second term in (1.2) by [a 1 , a 2 , • • • , a n + T n (x)] and the third term by [a 1 , a 2 , a 3 , • • • ].

It was known to E. Borel [START_REF] Borel | Les probabilités dénombrables et leurs applications arithmétiques[END_REF] (1909) that for Lebesgue almost all x ∈ [0, 1), there exists a subsequence {a nr (x)} of {a n (x)} such that a nr (x) → ∞. A more explicit result due to Borel-Bernstein (see [START_REF] Bernstein | Über eine Anwendung der Mengenlehre auf ein der Theorie der säkularen Störungen herrührendes Problem[END_REF][START_REF] Borel | Les probabilités dénombrables et leurs applications arithmétiques[END_REF][START_REF] Borel | Sur un problème de probabilités relatif aux fractions continues[END_REF]) is the 0-1 law which hints that for almost all x ∈ [0, 1], a n (x) > ϕ(n) holds for infinitely many n's or finitely many n's according to n≥1 1 ϕ(n) diverges or converges. Then it arose a natural question to quantify the exceptional sets in terms of Hausdorff dimension (denoted by dim).

The first published work on this aspect was due to I. Jarnik [START_REF] Jarnik | Zur metrischen Theorie der diopahantischen Approximationen[END_REF] (1928) who was concerned with the set E of continued fractions with bounded partial quotients and with the sets E 2 , E 3 , • • • , where E α is the set of continued fractions whose partial quotients do not exceed α. He successfully got that the set E is of full Hausdorff dimension, but he didn't find the exact dimensions of E 2 , E 3 , • • • . Later, many works are done to estimate dim E 2 , including those of I. J. Good [START_REF] Good | The fractional dimensional theory of continued fractions[END_REF], R. Bumby [START_REF] Bumby | Hausdorff dimension of sets arising in number theory, Number theory[END_REF], D. Hensley [START_REF] Hensley | The Hausdorff dimensions of some continued fraction Cantor sets[END_REF][START_REF] Hensley | A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets[END_REF], O. Jenkinson and M. Pollicott [START_REF] Jenkinson | Computing the dimension of dynamically defined sets: E 2 and bounded continued fractions[END_REF], R. D. Mauldin, M. Urbański [START_REF] Mauldin | Conformal iterated function systems with applications to the geometry of continued fractions[END_REF] and references therein. Up to now, the optimal approximation on dim E 2 is the result given by O. Jenkinson [START_REF] Jenkinson | On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture[END_REF] (2004):

dim E 2 = 0.531280506277205141624468647368471785493059109018398779 • • •
which is claimed to be accurate to 54 decimal places.

In the present paper, we study the Khintchine exponents and the Lyapunov exponents of continued fractions. For any x ∈ [0, 1) with its continued fraction (1.2), we define its Khintchine exponent γ(x) and Lyapunov exponent λ(x) respectively by γ(x) := lim if the limits exist. The Khintchine exponent of x stands for the average (geometric) growth rate of the partial quotients a n (x), and the Lyapunov exponent which is extensively studied from dynamical system point of view, stands for the expanding rate of T . Their common feature is that both are Birkhoff averages. log a 1 (T j (x)),

λ ϕ (x) := lim n→∞ 1 ϕ(n) log (T n ) ′ (x) = lim n→∞ 1 ϕ(n) n-1 j=0 log T ′ (T j (x)) .
It is well known (see [START_REF] Billingsley | Ergodic theory and information[END_REF][START_REF] Walters | An introduction to ergodic theory[END_REF]) that the transformation T is measure preserving and ergodic with respect to the Gauss measure µ G defined as

dµ G = dx (1 + x) log 2 .
An application of Birkhoff ergodic theorem yields that for Lebesgue almost all x ∈ [0, 1),

γ(x) = ξ 0 = log a 1 (x)dµ G = 1 log 2 ∞ n=1 log n • log 1 + 1 n(n + 2) = 2.6854... λ(x) = λ 0 = log |T ′ (x)|dµ G = π 2 6 log 2 = 2.37314....
Here ξ 0 is called the Khintchine constant and λ 0 the Lyapunov constant. Both constants are relative to the Gauss measure.

For real numbers ξ, β ≥ 0, we are interested in the level sets of Khintchine exponents and Lyapunov exponents:

E ξ := {x ∈ [0, 1) : γ(x) = ξ}, F β := {x ∈ [0, 1) : λ(x) = β}.
We are also interested in the level sets of fast Khintchine exponents and fast Lyapunov exponents: E ξ (ϕ) := {x ∈ [0, 1) : γ ϕ (x) = ξ}, F β (ϕ) := {x ∈ [0, 1) : λ ϕ (x) = β}.

The Khintchine spectrum and the Lyapunov spectrum are the dimensional functions:

t(ξ) := dim E ξ t(ξ) := dim F ξ .
The following two functions

t ϕ (ξ) := dim E ξ (ϕ) tϕ (ξ) := dim F ξ (ϕ)
are called the fast Khintchine spectrum and the fast Lyapunov spectrum relative to ϕ. M. Pollicott and H. Weiss [START_REF] Pollicott | Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation[END_REF] initially studied the level set of F β and obtained some partial results about the function t(ξ). In the present work, we will give a complete study on the Khintchine spectrum and the Lyapunov spectrum. Fast Khintchine spectrum and fast Lyapunov spectrum are considered here for the first time. We shall see that both functions t ϕ (ξ) and tϕ (ξ) are equal.

We start with the statement of our results on fast spectra. In order to state our results on the Khintchine spectrum, let us first introduce some notation. Let D := {(t, q) ∈ R 2 : 2tq > 1}, D 0 := {(t, q) ∈ R 2 : 2tq > 1, 0 ≤ t ≤ 1}.

For (t, q) ∈ D, define

P (t, q) := lim n→∞ 1 n log ∞ ω1=1 • • • ∞ ωn=1 exp   sup x∈[0,1] log n j=1 ω q j ([ω j , • • • , ω n + x]) 2t   .
It will be proved that P (t, q) is an analytic function in D (Proposition 4.6). Moreover, for any ξ ≥ 0, there exists a unique solution (t(ξ), q(ξ))

∈ D 0 to the equation    P (t, q) = qξ, ∂P ∂q (t, q) = ξ.
(Proposition 4.13).

Theorem 1.2. Let ξ 0 = log a 1 (x)dµ G (x). For ξ ≥ 0, the set E ξ is of Hausdorff dimension t(ξ). Furthermore, the dimension function t(ξ) has the following properties: 1) t(ξ 0 ) = 1 and t(+∞) = 1/2;

2) t ′ (ξ) < 0 for all ξ > ξ 0 , t ′ (ξ 0 ) = 0, and t ′ (ξ) > 0 for all ξ < ξ 0 ; 3) t ′ (0+) = +∞ and t ′ (+∞) = 0; 4) t ′′ (ξ 0 ) < 0, but t ′′ (ξ 1 ) > 0 for some ξ 1 > ξ 0 , so t(ξ) is neither convex nor concave.

See Figure 1 for the graph of t(ξ).
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Khintchine spectrum It should be noticed that the above fourth property of t(ξ), i.e. the non-convexity, shows a new phenomenon for the multifractal analysis in our settings.

Let D := {( t, q) : tq > 1/2} D0 := {( t, q) : tq > 1/2, 0 ≤ t ≤ 1}.

For ( t, q) ∈ D, define

P 1 ( t, q) := lim n→∞ 1 n log ∞ ω1=1 • • • ∞ ωn=1 exp sup x∈[0,1] log n j=1 ([ω j , • • • , ω n + x]) 2( t-q) .
In fact, P 1 ( t, q) = P ( tq, 0), thus P 1 ( t, q) is analytic in D. Denote γ 0 := 2 log 1+ √ 5

2 . For any β ∈ (γ 0 , ∞), the system

   P 1 ( t, q) = qβ, ∂P 1 ∂q ( t, q) = β admits a unique solution ( t(β), q(β)) ∈ D0 (Proposition 6.3). Theorem 1.3. Let λ 0 = log |T ′ (x)|dµ G and γ 0 = 2 log 1+ √ 5 
2 . For any β ∈ [γ 0 , ∞), the set F β is of Hausdorff dimension t(β). Furthermore the dimension function t(ξ) has the following properties:

1) t(λ 0 ) = 1 and t(+∞) = 1/2; 2) t′ (β) < 0 for all β > λ 0 , t′ (λ 0 ) = 0, and t′ (β) > 0 for all β < λ 0 ;

3) t′ (γ 0 +) = +∞ and t′ (+∞) = 0; 4) t′′ (λ 0 ) < 0, but t′′ (β 1 ) > 0 for some β 1 > λ 0 , i.e., t(β) is neither convex nor concave.

See Figure 2 for the graph of t(β). 0
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Lyapunov spectrum The last two theorems are concerned with special Birkhoff spectra. In general, let (X, T ) be a dynamical system (T being a map from a metric space X into itself). The Birkhoff average of a function φ : X → R, defined by

φ(x) := lim n→∞ 1 n n-1 j=0 φ(T j (x))
x ∈ X (if the limit exists) is widely studied. From the point of view of multifractal analysis, one is often interested in determining the Hausdorff dimension of the set {x ∈ X : φ(x) = α} for a given α ∈ R. The function

f (α) := dim {x ∈ X : φ(x) = α}
is called the Birkhoff spectrum for the function φ. When X is compact, T and φ are continuous, the Birkhoff spectrum are well studied (see [START_REF] Barreira | Higher-dimensional multifractal analysis[END_REF][START_REF] Fan | On the distribution of long-term average on the symbolic space[END_REF][START_REF] Fan | Recurrence, dimension and entropy[END_REF] and the references therein. See also the book of Y. B. Pesin [START_REF] Pesin | Dimension theory in dynamical systems: contemporary views and applications[END_REF]).

The main tool of our study is the Ruelle-Perron-Frobenius operator with potential function

Φ t,q (x) = t log |T ′ (x)| + q log a 1 (x), Ψ t (x) = t log |T ′ (x)|,
where (t, q) are suitable parameters. The classical way to obtain the spectrum through Ruelle theory usually fixes q and finds T (q) as the solution of P (T (q), q) = 0. (Here P (t, q) is the pressure corresponding to the potential function of two parameters.) By focusing on the curve T (q), one can only get some partial results ( [START_REF] Pollicott | Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation[END_REF]). In the present paper, we look for multifractal information from the whole two dimensional surface defined by the pressure P (t, q) rather than the single curve T (q). This leads us to obtain complete graphs of the Khintchine spectrum and Lyapunov spectrum.

For the Gauss dynamics, there exist several works on pressure functions associated to different potentials. For a detailed study on pressure function associated to one potential function, we refer to the works of D. Mayer [START_REF] Mayer | A zata function related to the continued fraction transformation[END_REF][START_REF] Mayer | Continued fractions and related transformations, Ergodic theory, symbolic dynamics, and hyperbolic spaces[END_REF][START_REF] Mayer | On the thermodynamics formalism for the Gauss map[END_REF], and for pressure functions associated to two potential functions, we refer to the works of M. Pollicott and H. Weiss [START_REF] Pollicott | Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation[END_REF], of P. Walters [START_REF] Walters | Invariant Measures and Equilibrium States for Some Mappings which Expand Distances[END_REF][START_REF] Walters | Convergence of the Ruelle operator for a function satisfying Bowen's condition[END_REF] and of P. Hanus, R. D. Mauldin and M. Urbanski [START_REF] Hanus | Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems[END_REF]. We will use the theory developed in [START_REF] Hanus | Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems[END_REF].

