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ON KHINTCHINE EXPONENTS AND LYAPUNOV EXPONENTS

OF CONTINUED FRACTIONS

AI-HUA FAN, LING-MIN LIAO, BAO-WEI WANG, AND JUN WU

Abstract. Assume that x ∈ [0, 1) admits its continued fraction expansion
x = [a1(x), a2(x), · · · ]. The Khintchine exponent γ(x) of x is defined by

γ(x) := lim
n→∞

1
n

∑n
j=1 log aj(x) when the limit exists. Khintchine spectrum

dim Eξ is fully studied, where Eξ := {x ∈ [0, 1) : γ(x) = ξ} (ξ ≥ 0) and
dim denotes the Hausdorff dimension. In particular, we prove the remark-
able fact that the Khintchine spectrum dim Eξ, as function of ξ ∈ [0,+∞),
is neither concave nor convex. This is a new phenomenon from the usual

point of view of multifractal analysis. Fast Khintchine exponents defined by
γϕ(x) := lim

n→∞

1
ϕ(n)

∑n
j=1 log aj(x) are also studied, where ϕ(n) tends to the

infinity faster than n does. Under some regular conditions on ϕ, it is proved
that the fast Khintchine spectrum dim({x ∈ [0, 1] : γϕ(x) = ξ}) is a constant
function. Our method also works for other spectra like the Lyapunov spectrum
and the fast Lyapunov spectrum.

1. Introduction and Statements

The continued fraction of a real number can be generated by the Gauss trans-
formation T : [0, 1) → [0, 1) defined by

T (0) := 0, T (x) :=
1

x
(mod 1), for x ∈ (0, 1) (1.1)

in the sense that every irrational number x in [0, 1) can be uniquely expanded as
an infinite expansion of the form

x =
1

a1(x) +
1

a2 +
.. . + 1

an(x) + T n(x)

=
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

(1.2)

where a1(x) = ⌊1/x⌋ and an(x) = a1(T
n−1(x)) for n ≥ 2 are called partial quotients

of x (⌊x⌋ denoting the integral part of x). For simplicity, we will denote the second
term in (1.2) by [a1, a2, · · · , an + T n(x)] and the third term by [a1, a2, a3, · · · ].

It was known to E. Borel [5] (1909) that for Lebesgue almost all x ∈ [0, 1),
there exists a subsequence {anr

(x)} of {an(x)} such that anr
(x) → ∞. A more

explicit result due to Borel-Bernstein (see [2, 5, 6]) is the 0-1 law which hints that
for almost all x ∈ [0, 1], an(x) > ϕ(n) holds for infinitely many n’s or finitely many
n’s according to

∑

n≥1

1
ϕ(n) diverges or converges. Then it arose a natural question

to quantify the exceptional sets in terms of Hausdorff dimension (denoted by dim).
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Key words and phrases. Continued fraction, Gibbs measure, Hausdorff dimension.

1



2 AI-HUA FAN, LING-MIN LIAO, BAO-WEI WANG, AND JUN WU

The first published work on this aspect was due to I. Jarnik [21] (1928) who was
concerned with the set E of continued fractions with bounded partial quotients and
with the sets E2, E3, · · · , where Eα is the set of continued fractions whose partial
quotients do not exceed α. He successfully got that the set E is of full Hausdorff
dimension, but he didn’t find the exact dimensions of E2, E3, · · · . Later, many
works are done to estimate dimE2, including those of I. J. Good [16], R. Bumby
[9], D. Hensley [19, 20], O. Jenkinson and M. Pollicott [22], R. D. Mauldin, M.
Urbański [30] and references therein. Up to now, the optimal approximation on
dimE2 is the result given by O. Jenkinson [23] (2004):

dimE2 = 0.531280506277205141624468647368471785493059109018398779 · · ·
which is claimed to be accurate to 54 decimal places.

In the present paper, we study the Khintchine exponents and the Lyapunov
exponents of continued fractions. For any x ∈ [0, 1) with its continued fraction (1.2),
we define its Khintchine exponent γ(x) and Lyapunov exponent λ(x) respectively
by

γ(x) := lim
n→∞

1

n

n∑

j=1

log aj(x) = lim
n→∞

1

n

n−1∑

j=0

log a1(T
j(x)),

λ(x) := lim
n→∞

1

n
log
∣
∣
∣(T n)′(x)

∣
∣
∣ = lim

n→∞
1

n

n−1∑

j=0

log
∣
∣
∣T ′(T j(x))

∣
∣
∣,

if the limits exist. The Khintchine exponent of x stands for the average (geometric)
growth rate of the partial quotients an(x), and the Lyapunov exponent which is
extensively studied from dynamical system point of view, stands for the expanding
rate of T . Their common feature is that both are Birkhoff averages.

Let ϕ : N → R+. Assume that limn→∞
ϕ(n)

n
= ∞. The fast Khintchine exponent

and fast Lyapunov exponent of x ∈ [0, 1], relative to ϕ, are respectively defined by

γϕ(x) := lim
n→∞

1

ϕ(n)

n∑

j=1

log aj(x) = lim
n→∞

1

ϕ(n)

n−1∑

j=0

log a1(T
j(x)),

λϕ(x) := lim
n→∞

1

ϕ(n)
log
∣
∣
∣(T n)′(x)

∣
∣
∣ = lim

n→∞
1

ϕ(n)

n−1∑

j=0

log
∣
∣
∣T ′(T j(x))

∣
∣
∣.

It is well known (see [4, 37]) that the transformation T is measure preserving
and ergodic with respect to the Gauss measure µG defined as

dµG =
dx

(1 + x) log 2
.

An application of Birkhoff ergodic theorem yields that for Lebesgue almost all
x ∈ [0, 1),

γ(x) = ξ0 =

∫

log a1(x)dµG =
1

log 2

∞∑

n=1

logn · log
(

1 +
1

n(n+ 2)

)

= 2.6854...

λ(x) = λ0 =

∫

log |T ′(x)|dµG =
π2

6 log 2
= 2.37314....

Here ξ0 is called the Khintchine constant and λ0 the Lyapunov constant. Both
constants are relative to the Gauss measure.
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For real numbers ξ, β ≥ 0, we are interested in the level sets of Khintchine
exponents and Lyapunov exponents:

Eξ := {x ∈ [0, 1) : γ(x) = ξ},
Fβ := {x ∈ [0, 1) : λ(x) = β}.

We are also interested in the level sets of fast Khintchine exponents and fast Lya-
punov exponents:

Eξ(ϕ) := {x ∈ [0, 1) : γϕ(x) = ξ},
Fβ(ϕ) := {x ∈ [0, 1) : λϕ(x) = β}.

The Khintchine spectrum and the Lyapunov spectrum are the dimensional func-
tions:

t(ξ) := dimEξ t̃(ξ) := dimFξ.

The following two functions

tϕ(ξ) := dimEξ(ϕ) t̃ϕ(ξ) := dimFξ(ϕ)

are called the fast Khintchine spectrum and the fast Lyapunov spectrum relative to
ϕ.

M. Pollicott and H. Weiss [36] initially studied the level set of Fβ and obtained
some partial results about the function t(ξ). In the present work, we will give a
complete study on the Khintchine spectrum and the Lyapunov spectrum. Fast
Khintchine spectrum and fast Lyapunov spectrum are considered here for the first
time. We shall see that both functions tϕ(ξ) and t̃ϕ(ξ) are equal.

We start with the statement of our results on fast spectra.

Theorem 1.1. Suppose (ϕ(n+ 1) − ϕ(n)) ↑ ∞ and lim
n→∞

ϕ(n+1)
ϕ(n) := b ≥ 1. Then

Eξ(ϕ) = F2ξ(ϕ) and dimEξ(ϕ) = 1/(b+ 1) for all ξ ≥ 0.

In order to state our results on the Khintchine spectrum, let us first introduce
some notation. Let

D := {(t, q) ∈ R2 : 2t− q > 1}, D0 := {(t, q) ∈ R2 : 2t− q > 1, 0 ≤ t ≤ 1}.
For (t, q) ∈ D, define

P (t, q) := lim
n→∞

1

n
log

∞∑

ω1=1

· · ·
∞∑

ωn=1

exp



 sup
x∈[0,1]

log

n∏

j=1

ωq
j ([ωj , · · · , ωn + x])2t



 .