The paper is organized as follows. In Section 2, we collect and establish some basic results that will be used later. Section 3 is devoted to proving the results about the fast Khintchine spectrum and fast Lyapunov spectrum (Theorem 1.1). In Section 4, we present a general Ruelle operator theory developed in [START_REF] Hanus | Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems[END_REF] and then apply it to the Gauss transformation. Based on Section 4, we establish Theorem 1.2 in Section 5. The last section is devoted to the study of Lyapunov spectrum (Theorem 1.3).

The present paper is a part of the second author's Ph. D. thesis.

Preliminary

In this section, we collect some known facts and establish some elementary properties of continued fractions that will be used later. For a wealth of classical results about continued fractions, see the books by J. Cassels [START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF], G. Hardy and E. Wright [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]. The books by P. Billingsley [START_REF] Billingsley | Ergodic theory and information[END_REF], I. Cornfeld, S. Fomin and Ya. Sinai [START_REF] Cornfeld | Ergodic theory[END_REF] contain an excellent introduction to the dynamics of the Gauss transformations and its connection with Diophantine approximation.

Elementary properties of continued fractions. Denote by p

n /q n the usual n-th convergent of continued fraction x = [a 1 (x), a 2 (x), • • • ] ∈ [0, 1) \ Q, defined by p n q n := [a 1 (x), • • • , a n (x)] := 1 a 1 (x) + 1 a 2 (x) + . . . + 1 a n (x)
.

It is known (see [START_REF] Ya | Continued Fractions[END_REF] p.9) that p n , q n can be obtained by the recursive relation:

p -1 = 1, p 0 = 0, p n = a n p n-1 + p n-2 (n ≥ 2), q -1 = 0, q 0 = 1, q n = a n q n-1 + q n-2 (n ≥ 2).
Furthermore, we have

Lemma 2.1 ([28] p.5). Let ε 1 , • • • , ε n ∈ R + . Define inductively Q -1 = 0, Q 0 = 1, Q n (ε 1 , • • • , ε n ) = ε n Q n-1 (ε 1 , • • • , ε n-1 ) + Q n-2 (ε 1 , • • • , ε n-2 ).
(Q n is commonly called a continuant.) Then we have

(i) Q n (ε 1 , • • • , ε n ) = Q n (ε n , • • • , ε 1 ); (ii) q n = Q n (a 1 , • • • , a n ), p n = Q n-1 (a 2 , • • • , a n ).
As consequences, we have the following results.

Lemma 2.2 ([26]

). For any

a 1 , a 2 , • • • , a n , b 1 , • • • , b m ∈ N, let q n = q n (a 1 , • • • , a n ) and p n = p n (a 1 , • • • , a n ). We have (i) p n-1 q n -p n q n-1 = (-1) n ; (ii) q n+m (a 1 , • • • , a n , b 1 , • • • , b m ) = q n (a 1 , • • • , a n )q m (b 1 , • • • , b m ) + q n-1 (a 1 , • • • , a n-1 )p m-1 (b 1 , • • • , b m-1 ); (iii) q n ≥ 2 n-1 2 , n k=1 a k ≤ q n ≤ n k=1 (a k + 1). Lemma 2.3 ([41]). For any a 1 , a 2 , • • • , a n , b ∈ N, b + 1 2 ≤ q n+1 (a 1 , • • • , a j , b, a j+1 , • • • , a n ) q n (a 1 , • • • , a j , a j+1 , • • • , a n ) ≤ b + 1 (∀1 ≤ j < n).
For any a 1 , a 2 , • • • , a n ∈ N, let

I n (a 1 , a 2 , • • • , a n ) = {x ∈ [0, 1) : a 1 (x) = a 1 , a 2 (x) = a 2 , • • • , a n (x) = a n } (2.1)
which is called an n-th order cylinder.

Lemma 2.4 ([28] p.18). For any a 1 , a 2 , • • • , a n ∈ N, the n-th order cylinder

I n (a 1 , a 2 , • • • , a n )
is the interval with the endpoints p n /q n and (p n + p n-1 )/(q n + q n-1 ). As a consequence, the length of

I n (a 1 , • • • , a n ) is equal to I n (a 1 , • • • , a n ) = 1 q n (q n + q n-1 )
.

(2.2)

We will denote I n (x) the n-th order cylinder that contains x, i.e. I n (x) = I n a 1 (x), • • • , a n (x) . Let B(x, r) denotes the ball centered at x with radius r. For any x ∈ I n (a 1 , • • • , a n ), we have the following relationship between the ball

B(x, |I n (a 1 , • • • , a n )|) and I n (a 1 , • • • , a n ), which is called the regular property in [7]. Lemma 2.5 ([7]). Let x = [a 1 , a 2 , • • • ]. We have: (i) if a n = 1, B(x, |I n (x)|) ⊂ 3 j=-1 I n (a 1 , • • • , a n + j); (ii) if a n = 1 and a n-1 = 1, B(x, |I n (x)|) ⊂ 3 j=-1 I n-1 (a 1 , • • • , a n-1 + j); (iii) if a n = 1 and a n-1 = 1, B(x, |I n (x)|) ⊂ I n-2 (a 1 , • • • , a n-2 ).
The Gauss transformation T admits the following Jacobian estimate. Lemma 2.6. There exists a positive number K > 1 such that for all irrational number x in [0, 1), one has

0 < 1 K ≤ sup n≥0 sup y∈In(x) (T n ) ′ (x) (T n ) ′ (y) ≤ K < ∞. Proof. Assume x = [a 1 , • • • , a n , • • • ] ∈ [0, 1) \ Q. For any n ≥ 0 and y ∈ I n (x) = I n (a 1 , • • • , a n ), by the fact that T ′ (x) = -1 x 2 we get n-1 j=0 log T ′ (T j (x)) -log T ′ (T j (y)) = 2 n-1 j=0 log T j (x) -log T j (y) .
Applying the mean-value theorem, we have log

T j (x) -log T j (y) = T j (x) -T j (y) T j (z) ≤ a j+1 q n-j (a j+1 , • • • , a n ) ,
where the assertion follows from the fact that all three points T j (x), T j (y) and T j (z) belong to I n-j (a j+1 , • • • , a n ). By Lemma 2.2, we have

n-1 j=0 log T j (x) -log T j (y) ≤ n-1 j=0 1 q n-j-1 (a j+2 , • • • , a n ) ≤ n-1 j=0 1 2 n-j-2 ≤ 4.
Thus the result is proved with K = e 4 .

The above Jacobian estimate property of T enables us to control the length of

I n (x) by |(T n ) ′ (x)| -1 , through the fact that In(x) |(T n ) ′ (y)|dy = 1.
Lemma 2.7. There exist a positive constant K > 0 such that for all irrational numbers x in [0, 1),

1 K ≤ |I n (x)| |(T n ) ′ (x)| -1 ≤ K.
We remark that from Lemma 2.4 and Lemma 2.7, we have

1 2K q 2 n (x) ≤ (T n ) ′ (x) ≤ Kq 2 n (x)
. So the Lyapunov exponent λ(x) is nothing but the growth rate of q n (x) up to a multiplicative constant 2:

λ(x) = lim n→∞ 2 n log q n (x).
For any irrational number x in [0, 1), let N n (x) := {j ≤ n : a j (x) = 1}. Set

A := x ∈ [0, 1] : lim n→∞ 1 n log q n (x) = γ 0 2 , B := x ∈ [0, 1] : lim n→∞ 1 n n j=1 log a j (x) = 0 , C := x ∈ [0, 1] : lim n→∞ 1 n ♯N n (x) = 0 ,
where ♯ stands for the cardinal of a set. Then we have the following relationship.

Lemma 2.8. With the notations given above, we have

A = B ⊂ C.
Proof. It is clear that A ⊂ C and B ⊂ C. Let us prove A = B. First observe that, by Lemma 2.3, we have

1 n log q n (x) ≥ 1 n j∈Nn(x) log a j (x) + 1 2 + 1 n log q n-♯Nn (1, . . . , 1) ≥ 1 n j∈Nn(x) log a j (x) - 1 n j∈Nn(x) log 2 + 1 n log q n-♯Nn (1, . . . , 1). Assume x ∈ A. Since A ⊂ C, we have - 1 n j∈Nn(x) log 2 + 1 n log q n-♯Nn (1, . . . , 1) -→ 0 + γ 0 2 (n → ∞).

Now by the assumption

x ∈ A, it follows lim n→∞ 1 n n j=1 log a j (x) = 1 n j∈Nn(x)
log a j (x) = 0.

Therefore we have proved A ⊂ B. For the inverse inclusion, notice that

1 n log q n (x) ≤ 1 n j∈Nn(x)
log(a j (x) + 1) + 1 n log q n-♯Nn (1, . . . , 1).

Let x ∈ B. Since B ⊂ C, we have lim n→∞ 1 n log q n-♯Nn (1, . . . , 1) = γ 0 2 .
Therefore by the assumption x ∈ B, we get lim sup

n→∞ 1 n log q n (x) ≤ γ 0 2 .
Thus B ⊂ A.

Exponents γ(x) and λ(x).

In this subsection, we make a quick examination of the Khintchine exponent γ(x) and compare it with the Lyapunov exponent λ(x). Our main concern is the possible values of both exponent functions. A first observation is that for any x ∈ [0, 1), γ(x) ≥ 0 and λ(x)

≥ γ 0 = 2 log √ 5+1
2 . By the Birkhoff ergodic theorem, we know that the Khintchine exponent γ(x) attains the value ξ 0 for almost all points x with respect to the Lebesgue measure. We will show that every positive number is the Khintchine exponent γ(x) of some point x.

Proposition 2.9. For any ξ ≥ 0, there exists a point x 0 ∈ [0, 1) such that γ(x 0 ) = ξ.

Proof. Assume ξ > 0 ( for ξ = 0, we take

x 0 = 1+ √ 5 2
corresponding to a n ≡ 1.) Take an increasing sequence of integers {n k } k≥1 satisfying

n 0 = 1, n k+1 -n k → ∞, and n k n k+1 → 1, as k → ∞.
Let x 0 ∈ (0, 1) be a point whose partial quotients satisfy

e (n k -n k-1 )ξ ≤ a n k ≤ e (n k -n k-1 )ξ + 1; a n = 1 otherwise. Since for n k ≤ n < n k+1 , 1 n k+1 k i=1 log e (ni-ni-1)ξ ≤ 1 n n j=1 log a j ≤ 1 n k k i=1
log(e (ni-ni-1)ξ + 1), we have

γ(x 0 ) = lim n→∞ 1 n n j=1 log a j (x) = ξ.
In the following, we will show that the set E ξ and F λ are never equal. So it is two different problems to study γ(x) and λ(x). However, as we will see, E ξ (φ) = F 2ξ (φ) when φ is faster than n. For the first number, take just the number x 0 constructed in the proof of Proposition 2.9. We claim that

λ(x 0 ) = 2ξ + 2 log √ 5 + 1 2 . (2.3)
In fact, by Lemma 2.3 we have

k j=1 ( a nj + 1 2 )q n k -k (1, • • • , 1) ≤ q n k (a 1 , • • • , a n k ) ≤ k j=1 (a nj + 1)q n k -k (1, • • • , 1).
(2.4) Then by the assumption on n k , we have

λ(x 0 ) = lim n→∞ 2 n log q n (x 0 ) = 2(ξ + log √ 5 + 1 2 ).
Construct now the second number. Fix k ≥ 1. Define

x 1 = [ς 1 , • • • , ς n , • • • ]
where

ς n = k 1, • • • , 1, ⌊e kξ ⌋, • • • , 1, • • • , 1, ⌊e kξ ⌋ kn , ( e (k+1)ξ [e kξ ]
) n .