It will be proved that P (t, q) is an analytic function in D (Proposition 4.6).
Moreover, for any ξ ≥ 0, there exists a unique solution (t(ξ), q(ξ)) ∈ D0 to the

equation






P (t, q) = qξ,
∂P

∂q
(t, q) = ξ.

(Proposition 4.13).

Theorem 1.2. Let ξ0 =
∫

log a1(x)dµG(x). For ξ ≥ 0, the set Eξ is of Hausdorff
dimension t(ξ). Furthermore, the dimension function t(ξ) has the following prop-
erties:

1) t(ξ0) = 1 and t(+∞) = 1/2;
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2) t′(ξ) < 0 for all ξ > ξ0, t
′(ξ0) = 0, and t′(ξ) > 0 for all ξ < ξ0;

3) t′(0+) = +∞ and t′(+∞) = 0;
4) t′′(ξ0) < 0, but t′′(ξ1) > 0 for some ξ1 > ξ0, so t(ξ) is neither convex nor

concave.

See Figure 1 for the graph of t(ξ).

0

1
2

t(ξ)

1

ξ0 ξ

Figure 1. Khintchine spectrum

It should be noticed that the above fourth property of t(ξ), i.e. the non-convexity,
shows a new phenomenon for the multifractal analysis in our settings.

Let

D̃ := {(t̃, q) : t̃− q > 1/2} D̃0 := {(t̃, q) : t̃− q > 1/2, 0 ≤ t̃ ≤ 1}.
For (t̃, q) ∈ D̃, define

P1(t̃, q) := lim
n→∞

1

n
log

∞∑

ω1=1

· · ·
∞∑

ωn=1

exp

(

sup
x∈[0,1]

log

n∏

j=1

([ωj , · · · , ωn + x])2(t̃−q)

)

.

In fact, P1(t̃, q) = P (t̃− q, 0), thus P1(t̃, q) is analytic in D̃.

Denote γ0 := 2 log 1+
√

5
2 . For any β ∈ (γ0,∞), the system







P1(t̃, q) = qβ,
∂P1

∂q
(t̃, q) = β

admits a unique solution (t̃(β), q(β)) ∈ D̃0 (Proposition 6.3).

Theorem 1.3. Let λ0 =
∫

log |T ′(x)|dµG and γ0 = 2 log 1+
√

5
2 . For any β ∈

[γ0,∞), the set Fβ is of Hausdorff dimension t̃(β). Furthermore the dimension
function t̃(ξ) has the following properties:

1) t̃(λ0) = 1 and t̃(+∞) = 1/2;
2) t̃′(β) < 0 for all β > λ0, t̃

′(λ0) = 0, and t̃′(β) > 0 for all β < λ0;
3) t̃′(γ0+) = +∞ and t̃′(+∞) = 0;
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4) t̃′′(λ0) < 0, but t̃′′(β1) > 0 for some β1 > λ0, i.e., t̃(β) is neither convex nor
concave.

See Figure 2 for the graph of t̃(β).

0

1
2

t̃(β)

1

γ0 λ0 β

Figure 2. Lyapunov spectrum

The last two theorems are concerned with special Birkhoff spectra. In general,
let (X,T ) be a dynamical system (T being a map from a metric space X into itself).
The Birkhoff average of a function φ : X → R, defined by

φ(x) := lim
n→∞

1

n

n−1∑

j=0

φ(T j(x)) x ∈ X

(if the limit exists) is widely studied. From the point of view of multifractal analysis,
one is often interested in determining the Hausdorff dimension of the set {x ∈ X :
φ(x) = α} for a given α ∈ R. The function

f(α) := dim
(
{x ∈ X : φ(x) = α}

)

is called the Birkhoff spectrum for the function φ. When X is compact, T and
φ are continuous, the Birkhoff spectrum are well studied (see [1, 14, 15] and the
references therein. See also the book of Y. B. Pesin [35]).