Notice that there are n small vectors (1,

• • • , 1, ⌊e kξ ⌋) in ς n and the length of ς n is equal to N k := kn + 1. We can prove γ(x 1 ) = ξ, λ(x 1 ) = λ 1, • • • , ⌊e kξ ⌋ + 2ξ - 2 k log⌊e kξ ⌋,
by the same arguments as in proving the similar result for x 0 . It is clear that

λ(x 0 ) = λ(x 1 ) for large k ≥ 1.
It is evident that Proposition 2.9 and the formula (2.3) yield the following result due to M. Pollicott and H. Weiss [START_REF] Pollicott | Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation[END_REF].

Corollary 2.11 ([36]). For any λ ≥ 2 log √ 5+1
2 , there exists a point x 0 ∈ [0, 1) such that λ(x 0 ) = λ.

Pointwise dimension.

We are going to compare the pointwise dimension and the Markov pointwise dimension (corresponding to continued fraction system) of a Borel probability measure.

Let µ be a Borel probability measure on [0, 1). Define the pointwise dimension and the Markov pointwise dimension respectively by

d µ (x) := lim r→0 log µ(B(x, r)) log r , δ µ (x) := lim n→∞ log µ(I n (x)) log |I n (x)| ,
if the limits exist, where B(x, r) is the ball centered at x with radius r.

For two series {u n } n≥0 and {v n } n≥0 , we write u n ≍ v n which means that there exist absolute positive constants c 1 , c 2 such that c 1 v n ≤ u n ≤ c 2 v n for n large enough. Sometimes, we need the following condition at a point x:

µ(B(x, |I n (x)|)) ≍ µ(I n (x)).
(2.5)

We have the following relationship between δ µ (x) and d µ (x).

Lemma 2.12. Let µ be a Borel measure. Proof. (a) If the limit defining d µ (x) exists, then the limit

lim n→+∞ log µ(B(x, |I n (x)|)) log |I n (x)|
exists and equals to d µ (x). Thus by (2.5), the limit defining δ µ (x) also exists and equals to d µ (x). (b) Since λ(x) exists, by Lemma 2.7 we have

lim n→∞ log |I n (x)| log |I n+1 (x)| = lim n→∞ 1 n log |I n (x)|/ 1 n + 1 log |I n+1 (x)| = 1. (2.6)
For any r > 0, there exists an n such that

|I n+1 (x)| ≤ r < |I n (x)|.
Then by Lemma 2.5, we have

I n+1 (x) ⊂ B(x, r) ⊂ I n-2 (x). Thus log µ(I n-2 (x)) log |I n+1 (x)| ≤ log µ(B(x, r)) log r ≤ log µ(I n+1 (x)) log |I n (x)| . (2.7)
Combining (2.6) and (2.7) we get the desired result.

Let us give some measures for which the condition (2.5) is satisfied. These measures will be used in the subsection 5.1. The existence of these measures µ t,q will be discussed in Proposition 4.6 and the subsection 5.1.

Lemma 2.13. Suppose µ t,q is a measure satisfying

µ t,q (I n (x)) ≍ exp(-nP (t, q))|I n (x)| t n j=1 a q j ,
where P (t, q) is a constant. Then (2.5) is satisfied by µ t,q .

P roof. Notice that when a n (x) = 1, µ t,q (I n (x)) ≍ µ t,q (I n-1 (x)). Then in the light of Lemma 2.5, we can show that (2.5) is satisfied by µ t,q .

3. Fast growth rate: proof of Theorem 1.1 3.1. Lower bound. We start with the mass distribution principle (see [START_REF] Falconer | Fractal Geometry, Mathematical Foundations and Application[END_REF], Proposition 4.2), which will be used to estimate the lower bound of the Hausdorff dimension of a set. Next we give a formula for computing the Hausdorff dimension for a class of Cantor sets related to continued fractions. Lemma 3.2. Let {s n } n≥1 be a sequence of positive integers tending to infinity with s n ≥ 3 for all n ≥ 1. Then for any positive number N ≥ 2, we have

dim{x ∈ [0, 1) : s n ≤ a n (x) < N s n ∀ n ≥ 1} = lim inf n→∞ log(s 1 s 2 • • • s n ) 2 log(s 1 s 2 • • • s n ) + log s n+1 .
Proof. Let F be the set in question and s 0 be the lim inf in the statement. We call

J(a 1 , a 2 , • • • , a n ) := Cl an+1≥sn+1 I n+1 (a 1 , • • • , a n , a n+1 )
a basic CF-interval of order n with respect to F (or simply basic interval of order n), where s k ≤ a k < N s k for all 1 ≤ k ≤ n. Here Cl stands for the closure. Then it follows that

F = ∞ n=1 s k ≤a k <N s k ,1≤k≤n J(a 1 , • • • , a n ). (3.1)
By Lemma 2.4, we have

J(a 1 , • • • , a n ) = p n q n , s n+1 p n + p n-1 s n+1 q n + q n-1 or s n+1 p n + p n-1 s n+1 q n + q n-1 , p n q n (3.2)
according to n is even or odd. Then by Lemma 2.4, Lemma 2.2 and the assumption on

a k that s k ≤ a k < N s k for all 1 ≤ k ≤ n, we have 1 2N n 1 s n+1 (s 1 • • • s n ) 2 ≤ J(a 1 , • • • , a n ) = 1 q n (s n+1 q n + q n-1 ) ≤ 1 s n+1 (s 1 • • • s n ) 2 . (3.3) Since s k → ∞ as k → ∞, then lim n→∞ log s 1 + • • • + log s n n = ∞.
This, together with the definition of s 0 , implies that for any s > s 0 , there exists a sequence {n ℓ : ℓ ≥ 1} such that for all ℓ ≥ 1,

(N -1) n ℓ < s n ℓ +1 (s 1 • • • s n ℓ ) 2 s-s 0 2 , n ℓ k=1 s k ≤ s n ℓ +1 (s 1 • • • s n ℓ ) 2 s+s 0 2
.

Then, by (3.1), together with (3.3), we have

H s (F ) ≤ lim inf ℓ→∞ s k ≤a k <N s k ,1≤k≤n ℓ J(a 1 , • • • , a n ℓ ) s ≤ lim inf ℓ→∞ (N -1) n ℓ n ℓ k=1 s k 1 s n ℓ +1 (s 1 • • • s n ℓ ) 2 s ≤ 1. Since s > s 0 is arbitrary, we have dim F ≤ s 0 .
For the lower bound, we define a measure µ such that for any basic CF -interval

J(a 1 , a 2 , • • • , a n ) of order n, µ(J(a 1 , a 2 , • • • , a n )) = n j=1 1 (N -1)s j .
By the Kolmogorov extension theorem, µ can be extended to a probability measure supported on F . In the following, we will check the mass distribution principle with this measure. Fix s < s 0 . By the definition of s 0 and the fact that s k → ∞ (k → ∞) and that N is a constant, there exists an integer n 0 such that for all n ≥ n 0 ,

n k=1 (N -1)s k ≥ s n+1 ( n k=1 N s k ) 2 s . (3.4) We take r 0 = 1 2N n0 1 s n0+1 (s 1 • • • s n0 ) 2 .
For any x ∈ F , there exists an infinite sequence {a

1 , a 2 , • • • } with s k ≤ a k < N s k , ∀k ≥ 1 such that x ∈ J(a 1 , • • • , a n ),
for all n ≥ 1. For any r < r 0 , there exists an integer n ≥ n 0 such that

|J(a 1 , • • • , a n+1 )| ≤ r < |J(a 1 , • • • , a n )|.
We claim that the ball B(x, r) can intersect only one n-th basic interval, which is just J(a 1 , • • • , a n ). We establish this only at the case that n is even, since for the case that n is odd, the argument is similar.

Case (1): s n < a n < N s n -1. The left and right adjacent n-th order basic intervals to

J(a 1 , • • • , a n ) are J(a 1 , • • • , a n -1) and J(a 1 , • • • , a n + 1) respectively.
Then by (3.2) and the condition that s n ≥ 3, the gap between

J(a 1 , • • • , a n ) and J(a 1 , • • • , a n -1) is p n q n - s n+1 (p n -p n-1 ) + p n-1 s n+1 (q n -q n-1 ) + q n-1 = s n+1 -1 q n s n+1 (q n -q n-1 ) + q n-1 ≥ J(a 1 , • • • , a n ) . Hence B(x, r) can not intersect J(a 1 , • • • , a n -1)
. On the other hand, the gap

J(a 1 , • • • , a n ) and J(a 1 , • • • , a n + 1) is p n + p n-1 q n + q n-1 - s n+1 p n + p n-1 s n+1 q n + q n-1 = s n+1 -1 (q n + q n-1 )(s n+1 q n + q n-1 ) ≥ J(a 1 , • • • , a n ) . Hence B(x, r) can not intersect J(a 1 , • • • , a n + 1) either. Case (2): a n = s n . The right adjacent n-th order basic interval to J(a 1 , • • • , a n ) is J(a 1 , • • • , a n + 1
). The same argument as in the case [START_REF] Barreira | Higher-dimensional multifractal analysis[END_REF] shows that B(x, r) can not intersect J(a 1 , • • • , a n + 1). On the other hand, the gap between the left endpoint of

J(a 1 , • • • , a n ) and that of I n-1 (a 1 , • • • , a n-1 ) is p n q n - p n-1 + p n-2 q n-1 + q n-2 = s n -1 (q n-1 + q n-2 )q n ≥ J(a 1 , • • • , a n ) .
It follows that B(x, r) can not intersect any n-th order CF -basic intervals on the left of J(a 1 , • • • , a n ). In general, B(x, r) can intersect no other n-th order CF -basic intervals than

J(a 1 , • • • , a n ). Case (3): a n = N s n -1.
From the case (1), we know that B(x, r) can not intersect any n-th order CF -basic intervals on the left of J(a 1 , • • • , a n ). While for on the right, the gap between the right endpoint of J(a 1 , • • • , a n ) and that of

I n-1 (a 1 , • • • , a n-1 ) is p n-1 q n-1 - s n+1 p n + p n-1 s n+1 q n + q n-1 = s n+1 (s n+1 q n + q n-1 )q n-1 ≥ J(a 1 , • • • , a n ) .
It follows that B(x, r) can not intersect any n-th order CF -basic intervals on the right of J(a 1 , • • • , a n ). In general, B(x, r) can intersect no other n-th order CFbasic intervals than J(a 1 , • • • , a n ). Now we distinguish two cases to estimate the measure of B(x, r).