The main tool of our study is the Ruelle-Perron-Frobenius operator with poten-
tial function

Φt,q(x) = t log |T ′(x)| + q log a1(x), Ψt(x) = t log |T ′(x)|,
where (t, q) are suitable parameters. The classical way to obtain the spectrum
through Ruelle theory usually fixes q and finds T (q) as the solution of P (T (q), q) =
0. (Here P (t, q) is the pressure corresponding to the potential function of two
parameters.) By focusing on the curve T (q), one can only get some partial results
([36]). In the present paper, we look for multifractal information from the whole
two dimensional surface defined by the pressure P (t, q) rather than the single curve
T (q). This leads us to obtain complete graphs of the Khintchine spectrum and
Lyapunov spectrum.
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For the Gauss dynamics, there exist several works on pressure functions associ-
ated to different potentials. For a detailed study on pressure function associated
to one potential function, we refer to the works of D. Mayer [32, 33, 34], and for
pressure functions associated to two potential functions, we refer to the works of M.
Pollicott and H. Weiss [36], of P. Walters [38, 39] and of P. Hanus, R. D. Mauldin
and M. Urbanski [17]. We will use the theory developed in [17].

The paper is organized as follows. In Section 2, we collect and establish some
basic results that will be used later. Section 3 is devoted to proving the results
about the fast Khintchine spectrum and fast Lyapunov spectrum (Theorem 1.1).
In Section 4, we present a general Ruelle operator theory developed in [17] and then
apply it to the Gauss transformation. Based on Section 4, we establish Theorem
1.2 in Section 5. The last section is devoted to the study of Lyapunov spectrum
(Theorem 1.3).

The present paper is a part of the second author’s Ph. D. thesis.

2. Preliminary

In this section, we collect some known facts and establish some elementary prop-
erties of continued fractions that will be used later. For a wealth of classical results
about continued fractions, see the books by J. Cassels [10], G. Hardy and E. Wright
[18]. The books by P. Billingsley [4], I. Cornfeld, S. Fomin and Ya. Sinai [11] con-
tain an excellent introduction to the dynamics of the Gauss transformations and
its connection with Diophantine approximation.

2.1. Elementary properties of continued fractions. Denote by pn/qn the
usual n-th convergent of continued fraction x = [a1(x), a2(x), · · · ] ∈ [0, 1) \ Q,
defined by

pn

qn
:= [a1(x), · · · , an(x)] :=

1

a1(x) +
1

a2(x) +
. . . +

1

an(x)

.

It is known (see [26] p.9) that pn, qn can be obtained by the recursive relation:

p−1 = 1, p0 = 0, pn = anpn−1 + pn−2 (n ≥ 2),

q−1 = 0, q0 = 1, qn = anqn−1 + qn−2 (n ≥ 2).

Furthermore, we have

Lemma 2.1 ([28] p.5). Let ε1, · · · , εn ∈ R+. Define inductively

Q−1 = 0, Q0 = 1, Qn(ε1, · · · , εn) = εnQn−1(ε1, · · · , εn−1) +Qn−2(ε1, · · · , εn−2).

(Qn is commonly called a continuant.) Then we have
(i) Qn(ε1, · · · , εn) = Qn(εn, · · · , ε1);
(ii) qn = Qn(a1, · · · , an), pn = Qn−1(a2, · · · , an).

As consequences, we have the following results.

Lemma 2.2 ([26]). For any a1, a2, · · · , an, b1, · · · , bm ∈ N, let qn = qn(a1, · · · , an)
and pn = pn(a1, · · · , an). We have

(i) pn−1qn − pnqn−1 = (−1)n;
(ii) qn+m(a1, · · · , an, b1, · · · , bm) = qn(a1, · · · , an)qm(b1, · · · , bm) +

qn−1(a1, · · · , an−1)pm−1(b1, · · · , bm−1);
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(iii) qn ≥ 2
n−1

2 ,
n∏

k=1

ak ≤ qn ≤
n∏

k=1

(ak + 1).

Lemma 2.3 ([41]). For any a1, a2, · · · , an, b ∈ N,

b+ 1

2
≤ qn+1(a1, · · · , aj , b, aj+1, · · · , an)

qn(a1, · · · , aj , aj+1, · · · , an)
≤ b + 1 (∀1 ≤ j < n).

For any a1, a2, · · · , an ∈ N, let

In(a1, a2, · · · , an) = {x ∈ [0, 1) : a1(x) = a1, a2(x) = a2, · · · , an(x) = an} (2.1)

which is called an n-th order cylinder.

Lemma 2.4 ([28] p.18). For any a1, a2, · · · , an ∈ N, the n-th order cylinder
In(a1, a2, · · · , an) is the interval with the endpoints pn/qn and (pn + pn−1)/(qn +
qn−1). As a consequence, the length of In(a1, · · · , an) is equal to

∣
∣
∣In(a1, · · · , an)

∣
∣
∣ =

1

qn(qn + qn−1)
. (2.2)

We will denote In(x) the n-th order cylinder that contains x, i.e. In(x) =
In
(
a1(x), · · · , an(x)

)
. Let B(x, r) denotes the ball centered at x with radius r.

For any x ∈ In(a1, · · · , an), we have the following relationship between the ball
B(x, |In(a1, · · · , an)|) and In(a1, · · · , an), which is called the regular property in
[7].

Lemma 2.5 ([7]). Let x = [a1, a2, · · · ]. We have:

(i) if an 6= 1, B(x, |In(x)|) ⊂
3⋃

j=−1

In(a1, · · · , an + j);

(ii) if an = 1 and an−1 6= 1, B(x, |In(x)|) ⊂
3⋃

j=−1

In−1(a1, · · · , an−1 + j);

(iii) if an = 1 and an−1 = 1, B(x, |In(x)|) ⊂ In−2(a1, · · · , an−2).

The Gauss transformation T admits the following Jacobian estimate.

Lemma 2.6. There exists a positive number K > 1 such that for all irrational
number x in [0, 1), one has

0 <
1

K
≤ sup

n≥0
sup

y∈In(x)

∣
∣
∣
∣

(T n)′(x)

(T n)′(y)

∣
∣
∣
∣
≤ K <∞.

Proof. Assume x = [a1, · · · , an, · · · ] ∈ [0, 1) \ Q. For any n ≥ 0 and y ∈ In(x) =
In(a1, · · · , an), by the fact that T ′(x) = − 1

x2 we get

n−1∑

j=0

∣
∣
∣ log

∣
∣T ′(T j(x))

∣
∣− log

∣
∣T ′(T j(y))

∣
∣

∣
∣
∣ = 2

n−1∑

j=0

∣
∣
∣ logT j(x) − logT j(y)

∣
∣
∣.

Applying the mean-value theorem, we have

∣
∣ logT j(x) − logT j(y)

∣
∣ =

∣
∣
∣
∣

T j(x) − T j(y)

T j(z)

∣
∣
∣
∣
≤ aj+1

qn−j(aj+1, · · · , an)
,

where the assertion follows from the fact that all three points T j(x), T j(y) and
T j(z) belong to In−j(aj+1, · · · , an). By Lemma 2.2, we have

n−1∑

j=0

∣
∣logT j(x) − logT j(y)

∣
∣ ≤

n−1∑

j=0

1

qn−j−1(aj+2, · · · , an)
≤

n−1∑

j=0

(
1

2

)n−j−2

≤ 4.
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Thus the result is proved with K = e4. �

The above Jacobian estimate property of T enables us to control the length of
In(x) by |(T n)′(x)|−1, through the fact that

∫

In(x) |(T n)′(y)|dy = 1.

Lemma 2.7. There exist a positive constant K > 0 such that for all irrational
numbers x in [0, 1),

1

K
≤ |In(x)|

|(T n)′(x)|−1
≤ K.

We remark that from Lemma 2.4 and Lemma 2.7, we have

1

2K
q2n(x) ≤

∣
∣
∣(T n)′(x)

∣
∣
∣ ≤ Kq2n(x).

So the Lyapunov exponent λ(x) is nothing but the growth rate of qn(x) up to a
multiplicative constant 2:

λ(x) = lim
n→∞

2

n
log qn(x).