Case (i). |J(a 1 , • • • , a n+1 )| ≤ r < |I n+1 (a 1 , • • • , a n+1 )|
. By Lemma 2.5 and the fact a n+1 = 1, B(x, r) can intersect at most five (n + 1)-th order basic intervals. As a consequence, by (3.4), we have

µ(B(x, r)) ≤ 5 n+1 k=1 1 (N -1)s k ≤ 5 1 s n+2 (N n+1 s 1 • • • s n+1 ) 2 s . (3.5) Since r > J(a 1 , • • • , a n+1 ) = 1 q n+1 (s n+2 q n+1 + q n ) ≥ 1 2s n+2 (N n+1 s 1 • • • s n+1 ) 2 , it follows that µ(B(x, r)) ≤ 10r s . Case (ii). |I n+1 (a 1 , • • • , a n+1 )| ≤ r < |J(a 1 , • • • , a n )|.
In this case, we have

I n+1 (a 1 , • • • , a n+1 ) = 1 q n+1 (q n+1 + q n ) ≥ 1 2q 2 n+1 ≥ 1 2N 2(n+1) n+1 k=1 s k 2 . So B(x, r) can intersect at most a number 8rN 2(n+1) (s 1 • • • s n+1 ) 2 of (n + 1)-th basic intervals. As a consequence, µ(B(x, r)) ≤ min µ(J(a 1 , • • • , a n )), 8rN 2(n+1) (s 1 • • • s n+1 ) 2 n+1 k=1 1 (N -1)s k ≤ n k=1 1 (N -1)s k min 1, 8rN 2(n+1) (s 1 • • • s n+1 ) 2 1 (N -1)s n+1
.

By (3.4) and the elementary inequality min{a, b} ≤ a 1-s b s which holds for any a, b > 0 and 0 < s < 1, we have

µ(B(x, r)) ≤ 1 s n+1 (N n s 1 • • • s n ) 2 s • 8rN 2(n+1) (s 1 • • • s n+1 ) 2 1 (N -1)s n+1 s ≤ 16N r s .
Combining these two cases, together with mass distribution principle, we have dim F ≥ s 0 .

Let

E ′ = {x ∈ [0, 1) : e ϕ(n)-ϕ(n-1) ≤ a n (x) ≤ 2e ϕ(n)-ϕ(n-1) , ∀n ≥ 1}.
It is evident that E ′ ⊂ E ξ (ϕ). Then applying Lemma 3.2, we have

E ξ (ϕ) ≥ lim inf n→∞ ϕ(n) ϕ(n + 1) + ϕ(n) = 1 b + 1 .
3.2. Upper bound. We first give a lemma which is a little bit more than the upper bound for the case b = 1. Its proof uses a family of Bernoulli measures with an infinite number of states.

Lemma 3.3. If lim n→∞ ϕ(n) n = ∞, then dim E ξ (ϕ) ≤ 1 2 .
Proof. For any t > 1, we introduce a family of Bernoulli measures µ t :

µ t (I n (a 1 , • • • , a n )) = e -nC(t)-t n j=1 log aj (x) (3.6) 
where

C(t) = log ∞ n=1 1 n t . Fix x ∈ E ξ (ϕ) and ǫ > 0. If n is sufficiently large, we have (ξ -ǫ)ϕ(n) < n j=1 log a j (x) < (ξ + ǫ)ϕ(n). (3.7) So E ξ (ϕ) ⊂ ∞ N =1 ∞ n=N E n (ǫ),
where

E n (ǫ) = {x ∈ [0, 1) : (ξ -ǫ)ϕ(n) < n j=1 log a j (x) < (ξ + ǫ)ϕ(n)}.
Now let I(n, ǫ) be the family of all n-th order cylinders

I n (a 1 , • • • , a n ) satisfying (3.7). For each N ≥ 1, we select all those cylinders in ∞ n=N I(n, ǫ) which are maximal (I ∈ ∞ n=N I(n, ǫ) is maximal if there is no other I ′ in ∞ n=N I(n, ǫ) such that I ⊂ I ′ and I = I ′ ). We denote by J (N, ǫ) the set of all maximal cylinders in ∞ n=N I(n, ǫ). It is evident that J (N, ǫ) is a cover of E ξ (ϕ). Let I n (a 1 , • • • , a n ) ∈ J (N, ǫ), we have µ t (I n (a 1 , • • • , a n )) = e -nC(t)-t n j=1 log aj ≥ e -nC(t)-t(ξ+ǫ)ϕ(n) .
On the other hand,

I n (a 1 , • • • , a n ) ≤ e -2 log qn ≤ e -2 n j=1 log aj ≤ e -2(ξ-ǫ)ϕ(n) .
Since lim n→∞ ϕ(n) n = ∞, for each s > t/2 and N large enough, we have

I n (a 1 , • • • , a n ) s ≤ µ t (I n (a 1 , • • • , a n )). This implies dim E ξ (ϕ) ≤ 1/2 = 1 b+1 .
Now we return back to the proof of the upper bound.

Case (i) b = 1. Since (ϕ(n + 1) -ϕ(n)) ↑ ∞, Lemma 3.3 implies immediately dim E ξ (ϕ) ≤ 1
2 . Case (ii) b > 1. By (3.7), for each x ∈ E ξ (ϕ) and n sufficiently large

(ξ -ǫ)ϕ(n + 1) -(ξ + ǫ)ϕ(n) ≤ log a n+1 (x) ≤ (ξ + ǫ)ϕ(n + 1) -(ξ -ǫ)ϕ(n). Take L n+1 = e (ξ-ǫ)ϕ(n+1)-(ξ+ǫ)ϕ(n) , M n+1 = e (ξ+ǫ)ϕ(n+1)-(ξ-ǫ)ϕ(n) . Define F N = {x ∈ [0, 1] : L n ≤ a n (x) ≤ M n , ∀n ≥ N }.
Then we have

E ξ (ϕ) ⊂ ∞ N =1 F N .
We can only estimate the upper bound of dim F 1 . Because F N can be written as a countable union of sets with the same form as F 1 , then by the σ-stability of Hausdorff dimension, we will have dim F N = dim F 1 . We can further assume that

M n ≥ L n + 2.
For any n ≥ 1, define

D n = {(σ 1 , • • • , σ n ) ∈ N n : L k ≤ σ k ≤ M k , 1 ≤ k ≤ n}.
It follows that

F 1 = n≥1 (σ1,••• ,σn)∈Dn J(σ 1 , • • • , σ n ),
where

J(σ 1 , • • • , σ n ) := Cl σ≥Ln+1 I(σ 1 , • • • , σ n , σ)
(called an admissible cylinder of order n). For any n ≥ 1 and s > 0, we have

(σ1,••• ,σn)∈Dn J(σ 1 , • • • , σ n ) s ≤ (σ1,••• ,σn)∈Dn 1 q 2 n L n+1 s ≤ M 1 • • • M n (L 1 • • • L n ) 2 L n+1 s . It follows that dim F 1 ≤ lim inf n→∞ log M 1 + • • • + log M n n k=1 log L k + n+1 k=1 log L k = ξ + ǫ + 2ǫ b-1 (ξ -ǫ)(b + 1) -2ǫ -4ǫ b-1 . Letting ǫ → 0, we get dim E ξ (ϕ) ≤ 1 b + 1 .

Ruelle operator theory

There have been various works on the Ruelle transfer operator for the Gauss dynamics. See D. Mayer [START_REF] Mayer | A zata function related to the continued fraction transformation[END_REF], [START_REF] Mayer | Continued fractions and related transformations, Ergodic theory, symbolic dynamics, and hyperbolic spaces[END_REF], [START_REF] Mayer | On the thermodynamics formalism for the Gauss map[END_REF], O. Jenkinson [START_REF] Jenkinson | On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture[END_REF], O. Jenkinson and M. Pollicott [START_REF] Jenkinson | Computing the dimension of dynamically defined sets: E 2 and bounded continued fractions[END_REF], M. Pollicott and H. Weiss [START_REF] Pollicott | Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation[END_REF], P. Hanus, R. D. Mauldin and M. Urbanski [START_REF] Hanus | Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems[END_REF]. In this section we will present a general Ruelle operator theory for conformal infinite iterated function system which was developed in [START_REF] Hanus | Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems[END_REF] and then apply it to the Gauss dynamics. We will also prove some properties of the pressure function in the case of Gauss dynamics , which will be used later.

Conformal infinite iterated function systems.

In this subsection, we present the conformal infinite iterated function systems which were studied by P. Hanus, R. D. Mauldin and M. Urbanski in [START_REF] Hanus | Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems[END_REF]. See also the book of Mauldin and Urbanski [START_REF] Mauldin | Graph Directed Markov Systems -Geometry and Dynamics of Limit Sets Series[END_REF].

Let X be a non-empty compact connected subset of R d equipped with a metric ρ. Let I be an index set with at least two elements and at most countable elements. An iterated function system S = {φ i : X → X : i ∈ I} is a collection of injective contractions for which there exists 0 < s < 1 such that for each i ∈ I and all x, y ∈ X, ρ(φ i (x), φ i (y)) ≤ sρ(x, y).

(4.1)

Before further discussion, we are willing to give a list of notation.

• I n := {ω : ω = (ω 1 , • • • , ω n ), ω k ∈ I, 1 ≤ k ≤ n}, • I * := ∪ n≥1 I n , • I ∞ := Π ∞ i=1 I, • φ ω := φ ω1 • φ ω2 • • • • • φ ωn , for ω = ω 1 ω 2 • • • ω n ∈ I n , n ≥ 1, • |ω| denote the length of ω ∈ I * ∪ I ∞ , • ω| n = ω 1 ω 2 . . . ω n , if w ≥ n, • [ω| n ] = [ω 1 . . . ω n ] = {x ∈ I ∞ : x 1 = ω 1 , • • • , x n = ω n }, • σ : I ∞ → I ∞ the shift transformation, • φ ′ ω := sup x∈X |φ ′ ω (x)| for ω ∈ I * ,
• C(X) space of continuous functions on X,

• || • || ∞ supremum norm on the Banach space C(X).

For ω ∈ I ∞ , the set

π(ω) = ∞ n=1 φ ω|n (X)
is a singleton. We also denote its only element by π(ω). This thus defines a coding map π : I ∞ → X. The limit set J of the iterated function system is defined by

J := π(I ∞ ).
Denote by ∂X the boundary of X and by Int(X) the interior of X.

We say that the iterated function system S = {φ i } i∈I satisfies the open set condition if there exists a non-empty open set U ⊂ X such that φ i (U ) ⊂ U for each i ∈ I and φ i (U ) ∩ φ j (U ) = ∅ for each pair i, j ∈ I, i = j.