For any irrational number x in [0, 1), let Nn(x) := {j ≤ n : aj(x) 6= 1}. Set

A :=
{

x ∈ [0, 1] : lim
n→∞

1

n
log qn(x) =

γ0

2

}

,

B :=
{

x ∈ [0, 1] : lim
n→∞

1

n

n∑

j=1

log aj(x) = 0
}

,

C :=
{

x ∈ [0, 1] : lim
n→∞

1

n
♯Nn(x) = 0

}

,

where ♯ stands for the cardinal of a set. Then we have the following relationship.

Lemma 2.8. With the notations given above, we have

A = B ⊂ C.

Proof. It is clear that A ⊂ C and B ⊂ C. Let us prove A = B. First observe that,
by Lemma 2.3, we have

1

n
log qn(x) ≥ 1

n

∑

j∈Nn(x)

log
aj(x) + 1

2
+

1

n
log qn−♯Nn

(1, . . . , 1)

≥ 1

n

∑

j∈Nn(x)

log aj(x) −
1

n

∑

j∈Nn(x)

log 2 +
1

n
log qn−♯Nn

(1, . . . , 1).

Assume x ∈ A. Since A ⊂ C, we have

− 1

n

∑

j∈Nn(x)

log 2 +
1

n
log qn−♯Nn

(1, . . . , 1) −→ 0 +
γ0

2
(n → ∞).

Now by the assumption x ∈ A, it follows

lim
n→∞

1

n

n∑

j=1

log aj(x) =
1

n

∑

j∈Nn(x)

log aj(x) = 0.

Therefore we have proved A ⊂ B. For the inverse inclusion, notice that

1

n
log qn(x) ≤ 1

n

∑

j∈Nn(x)

log(aj(x) + 1) +
1

n
log qn−♯Nn

(1, . . . , 1).
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Let x ∈ B. Since B ⊂ C, we have

lim
n→∞

1

n
log qn−♯Nn

(1, . . . , 1) =
γ0

2
.

Therefore by the assumption x ∈ B, we get

lim sup
n→∞

1

n
log qn(x) ≤ γ0

2
.

Thus B ⊂ A. �

2.2. Exponents γ(x) and λ(x). In this subsection, we make a quick examination
of the Khintchine exponent γ(x) and compare it with the Lyapunov exponent λ(x).
Our main concern is the possible values of both exponent functions.

A first observation is that for any x ∈ [0, 1), γ(x) ≥ 0 and λ(x) ≥ γ0 = 2 log
√

5+1
2 .

By the Birkhoff ergodic theorem, we know that the Khintchine exponent γ(x)
attains the value ξ0 for almost all points x with respect to the Lebesgue measure.
We will show that every positive number is the Khintchine exponent γ(x) of some
point x.

Proposition 2.9. For any ξ ≥ 0, there exists a point x0 ∈ [0, 1) such that γ(x0) =
ξ.

Proof. Assume ξ > 0 ( for ξ = 0, we take x0 = 1+
√

5
2 corresponding to an ≡ 1.)

Take an increasing sequence of integers {nk}k≥1 satisfying

n0 = 1, nk+1 − nk → ∞, and
nk

nk+1
→ 1, as k → ∞.

Let x0 ∈ (0, 1) be a point whose partial quotients satisfy

e(nk−nk−1)ξ ≤ ank
≤ e(nk−nk−1)ξ + 1; an = 1 otherwise.

Since for nk ≤ n < nk+1,

1

nk+1

k∑

i=1

log e(ni−ni−1)ξ ≤ 1

n

n∑

j=1

log aj ≤ 1

nk

k∑

i=1

log(e(ni−ni−1)ξ + 1),

we have

γ(x0) = lim
n→∞

1

n

n∑

j=1

log aj(x) = ξ.

�

In the following, we will show that the set Eξ and Fλ are never equal. So it is two
different problems to study γ(x) and λ(x). However, as we will see, Eξ(φ) = F2ξ(φ)
when φ is faster than n.

Proposition 2.10. For any ξ ≥ 0 and λ ≥ 2 log
√

5+1
2 , we have Eξ 6= Fλ.

Proof. Given ξ ≥ 0. It suffices to construct two numbers with same Khintchine
exponent ξ but different Lyapunov exponents.

For the first number, take just the number x0 constructed in the proof of Propo-
sition 2.9. We claim that

λ(x0) = 2ξ + 2 log

√
5 + 1

2
. (2.3)
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In fact, by Lemma 2.3 we have

k∏

j=1

(
anj

+ 1

2
)qnk−k(1, · · · , 1) ≤ qnk

(a1, · · · , ank
) ≤

k∏

j=1

(anj
+ 1)qnk−k(1, · · · , 1).

(2.4)
Then by the assumption on nk, we have

λ(x0) = lim
n→∞

2

n
log qn(x0) = 2(ξ + log

√
5 + 1

2
).

Construct now the second number. Fix k ≥ 1. Define x1 = [ς1, · · · , ςn, · · · ] where

ςn =

( k
︷ ︸︸ ︷

1, · · · , 1, ⌊ekξ⌋, · · · , 1, · · · , 1, ⌊ekξ⌋
︸ ︷︷ ︸

kn

,

⌊

(
e(k+1)ξ

[ekξ]
)n

⌋)

.

Notice that there are n small vectors (1, · · · , 1, ⌊ekξ⌋) in ςn and the length of ςn is
equal to Nk := kn+ 1. We can prove

γ(x1) = ξ, λ(x1) = λ
([

1, · · · , ⌊ekξ⌋
])

+ 2ξ − 2

k
log⌊ekξ⌋,

by the same arguments as in proving the similar result for x0. It is clear that
λ(x0) 6= λ(x1) for large k ≥ 1. �

It is evident that Proposition 2.9 and the formula (2.3) yield the following result
due to M. Pollicott and H. Weiss [36].

Corollary 2.11 ([36]). For any λ ≥ 2 log
√

5+1
2 , there exists a point x0 ∈ [0, 1)

such that λ(x0) = λ.

2.3. Pointwise dimension. We are going to compare the pointwise dimension
and the Markov pointwise dimension (corresponding to continued fraction system)
of a Borel probability measure.

Let µ be a Borel probability measure on [0, 1). Define the pointwise dimension
and the Markov pointwise dimension respectively by

dµ(x) := lim
r→0

logµ(B(x, r))

log r
, δµ(x) := lim

n→∞
log µ(In(x))

log |In(x)| ,

if the limits exist, where B(x, r) is the ball centered at x with radius r.
For two series {un}n≥0 and {vn}n≥0, we write un ≍ vn which means that there

exist absolute positive constants c1, c2 such that c1vn ≤ un ≤ c2vn for n large
enough. Sometimes, we need the following condition at a point x:

µ(B(x, |In(x)|)) ≍ µ(In(x)). (2.5)

We have the following relationship between δµ(x) and dµ(x).

Lemma 2.12. Let µ be a Borel measure.
(a) Assume (2.5). If dµ(x) exists then δµ(x)exists and δµ(x) = dµ(x).
(b) If δµ(x) and λ(x) both exist, then dµ(x)exists and δµ(x) = dµ(x).

Proof. (a) If the limit defining dµ(x) exists, then the limit

lim
n→+∞

logµ(B(x, |In(x)|))
log |In(x)|
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exists and equals to dµ(x). Thus by (2.5), the limit defining δµ(x) also exists and
equals to dµ(x).

(b) Since λ(x) exists, by Lemma 2.7 we have

lim
n→∞

log |In(x)|
log |In+1(x)|

= lim
n→∞

1

n
log |In(x)|/ 1

n+ 1
log |In+1(x)| = 1. (2.6)

For any r > 0, there exists an n such that |In+1(x)| ≤ r < |In(x)|. Then by Lemma
2.5, we have In+1(x) ⊂ B(x, r) ⊂ In−2(x). Thus

logµ(In−2(x))

log |In+1(x)|
≤ logµ(B(x, r))

log r
≤ logµ(In+1(x))

log |In(x)| . (2.7)

Combining (2.6) and (2.7) we get the desired result. �

Let us give some measures for which the condition (2.5) is satisfied. These
measures will be used in the subsection 5.1. The existence of these measures µt,q

will be discussed in Proposition 4.6 and the subsection 5.1.