An iterated function system S = {φ i : X → X : i ∈ I} is said to be conformal if the following are satisfied:

(1) the open set condition is satisfied for U = Int(X);

(2) there exists an open connected set V with X ⊂ V ⊂ R d such that all maps φ i , i ∈ I, extend to C 1 conformal diffeomorphisms of V into V ;

(3) there exist h, ℓ > 0 such that for each x ∈ ∂X ⊂ R d , there exists an open cone Con(x, h, ℓ) ⊂ Int(X) with vertex x, central angle of Lebesgue measure h and altitude ℓ;

(4) (Bounded Distortion Property) there exists K ≥ 1 such that |φ ′ ω (y)| ≤ K|φ ′ ω (x)| for every ω ∈ I * and every pair of points x, y ∈ V . The topological pressure function for a conformal iterated function systems S = {φ i : X → X : i ∈ I} is defined as

P(t) := lim n→∞ 1 n log |ω|=n ||φ ′ ω || t .
The system S is said to be regular if there exists t ≥ 0 such that P(t) = 0. Let β > 0. A Hölder family of functions of order β is a family of continuous functions

F = {f (i) : X → C : i ∈ I} such that V β (F ) = sup n≥1 V n (F ) < ∞, where V n (F ) = sup ω∈I n sup x,y∈X {|f (ω1) (φ σ(ω) (x)) -f (ω1) (φ σ(ω) (y))|}e β(n-1) . A family of functions F = {f (i) : X → R, i ∈ I} is said to be strong if i∈I ||e f (i) || ∞ < ∞.
Define the Ruelle operator on C(X) associated to F as

L F (g)(x) := i∈I e f (i) (x) g(φ i (x)).

Denote by L *

F the dual operator of L F . The topological pressure of F is defined by

P (F ) := lim n→∞ 1 n log |ω|=n exp sup x∈X n j=1 f ωj • φ σ j ω (x) .
A measure ν is called F -conformal if the following are satisfied:

(1) ν is supported on J;

(2) for any Borel set A ⊂ X and any ω ∈ I * ,

ν(φ ω (A)) = A exp   n j=1 f (ωj) • φ σ j ω -P (F )|ω|   dν; (3) ν(φ ω (X) ∩ φ τ (X)) = 0 ω, τ ∈ I n , ω = τ, n ≥ 1.
Two functions φ, ϕ ∈ C(X) are said to be cohomologous with respect to the transformation T , if there exists u ∈ C(X) such that ϕ(x) = φ(x) + u(x)u(T (x)).

The following two theorems are due to Hanus, Mauldin and Urbanski [START_REF] Hanus | Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems[END_REF].

Theorem 4.1 ([17]

). For a conformal iterated function system S = {φ i : X → X : i ∈ I} and a strong Hölder family of functions F = {f (i) : X → C : i ∈ I}, there exists a unique F -conformal probability measure ν F on X such that L * F ν F = e P (F ) ν F . There exists a unique shift invariant probability measure μF on I ∞ such that µ F := μF • π -1 is equivalent to ν F with bounded Radon-Nikodym derivative. Furthermore, the Gibbs property is satisfied:

1 C ≤ μF ([ω| n ]) exp n j=1 f (ωj) (π(σ j ω)) -nP (F ) ≤ C. Let Ψ = {ψ (i) : X → R : i ∈ I} and F = {f (i) : X → R : i ∈ I}
be two families of real-valued Hölder functions. We define the amalgamated functions on I ∞ associated to Ψ and F as follows: [START_REF] Hanus | Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems[END_REF], see also [START_REF] Mauldin | Graph Directed Markov Systems -Geometry and Dynamics of Limit Sets Series[END_REF], pp. 43-48). Let Ψ and F be two families of real-valued Hölder functions. Suppose the sets {i ∈ I : sup x (ψ (i) (x)) > 0} and {i ∈ I : sup x (f (i) (x)) > 0} are finite. Then the function (t, q) → P (t, q) = P (tΨ + qF ), is real-analytic with respect to (t, q) ∈ Int(D), where

ψ(ω) := ψ (ω1) (π(σω)), f (ω) := f (ω1) (π(σω)) ∀ω ∈ I ∞ . Theorem 4.2 ([
D = (t, q) : i∈I exp(sup x (tψ (i) (x) + qf (i) (x))) < ∞ .
Furthermore, if tΨ + qF is a strong Hölder family for (t, q) ∈ D and

(| f | + | ψ|)dμ t,q < ∞,
where μt,q := μtΨ+qF is obtained by Theorem 4.1, then ∂P ∂t = ψdμ t,q and ∂P ∂q = f dμ t,q .

If t ψ +q f is not cohomologous to a constant function, then P (t, q) is strictly convex and

H(t, q) :=    ∂ 2 P ∂t 2 ∂ 2 P ∂t∂q ∂ 2 P ∂t∂q ∂ 2 P ∂q 2   
is positive definite.

4.2. Continued fraction dynamical system. We apply the theory in the precedent subsection to the continued fraction dynamical system. Let X = [0, 1] and I = N. The continued fraction dynamical system can be viewed as an iterated function system:

S = ψ i (x) = 1 i + x : i ∈ N .
Recall that the projection mapping π : I ∞ → X is defined by

π(ω) := ∞ n=1 ψ ω|n (X), ∀ω ∈ I ∞ .
Notice that ψ ′ 1 (0) = -1, thus (4.1) is not satisfied. However, this is not a real problem, since we can consider the system of second level maps and replace S by S := {ψ i • ψ j : i, j ∈ N}. In fact, for any x ∈ [0, 1)

(ψ i • ψ j ) ′ (x) = 1 i + 1 j+x ′ = 1 i(j + x) + 1 2 ≤ 1 4 .
In the following, we will collect or prove some facts on the continued fraction dynamical system, which will be useful for applying Theorem 4.1 and 4.2.

Lemma 4.3 ([29]

). The continued fraction dynamical system S is regular and conformal.

For the investigation in the present paper, our problems are tightly connected to the following two families of Hölder functions.

Ψ = {log |ψ ′

i | : i ∈ N} and F = {log i : i ∈ N}. Remark 4.4. We mention that our method used here is also applicable to other potentials than the two special families introduced here.

The families Ψ and F are Hölder families and their amalgamated functions are equal to ψ(ω) = -2 log(ω

1 + π(σω)), f (ω) = -log ω 1 ∀ω ∈ N ∞ .
For our convenience, we will consider the function tΨ -qF instead of tΨ + qF .

Lemma 4.5. Let D := {(t, q) : 2tq > 1}. For any (t, q) ∈ D, we have (i) The family tΨ -qF := {t log |ψ ′ i | + q log i : i ∈ N} is Hölder and strong. (ii) The topological pressure P associated to the potential tΨ -qF can be written as

P (t, q) = lim n→∞ 1 n log ω1,••• ,ωn exp sup x log n j=1 ω q j ([ω j , • • • , ω n + x]) 2t .
Proof. The assertion on the domain D follows from

1 4 t ζ(2t -q) = L tΨ-qF 1 = ∞ i=1 i q (i + x) 2t ≤ ∞ i=1 i q-2t = ζ(2t -q).
where ζ(2tq) is the Riemann zeta function, defined by

ζ(s) := ∞ n=1 1 n s ∀s > 1. (i) For (t, q) ∈ D, write (tΨ -qF ) (i) := t log |ψ ′ i | + q log i. Then i∈I exp (tΨ -qF ) (i) ∞ = ∞ i=1 i q (i + x) 2t ∞ = ∞ i=1 i q-2t = ζ(2t -q) < ∞.
Thus tΨ -qF is strong.

(ii) It suffices to noticed that sup

x n j=1 (t|ψ ′ ωj | + q log ω j ) • ψ σ j ω (x) = sup x log n j=1 ω q j ([ω j , • • • , ω n + x]) 2t .
Denote by L * tΨ-qF the conjugate operator of L tΨ-qF . Applying Theorem 4.1 with the help of Lemma 4.3 and Lemma 4.5, we get Proposition 4.6. For each (t, q) ∈ D, there exists a unique tΨ -qF -conformal probability measure ν t,q on [0, 1] such that L * tΨ-qF ν t,q = e P (t,q) ν t,q , and a unique shift invariant probability measure μt,q on N ∞ such that µ t,q := μt,q • π -1 on [0, 1] is equivalent to ν t,q and

1 C ≤ μt,q ([ω| n ]) exp n j=1 (tΨ -qF ) (ωj ) (π(σ j ω)) -nP (t, q) ≤ C ∀ω ∈ N ∞ .
Lemma 4.7. For the amalgamated functions ψ(ω) = -2 log(ω 1 + π(σω)) and f (ω) =log ω 1 , we have log |T ′ (x)|µ t,q = ψdμ t,q and log a 1 (x)dµ t,q = -f dμ t,q . (4.2)

and t ψq f is not cohomologous to a constant.

Proof. (i). Assertion (4.2) is just a consequence of the facts

-log |T ′ (π(ω))| = ψ(ω), log a 1 (π(ω)) = -f (ω) ∀ω ∈ I ∞ .
Suppose t ψq f was not cohomologous to a constant. Then there would be a bounded function g such that t ψq f = gg • T + C, which implies

lim n→∞ 1 n n-1 j=0 (t ψ -q f )(σ j ω) = lim n→∞ g -g • σ n n + C = C
for all ω ∈ I ∞ . On the other hand, if we take

ω 1 = [1, 1, • • • , ], ω 2 = [2, 2, • • • ] and ω 3 = [3, 3, • • • ], we have lim n→∞ 1 n n-1 j=0 (t ψ -q f )(σ j ω i ) = C i ,
where

C 1 = 2t log( √ 5 -1 2 ), C 2 = 2t log( √ 5 -2 2 )+q log 2, C 3 = 2t log( √ 5 -3 2 )+q log 3.
Thus we get a contradiction.

By Theorem 4.2 and the proof of Lemma 4.5, we know that D = {(t, q) : 2tq > 1} is the analytic area of the pressure P (t, q). Applying Lemma 4.7 and Theorem 4.2, we get more: Proposition 4.8. On D = {(t, q) : 2tq > 1},

(1) P (t, q) is analytic, strictly convex.

(2) P (t, q) is strictly decreasing and strictly convex with respect to t. In other words, ∂P ∂t (t, q) < 0 and ∂ 2 P ∂t 2 (t, q) > 0. Furthermore, ∂P ∂t (t, q) =log |T ′ (x)|dµ t,q . (4.3)

(3) P (t, q) is strictly increasing and strictly convex with respect to q. In other words, ∂P ∂q (t, q) > 0 and ∂ 2 P ∂q 2 (t, q) > 0. Furthermore, ∂P ∂q (t, q) = log a 1 (x)dµ t,q . (4.4) ( 4)

H(t, q) :=    ∂ 2 P ∂t 2 ∂ 2 P ∂t∂q ∂ 2 P ∂t∂q ∂ 2 P ∂q 2    is positive definite.
At the end of this subsection, we would like to quote some results by D. Mayer [START_REF] Mayer | On the thermodynamics formalism for the Gauss map[END_REF] (see also M. Pollicott and H. Weiss [START_REF] Pollicott | Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation[END_REF]). Proposition 4.9 ([34]). Let P (t) := P (t, 0) and µ t := µ t,0 , then P (t) is defined in (1/2, ∞) and we have P (1) = 0 and µ 1 = µ G . Furthermore,

P ′ (t) = -log |T ′ (x)|dµ t (x).
(4.5)

In particular

P ′ (0) = -log |T ′ (x)|dµ G (x) = -λ 0 . (4.6) 
Remark 4.10. Since µ 1,0 = µ 1 = µ G , by (4.4), we have

∂P ∂q (1, 0) = log a 1 (x)dµ G = ξ 0 . (4.7) 
4.3. Further study on P (t, q). We will use the following simple known fact of convex functions.

Fact 4.11. Suppose f is a convex continuously differentiable function on an interval I. Then f ′ (x) is increasing and

f ′ (x) ≤ f (y) -f (x) y -x ≤ f ′ (y)
x, y ∈ I, x < y.

First we give an estimation for the pressure P (t, q) and show some behaviors of P (t, q) when q tends to -∞ and 2t -1 (t being fixed). Proposition 4.12. For (t, q) ∈ D, we have

-t log 4 + log ζ(2t -q) ≤ P (t, q) ≤ log ζ(2t -q). (4.8) 
Consequently, (1) P (0, q) = log ζ(-q), and for any point (t 0 , q 0 ) on the line 2tq = 1, lim (t,q)→(t0,q0)

P (t, q) = ∞;
(2) for fixed t ∈ R,

lim q→2t-1 ∂P ∂q (t, q) = +∞; (4.9) 
(3) for fixed t ∈ R, we have

lim q→-∞ P (t, q) q = 0, lim q→-∞ ∂P ∂q (t, q) = 0. (4.10) Proof. Notice that 1 ωj +1 ≤ [ω j , • • • , ω n + x] ≤ 1 ωj . for x ∈ [0, 1) and 1 ≤ j ≤ n. Thus we have 1 4 nt ∞ ω=1 (ω q-2t ) n ≤ ω1,••• ,ωn n j=1 ω q j [ω j , • • • , ω n + x] 2t ≤ ∞ ω=1 (ω q-2t ) n .
Hence by Lemma 4.5 (ii), we get (4.8). We get (1) immediately from (4.8). Look at [START_REF] Bernstein | Über eine Anwendung der Mengenlehre auf ein der Theorie der säkularen Störungen herrührendes Problem[END_REF]. For all q > q 0 , by the convexity of P (t, q) and Fact 4.11, we have ∂P ∂q (t, q) ≥ P (t, q) -P (t, q 0 ) qq 0 .

Thus lim q→2t-1 ∂P ∂q (t, q) ≥ lim q→2t-1 P (t, q 0 ) -P (t, q) q 0 -q = ∞.
Here we use the fact that lim q→2t-1 P (t, q) = +∞. Hence we get (4.8).

In order to show (3), we consider P (t, q)/q as function of q on (-∞, 2t -1) \ {0}.

Noticed that for fixed t ∈ R, lim q→-∞ ζ(2t -q) = 1. Thus lim q→-∞ log ζ(2t -q) q = 0.
Then the first formula in (4.10) is followed from (4.8). Fix q 0 < 2t -1. Then for all q < q 0 , by the convexity of P (t, q) and Fact 4.11, we have ∂P ∂q (t, q) ≤ P (t, q 0 ) -P (t, q) q 0q .

Thus lim q→-∞ ∂P ∂q (t, q) ≤ lim q→-∞ P (t, q 0 ) -P (t, q) q 0q = 0.

Hence by Proposition 4.8 (3), we get the second formula in (4.10).

4.4.

Properties of (t(ξ), q(ξ)). Recall that ξ 0 = log a 1 (x)µ G and D 0 := {(t, q) : 2tq > 1, 0 ≤ t ≤ 1}.

Proposition 4.13. For any ξ ∈ (0, ∞), the system

   P (t, q) = qξ, ∂P ∂q (t, q) = ξ (4.11) 
admits a unique solution (t(ξ), q(ξ)) ∈ D 0 . For ξ = ξ 0 , the solution is (t(ξ 0 ), q(ξ 0 )) = (1, 0). The function t(ξ) and q(ξ) are analytic.

Proof. Existence and uniqueness of solution (t(ξ), q(ξ)). Recall that P (1, 0) = 0 and P (0, q) = log ζ(-q) (Proposition 4.12). We start with a geometric argument which will followed by a rigorous proof. Consider P (t, q) as a family of function of q with parameter t. It can be seen from the graph (see Figure 3) that for any ξ > 0, there exists a unique t ∈ (0, 1], such that the line ξq is tangent to P (t, •). This t = t(ξ) can be described as the unique point such that inf q<2t(ξ)-1

P (t(ξ), q) -qξ = 0. ( 4.12) 
We denote by q(ξ) the point where the infimum in (4.12) is attained. Then the tangent point is (q(ξ), P (t(ξ), q(ξ))) and the derivative of P (t(ξ), q)qξ (with respect to q) at q(ξ) equals 0, i.e.,

P (t(ξ), q) -qξ ′ | q(ξ) = 0.
Thus we have ∂P ∂q (t(ξ), q(ξ)) = ξ. By (4.12), we also have P (t(ξ), q(ξ))q(ξ)ξ = 0. Therefore (t(ξ), q(ξ)) is a solution of (4.11). The uniqueness of q(ξ) follows by the fact that ∂P ∂q is monotonic with respect to q (Proposition 4.8).

q

P (t, q) t = 1 t = t(ξ) t = 1 2 t = 0 q(ξ) ξ 0 0 ξ Figure 3. Solution of (4.11)
Let us give a rigorous proof. By (4.9), (4.10) and the mean-value theorem, for fixed t ∈ R and any ξ > 0, there exists a q(t, ξ) ∈ (-∞, 2t -1) such that

∂P ∂q t, q(t, ξ) = ξ. (4.13) 
The monotonicity of ∂P ∂q with respect to q implies the uniqueness of q(t, ξ) (Proposition 4.8).

Since P (t, q) is analytic, the implicit q(t, ξ) is analytic with respect to t and ξ. Fix ξ and set W (t) := P t, q(t, ξ)ξq(t, ξ).

Since

W ′ (t) = ∂P ∂t t, q(t, ξ) + ∂P ∂q t, q(t, ξ) ∂q ∂t (t, ξ) -ξ ∂q ∂t (t, ξ) = ∂P ∂t t, q(t, ξ) (by(4.13)) 
< 0 (by Proposition 4.8(2)).

Thus W (t) is strictly decreasing. Since P (0, q) = log ζ(-q) > 0 (q < -1), for ξ > 0 we have W (0) = P 0, q(0, ξ)ξq(0, ξ) > 0.

Since P (1, q) is convex and P (1, 0) = 0, by Fact 4.11 we have

P 1, q(1, ξ) -0 q(1, ξ) -0 ≤ ∂P ∂q 1, q(1, ξ) = ξ, if q(1, ξ) > 0, and 
0 -P 1, q(1, ξ) 0 -q(1, ξ) ≥ ∂P ∂q 1, q(1, ξ) = ξ, if q(1, ξ) < 0.
If q(1, ξ) = 0, we have in fact ξ = ξ 0 and P 1, q(1, ξ) = 0. Hence, in any case we have

P 1, q(1, ξ) -ξq(1, ξ) ≤ 0. (4.14) 
Therefore, W (1) = P 1, q(1, ξ)ξq(1, ξ) ≤ 0.

Thus by the mean-value theorem and the monotonicity of W (t), there exists a unique t = t(ξ) ∈ (0, 1] such that W (t(ξ)) = 0, i.e. P t(ξ), q t(ξ), ξ = ξq t(ξ), ξ .

(

If we write q t(ξ), ξ as q(ξ), both (4.13) and (4.15) show that t(ξ), q(ξ) is the unique solution of (4.11). For ξ = ξ 0 , the assertion in Proposition 4.9 that P (0, 1) = 0 = 0 • ξ 0 and the assertion of Remark 4.10 that ∂P ∂q (1, 0) = ξ 0 imply that (0, 1) is a solution of (4.11). Then the uniqueness of the solution to (4.11) implies t(ξ 0 ), q(ξ 0 ) = (0, 1). Analyticity of t(ξ), q(ξ) . Consider the map

F = F 1 F 2 = P (t, q) -qξ ∂P ∂q (t, q) -ξ .
Then the jacobian of F is equal to

J(F ) =: ∂F1 ∂t ∂F1 ∂q ∂F2 ∂t ∂F1 ∂q = ∂P ∂t ∂P ∂q -ξ ∂ 2 P ∂t∂q ∂ 2 P ∂q 2 . Consequently, det(J(F ))| t=t(ξ),q=q(ξ) = ∂P ∂t • ∂ 2 P ∂q 2 = 0.
Thus by the implicit function theorem, t(ξ) and q(ξ) are analytic. Now let us present some properties on t(ξ). Recall that ξ 0 = ∂P ∂q (1, 0). Proposition 4.14. q(ξ) < 0 for ξ < ξ 0 ; q(ξ 0 ) = 0; q(ξ) > 0 for ξ > ξ 0 .

Proof. Since P (1, q) is convex and P (1, 0) = 0, by Fact 4.11, we have

P (1, q) -0 q -0 ≥ ∂P ∂q (1, 0) = ξ 0 , (q > 0); 0 -P (1, q) 0 -q ≤ ∂P ∂q (1, 0) = ξ 0 , (q < 0).
Hence for all q < 1,

P (1, q) ≥ ξ 0 q. (4.16)
We recall that (t(ξ 0 ), q(ξ 0 )) = (1, 0) is the unique solution of the system (4.11) for ξ = ξ 0 . By the above discussion of the existence of t(ξ), t(ξ) = 1 if and only if ξ = ξ 0 . Now we suppose t ∈ (0, 1). For ξ > ξ 0 , using (4.16), we have P (t, q) > P (1, q) ≥ qξ 0 ≥ qξ (∀q ≤ 0).

Thus q(ξ) > 0. For ξ < ξ 0 , using (4.16), we have P (t, q) > P (1, q) ≥ qξ 0 ≥ qξ (∀q ≥ 0).

Thus q(ξ) < 0.

Proposition 4.15. For ξ ∈ (0, +∞), we have

t ′ (ξ) = q(ξ)
∂P ∂t (t(ξ), q(ξ))

.

(4.17)

Proof. Recall that    P (t(ξ), q(ξ)) = q(ξ)ξ, ∂P ∂q (t(ξ), q(ξ)) = ξ. (4.18)

By taking the derivation with respect to ξ of the first equation in (4.18), we get

t ′ (ξ) ∂P ∂t (t(ξ), q(ξ)) + q ′ (ξ) ∂P ∂q (t(ξ), q(ξ)) = q ′ (ξ)ξ + q(ξ).
Taking into account the second equation in (4.18), we get

t ′ (ξ) ∂P ∂t (t(ξ), q(ξ)) = q(ξ). (4.19) 
Proposition 4.16. We have t ′ (ξ) > 0 for ξ < ξ 0 , t ′ (ξ 0 ) = 0, and t ′ (ξ) < 0 for ξ > ξ 0 . Furthermore,

t(ξ) → 0 (ξ → 0), (4.20) 
t(ξ) → 1/2 (ξ → +∞). (4.21) 
P roof. By Propositions 4.14 and 4.15 and the fact ∂P ∂t > 0, t(ξ) is increasing on (0, ξ 0 ) and decreasing on (ξ 0 , ∞). Then by the analyticity of t(ξ), we can obtain two analytic inverse functions on the two intervals respectively. For the first inverse function, write ξ 1 = ξ 1 (t). Then ξ ′ 1 (t) > 0 and ξ 1 (t) = P (t, q(t)) q(t) = ∂P ∂q (t, q(t)).

(the equations (4.11) are considered as equations on t). By Proposition 4.14, we have q(ξ 1 (t)) < 0 then P (t, q(ξ 1 (t))) < 0. By Proposition 4.12 (1), lim q→2t-1 P (t, q) = ∞. Thus there exists q 0 (t) such that q 0 (t) > q(t) and P (t, q 0 (t)) = 0. Therefore ξ 1 (t) = ∂P ∂q (t, q(t)) < ∂P ∂q (t, q 0 (t)).

Since P (0, q) = log ζ(-q), we have lim t→0 q 0 (t) = ∞. Thus we get lim t→0 ∂P ∂q (t, q 0 (t)) = lim q→-∞ ∂P ∂q (0, q) = 0.

Hence by ξ 1 (t) ≥ 0, we obtain lim t→0 ξ 1 (t) = 0 which implies (4.20). Write ξ 2 = ξ 2 (t) for the second inverse function. Then ξ ′ 2 (t) < 0 and

ξ 2 (t) = P (t, q(t)) q(t) = ∂P ∂q (t, q(t)) > ∂P ∂q (t, 0) → ∞ (t → 1/2).
This implies (4.21). Let us summarize. We have proved that t(ξ) is analytic on (0, ∞), lim ξ→0 t(ξ) = 0 and lim ξ→∞ t(ξ) = 1/2. We have also proved that t(ξ) is increasing on (0, ξ 0 ), decreasing on (ξ 0 , ∞) and t(ξ 0 ) = 1.

Khintchine spectrum

Now we are ready to study the Hausdorff dimensions of the level set

E ξ = {x ∈ [0, 1) : lim n→∞ 1 n n j=1 log a j (x) = ξ}.
Since Q is countable, we need only to consider

{x ∈ [0, 1) \ Q : lim n→∞ 1 n n j=1 log a j (x) = ξ}.
which admits the same Hausdorff dimension with E ξ and is still denoted by E ξ .

5.1. Proof of Theorem 1.2 (1) and ( 2). Let (t, q) ∈ D and µ t,q , μt,q be the measures in Proposition 4.6. For

x ∈ [0, 1) \ Q, let x = [a 1 , • • • , a n , • • • ] and ω = π -1 (x). Then ω = a 1 • • • a n • • • ∈ N N and µ t,q (I n (x)) = µ t,q (I n (a 1 , • • • , a n )) = μt,q ([ω| n ]).
By the Gibbs property of μt,q , μt,q (π([ω| n ])) ≍ exp(-nP (t, q)) n j=1 ω q j (ω j + π(σ j ω)) -2t .

In other words,

µ t,q (I n (x)) ≍ exp(-nP (t, q)) n j=1 a q j [a j , • • • , a n , • • • ] 2t . By Lemma 2.7, |I n (x)| ≍ |(T n ) ′ (x)| -1 = n-1 j=0 |T j (x)| 2 .
Thus we have the following Gibbs property of µ t,q : µ t,q (I n (x)) ≍ exp(-nP (t, q))|I n (x)| t n j=1 a q j .

(5.1)

It follows that

δ µt,q (x) = lim n→∞ log µ t,q (I n (x)) log |I n (x)| = t + lim n→∞ q • 1 n n j=1 log a j -P (t, q) 1 n log |I n (x)|
.

The Gibbs property of μt,q implies that µ t,q is ergodic. Therefore, δ µt,q (x) = t + q log a 1 (x)dµ t,q -P (t, q) log |T ′ (x)|dµ t,q µ t,qa.e..

Using the formula (4.3) and (4.4) in Proposition 4.8, we have δ µt,q (x) = t + q ∂P ∂q (t, q) -P (t, q) ∂P ∂t (t, q) µ t,qa.e..

Moreover, the ergodicity of μt,q also implies that the Lyapunov exponents λ(x) exist for µ t,q almost every x in [0, 1). Thus by (5.1), Lemma 2.12 and Lemma 2.13, we obtain d µt,q (x) = δ µt,q (x) = t + q ∂P ∂q (t, q) -P (t, q) ∂P ∂t (t, q) µ t,qa.e.. (5.3) where C is a constant. When q(ξ) < 0,

∞ n=1 J∈I(n,ξ,ǫ0) |J| t ≤ ∞ n=1 (a1•••an)<e n(ξ+ǫ 0 ) e nP (t,q(ξ)) (a 1 • • • a n ) q(ξ) • |J| t (a 1 • • • a n ) q(ξ) e nP (t,q(ξ)) ≤ C • ∞ n=1
e n(P (t,q(ξ))-(ξ+ǫ0)q(ξ)) • J∈I(n,ξ,ǫ0)

µ t,q(ξ) (J) < ∞.
Hence we get (5.5).

For the special case ξ = 0, we need only to show dim(E 0 ) = 0. This can be induced by the same process. For any t > 0, since lim ξ→0 t(ξ) = 0, there exists ξ > 0 such that 0 < t(ξ) < t. We can also choose ǫ 0 > 0 such that P (t, q(ξ)) -P (t(ξ), q(ξ)) q(ξ) > ǫ 0 .

For n ≥ 1, set

E n 0 (ǫ 0 ) := x ∈ [0, 1) \ Q : 1 n n j=1 log a j (x) < ξ + ǫ 0 .
We have

E 0 ⊂ ∞ N =1 ∞ n=N E n 0 (ǫ 0 ).
By the same calculation, we get dim(E 0 ) ≤ t. Since t can be arbitrary small, we obtain dim(E 0 ) = 0. By the discussion in the preceding subsection, we have proved Theorem 1.2 (1) and (2). 5.2. Proof of Theorem 1.2 (3) and (4). We are going to investigate more properties of the functions q(ξ) and t(ξ). Proposition 5.1. We have

lim ξ→0 q(ξ) = -∞, lim ξ→∞ q(ξ) = 0.
Proof. We prove the first limit by contradiction. Suppose there exists a subsequence ξ δ → 0 such that q(ξ δ ) → M > -∞. Then by (4.20) and Proposition 4.8 (3), we have lim

ξ δ →0 ∂P ∂q (t(ξ δ ), q(ξ δ )) = ∂P ∂q (0, M ) > 0.
This contradicts with ∂P ∂q (t(ξ δ ), q(ξ δ )) = ξ δ → 0.

On the other hand, we know that q(ξ) ≥ 0 when ξ ≥ ξ 0 , and 0 ≤ q(ξ) < 2t(ξ) -1.

Then by (4.21), we have lim ξ→∞ q(ξ) = 0.

Apply this proposition and (4.17), combining (4.9) and (4.10). We get

lim ξ→0 t ′ (ξ) = +∞, lim ξ→∞ t ′ (ξ) = 0.
This is the assertion (3) of Theorem 1.2. Now we will prove the last assertion of Theorem 1.2, i.e., t ′′ (ξ 0 ) < 0 and there exists ξ 1 > ξ 0 such that t ′′ (ξ 1 ) > 0, basing on the following proposition. Proposition 5.2. For ξ ∈ (0, +∞), we have

q ′ (ξ) = 1 -t ′ (ξ) ∂ 2 P ∂t∂q t(ξ), q(ξ) ∂ 2 P ∂q 2 t(ξ), q(ξ) ; (5.6) t ′′ (ξ) = t ′ (ξ) 2 ∂ 2 P ∂t 2 t(ξ), q(ξ) -q ′ (ξ) 2 ∂ 2 P ∂q 2 t(ξ), q(ξ) -∂P ∂t t(ξ), q (ξ) 
.

(5.7)

Proof. Taking derivative of (4.19) with respect to ξ, we get

t ′ (ξ) 2 ∂ 2 P ∂t 2 t(ξ), q(ξ) + q ′ (ξ)t ′ (ξ) ∂ 2 P ∂q∂t t(ξ), q(ξ) + t ′′ (ξ) ∂P ∂t t(ξ), q(ξ) = q ′ (ξ).
(5.8) Taking derivative of the second equation of (4.18) with respect to ξ, we get

t ′ (ξ) ∂ 2 P ∂t∂q t(ξ), q(ξ) + q ′ (ξ) ∂ 2 P ∂q 2 t(ξ), q(ξ) = 1, (5.9) 
which gives immediately (5.6). Subtract (5.9) multiplied by q ′ (ξ) from (5.8), we get (5.7).

We divide the proof of the assertion (4) of Theorem 1.2 into two parts.

P roof of t ′′ (ξ 0 ) < 0. By Proposition 4.8, ∂P ∂t (1, 0) < 0. Since q(ξ 0 ) = 0, by (4.17) we have t ′ (ξ 0 ) = 0. Also by Proposition 4.8, we get 0 < ∂ 2 P ∂t 2 (t(ξ 0 ), q(ξ 0 )) =

∂ 2 P ∂t 2 (1, 0) < +∞, and 0 ≤ ∂ 2 P ∂q 2 (t(ξ 0 ), q(ξ 0 )) = ∂ 2 P ∂q 2 (1, 0) < +∞.
By (5.6) and (5.7), we have

t ′′ (ξ) = t ′ (ξ) 2 ∂ 2 P ∂t 2 (t(ξ), q(ξ)) ∂ 2 P ∂q 2 (t(ξ), q(ξ)) -1 -t ′ (ξ) ∂ 2 P ∂t∂q (t(ξ), q(ξ)) 2 -∂P ∂t (t(ξ), q(ξ)) ∂ 2 P ∂q 2 (t(ξ), q(ξ))
.

(5.10)

Thus by t ′ (ξ 0 ) = 0, we have t ′′ (ξ 0 ) < 0.

P roof of t ′′ (ξ 1 ) > 0. Proposition 5.1 shows lim ξ→∞ q(ξ) = 0 and we know that q(ξ 0 ) = 0. However, q(ξ) is not always equal to 0, so there exists a ξ 1 ∈ [ξ 0 , +∞), such that q ′ (ξ 1 ) < 0. Write

H(t, q) :=    ∂ 2 P ∂t 2 ∂ 2 P ∂t∂q ∂ 2 P ∂t∂q ∂ 2 P ∂q 2   
and add (5.9) multiplied by q ′ (ξ) to (5.8), we get t ′ (ξ), q ′ (ξ) H(t, q) t ′ (ξ), q ′ (ξ) T + ∂P ∂t t(ξ), q(ξ) t ′′ (ξ) = 2q ′ (ξ).

(5.11)

Since H(t, q) is definite positive, ∂P ∂t (t, q) < 0 and q ′ (ξ 1 ) < 0, we have t ′′ (ξ 1 ) > 0. This completes the proof.

Lyapunov spectrum

In this last section, we follow the same procedure as in Section 4 and Section 5 to deduce the Lyapunov spectrum of the Gauss map. Kesseböhmer recently pointed out to us that the Lyapunov spectrum was also studied by M. Kesseböhmer and B. Stratmann [START_REF] Kesseböhmer | A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates[END_REF].

Take

F = Ψ = {log |ψ ′ i | : i ∈ N}. instead of F = {-log i : i ∈ N} and Ψ = {log |ψ ′ i | : i ∈ N}.
Then the strong Hölder family becomes ( tq)Ψ and D should be changed to D := {( t, q) : tq > 1/2}.

Here and in the rest of this section we will use t instead of t to distinguish the present situation from that of Khintchine exponents. What we have done in Section 4 is still useful. Denote by P 1 ( t, q) the pressure P (( tq)Ψ). Then P 1 ( t, q) = P ( tq), with P (•) = P (•, 0), where P (•, •) is the pressure function studied in Section 4. Hence P 1 ( t, q) is analytic and similar equations (4.3) and (4.4) are obtained just with log |T ′ (x)| instead of log a 1 (x).

To determine the Lyapunov spectrum, we begin with the following proposition which take the place of Proposition 4.12. Proposition 6.1. For ( t, q) ∈ D, we have

-( t -q) log 4 + log ζ(2 t -2q) ≤ P 1 ( t, q) ≤ log ζ(2 t -2q).
(6.12)

Consequently, (1) for any point ( t0 , q 0 ) on the line tq = 1/2, lim ( t,q)→( t0,q0) P ( t, q) = ∞;

(2) for fixed t ∈ R,

lim q→ t-1 2 ∂P 1 ∂q ( t, q) = +∞; (3) recalling γ 0 = 2 log 1+ √ 5 2 , for fixed t ∈ R, lim q→-∞ P 1 ( t, q) q = γ 0 , lim q→-∞ ∂P 1 ∂q ( t, q) = γ 0 .
Proof. P 1 ( t, q) is defined as

P 1 ( t, q) := lim n→∞ 1 n log ∞ ω1=1 • • • ∞ ωn=1 exp   sup x∈[0,1] log n j=1 ([ω j , • • • , ω n + x]) 2( t-q)   .
The proofs of (1) and ( 2) are the same as in the proof of Proposition 4.12.

To get (3), we follow another method. Since P 1 ( t, q) = P ( tq), we need only to show lim t→∞ P ′ ( t) = -γ 0 , P ( t) + tγ 0 = o( t) ( t → ∞).

By Proposition 4.9, P ( t) is analytic on (1/2, ∞). Let E := {P ′ ( t) : t > 1/2}, denote by Int(E) and Cl(E) the interior and closure of E. By a result in [START_REF] Jenkinson | Geometric barycentres of invariant measures for circle maps[END_REF], we have However, by the continuity of P ′ , we know that E is an interval. Therefore -γ 0 is the right endpoint of E. Since P ′ ( t) is increasing, we get lim t→∞ P ′ ( t) = -γ 0 .

Let {β n } n≥1 be such that β n < -γ 0 and lim n→∞ β n = -γ 0 . There exist t n ∈ R such that t n → ∞ and P ′ (t n ) = β n . By the variational principle ( [START_REF] Walters | A Variational Principle for the Pressure of Continuous Transformations[END_REF], see also [START_REF] Mayer | On the thermodynamics formalism for the Gauss map[END_REF]), there exists an ergodic measure µ tn such that

P (t n ) = h µt n -t n log |T ′ |(x)dµ tn ,
where h µt n stands for the metric entropy of µ tn . By the compactness of M there exists an invariant measure µ ∞ which is the weak limit of µ tn (more precisely some subsequence of µ tn . But, without loss of generality, we write it as µ tn ). By the semi-continuity of metric entropy, for any ǫ > 0 we have h µt n ≤ h µ∞ + ǫ when t n is large enough. Thus by (6.13),

P (t n ) ≤ h µ∞ + ǫ -t n γ 0 .
We will show that h µ∞ = 0 (see the next lemma), which will imply

P (t n ) ≤ ǫ -t n γ 0 .
However, by the definition of P 1 ( t, q), P ( t) can be written as

P ( t) = lim n→∞ 1 n log ∞ ω1=1 • • • ∞ ωn=1 exp sup x∈[0,1] log n j=1 ([ω j , • • • , ω n + x]) 2 t .
Thus if we just take one term in the summation, we have Hence λ(x) is almost everywhere finite. Recall that [START_REF] Brin | On local entropy, Geometric dynamics[END_REF] h µ∞ = h µ∞ (x)dµ ∞ (x).

P ( t) ≥ lim
Thus it suffices to prove D µ∞ (x) = 0 µ ∞a.e..

That means ([13]

) the upper dimension of µ ∞ is zero, i.e., µ ∞ is supported by a zero-dimensional set. Since λ(x)dµ ∞ (x) = γ 0 and λ(x) ≥ γ 0 for any x, we have for µ ∞ almost everywhere λ(x) = γ 0 . Thus by Birkhoff's theorem, µ ∞ is supported by the following set

x ∈ [0, 1] : lim However, the Hausdorff dimension of (6.15) is nothing but t(0), the special case ξ = 0 discussed in the subsection 5.1., which was proved to be zero. Thus the proof is completed.

Recall that λ 0 = log |T ′ (x)|dµ G . Let D0 := {( t, q) : tq > 1/2, 0 ≤ t ≤ 1}. We have a proposition similar to Proposition 4.13. Proposition 6.3. For any β ∈ (γ 0 , ∞), the system    P 1 ( t, q) = qβ, ∂P 1 ∂q ( t, q) = β (6.16) admits a unique solution ( t(β), q(β)) ∈ D0 . For β = λ 0 , the solution is ( t(λ 0 ), q(λ 0 )) = (1, 0). The functions t(β) and q(β) are analytic.

With the same argument, we can prove that t(β) is the spectrum of Lyapunov exponent. It is analytic, increasing on (γ 0 , λ 0 ] and decreasing on (λ 0 , ∞). It is also neither concave nor convex. In other words, Theorem 1.3 can be similarly proved. We finish the paper by the observation that the Lyapunov spectrum can be stated as follows, which is similar to the classic formula, but with the difference that we have to divide the Legendre transform by β. Proposition 6.4.

t(β) =

P (-q(β)) β q(β) = 1 β inf q {P (-q) -qβ}. (6.17)

Proof. In fact, the family of functions P 1 ( t, q) with parameter t are just right translation of the function P (-q) with the length t. Write the system (6.16) as follows P ( tq) = qβ, dP dq ( tq) = β.

(6.18)

If we denote by µ q , the Gibbs measure with respect to potential qΨ, then by a left translation the system (6.18) can be written as P (-q) = ( t + q)β, dP dq (-q) = β. Thus t = P (-q) β q, dP dq (-q) = β. By using the second equation, we can write q as a function of β, hence we get (6.17).

-1 2 β β t = 0 P (-q) t(β) P (tq) 0 -1 q P 1 (t, q) 

  (T j (x)) ,

  Let ϕ : N → R + . Assume that lim n→∞ ϕ(n) n = ∞. The fast Khintchine exponent and fast Lyapunov exponent of x ∈ [0, 1], relative to ϕ, are respectively defined by γ ϕ (x) := lim

Theorem 1 . 1 .

 11 Suppose (ϕ(n + 1)ϕ(n)) ↑ ∞ and lim n→∞ ϕ(n+1) ϕ(n) := b ≥ 1. Then E ξ (ϕ) = F 2ξ (ϕ)and dim E ξ (ϕ) = 1/(b + 1) for all ξ ≥ 0.

Proposition 2 . 10 .

 210 For any ξ ≥ 0 and λ ≥ 2 log √ 5+1 2 , we have E ξ = F λ . P roof. Given ξ ≥ 0. It suffices to construct two numbers with same Khintchine exponent ξ but different Lyapunov exponents.

  (a) Assume (2.5). If d µ (x) exists then δ µ (x)exists and δ µ (x) = d µ (x). (b) If δ µ (x) and λ(x) both exist, then d µ (x)exists and δ µ (x) = d µ (x).

  Lemma 3.1 ([12]). Let E ⊂ [0, 1) be a Borel set and µ be a measure with µ(E) > 0. Suppose thatlim inf r→0 log µ(B(x, r)) log r ≥ s, ∀x ∈ Ewhere B(x, r) denotes the open ball with center at x and radius r. Then dim E ≥ s.

2 .

 2 Int(E) ⊂log |T ′ (x)|dµ : µ ∈ M ⊂ Cl(E),where M is the set of the invariant measures on [0, 1]. By Birkhoff's theorem, for any µ ∈ M, we haveλ(x)dµ = log |T ′ (x)|dµ.However, we know that λ(x) ≥ γ 0 = 2 log 1+ √ 5 2 . Thus log |T ′ (x)|dµ ≤ -γ 0 ∀µ ∈ M. Then T (θ 0 ) = θ 0 and the Dirac measure µ = δ θ0 is invariant, and log |T ′ (x)|dδ θ0 =log |T ′ (θ 0 )| = -γ 0 .

, 1 +

 1 x]) 2 t = -tγ 0 .Hence we getP ( t) + tγ 0 = o( t) ( t → ∞).Now we are led to show Lemma 6.2. h µ∞ = 0.Proof. Let h µ∞ (x) be the local entropy of µ ∞ at x which is defined byh µ∞ (x) = lim n→∞ log µ ∞ (I n (x)) n ,if the limit exists. Let D µ∞ (x) be the lower local dimension of µ ∞ at x which is defined byD µ∞ (x) := lim inf r→0 log µ ∞ (B(x, r)) log r .By Shannon-McMillan-Breiman theorem, h µ∞ (x) exists µ ∞ -almost everywhere. It is also known that λ(x) exists almost everywhere (by Birkhoff's theorem). So, by the definitions, we haveh µ∞ (x) = D µ∞ (x)λ(x) µ ∞a.e.. By Birkhoff's theorem and (4.5), λ(x)dµ ∞ (x) = log |T ′ |(x)dµ ∞ (x) = lim n→∞ log |T ′ |(x)dµ tn =lim n→∞ P ′ (t n ) = γ 0 < ∞.

log

  |T ′ (T j x)| = γ 0 . (6.14)Thus we need only to show that the Hausdorff dimension of this set is zero.

Figure 4 .

 4 Figure 4. Solution of (6.16)

Figure 5 .

 5 Figure 5. The other way to see t(β)

For ξ ∈ (0, ∞), choose (t, q) = (t(ξ), q(ξ)) ∈ D 0 be the unique solution of (4.11). Then (5.3) gives d µ t(ξ),q(ξ) (x) = t(ξ) µ t,qa.e.. By the ergodicity of μt(ξ),q(ξ) and (4.4), we have for µ t(ξ),q(ξ) almost every x,

(5.4)

In the following we will show that

Then it will imply that dim(E ξ ) = t(ξ) for any ξ > 0. For any t > t(ξ), take an ǫ 0 > 0 such that 0 < ǫ 0 < P (t(ξ), q(ξ)) -P (t, q(ξ)) q(ξ) if q(ξ) > 0, and 0 < ǫ 0 < P (t, q(ξ)) -P (t(ξ), q(ξ)) q(ξ) if q(ξ) < 0.

(For the special case q(ξ) = 0, i.e., ξ = ξ 0 , we have dim E ξ = 1 which is a wellknown result). Such an ǫ 0 exists, for P (t, q) is strictly decreasing with respect to t. For all n ≥ 1, set

Then we have

Let I(n, ξ, ǫ 0 ) be the collection of all n-th order cylinders

Hence {J : J ∈ I(n, ξ, ǫ 0 ), n ≥ 1} is a cover of E ξ . When q(ξ) > 0, by (5.1), we have

e nP (t,q(ξ))

e n(P (t,q(ξ))-(ξ-ǫ0)q(ξ)) • J∈I(n,ξ,ǫ0) µ t,q(ξ) (J) < ∞