Lemma 2.13. Suppose µt,q is a measure satisfying

µt,q(In(x)) ≍ exp(−nP (t, q))|In(x)|t
n∏

j=1

aq
j ,

where P (t, q) is a constant. Then (2.5) is satisfied by µt,q.

Proof. Notice that when an(x) = 1, µt,q(In(x)) ≍ µt,q(In−1(x)). Then in the
light of Lemma 2.5, we can show that (2.5) is satisfied by µt,q. �

3. Fast growth rate: proof of Theorem 1.1

3.1. Lower bound. We start with the mass distribution principle (see [12], Propo-
sition 4.2), which will be used to estimate the lower bound of the Hausdorff dimen-
sion of a set.

Lemma 3.1 ([12]). Let E ⊂ [0, 1) be a Borel set and µ be a measure with µ(E) > 0.
Suppose that

lim inf
r→0

logµ(B(x, r))

log r
≥ s, ∀x ∈ E

where B(x, r) denotes the open ball with center at x and radius r. Then dimE ≥ s.

Next we give a formula for computing the Hausdorff dimension for a class of
Cantor sets related to continued fractions.

Lemma 3.2. Let {sn}n≥1 be a sequence of positive integers tending to infinity with
sn ≥ 3 for all n ≥ 1. Then for any positive number N ≥ 2, we have

dim{x ∈ [0, 1) : sn ≤ an(x) < Nsn ∀ n ≥ 1} = lim inf
n→∞

log(s1s2 · · · sn)

2 log(s1s2 · · · sn) + log sn+1
.

Proof. Let F be the set in question and s0 be the lim inf in the statement. We call

J(a1, a2, · · · , an) := Cl
⋃

an+1≥sn+1

In+1(a1, · · · , an, an+1)
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a basic CF-interval of order n with respect to F (or simply basic interval of order
n), where sk ≤ ak < Nsk for all 1 ≤ k ≤ n. Here Cl stands for the closure. Then
it follows that

F =

∞⋂

n=1

⋃

sk≤ak<Nsk,1≤k≤n

J(a1, · · · , an). (3.1)

By Lemma 2.4, we have

J(a1, · · · , an) =

[
pn

qn
,
sn+1pn + pn−1

sn+1qn + qn−1

]

or

[
sn+1pn + pn−1

sn+1qn + qn−1
,
pn

qn

]

(3.2)

according to n is even or odd. Then by Lemma 2.4, Lemma 2.2 and the assumption
on ak that sk ≤ ak < Nsk for all 1 ≤ k ≤ n, we have

1

2Nn

1

sn+1(s1 · · · sn)2
≤
∣
∣
∣J(a1, · · · , an)

∣
∣
∣ =

1

qn(sn+1qn + qn−1)
≤ 1

sn+1(s1 · · · sn)2
.

(3.3)
Since sk → ∞ as k → ∞, then

lim
n→∞

log s1 + · · · + log sn

n
= ∞.

This, together with the definition of s0, implies that for any s > s0, there exists a
sequence {nℓ : ℓ ≥ 1} such that for all ℓ ≥ 1,

(N − 1)nℓ <
(
snℓ+1(s1 · · · snℓ

)2
) s−s0

2 ,

nℓ∏

k=1

sk ≤
(
snℓ+1(s1 · · · snℓ

)2
) s+s0

2 .

Then, by (3.1), together with (3.3), we have

Hs(F ) ≤ lim inf
ℓ→∞

∑

sk≤ak<Nsk,1≤k≤nℓ

∣
∣
∣J(a1, · · · , anℓ

)
∣
∣
∣

s

≤ lim inf
ℓ→∞

(

(N − 1)nℓ

nℓ∏

k=1

sk

)(
1

snℓ+1(s1 · · · snℓ
)2

)s

≤ 1.

Since s > s0 is arbitrary, we have dimF ≤ s0.
For the lower bound, we define a measure µ such that for any basic CF -interval

J(a1, a2, · · · , an) of order n,

µ(J(a1, a2, · · · , an)) =

n∏

j=1

1

(N − 1)sj

.

By the Kolmogorov extension theorem, µ can be extended to a probability measure
supported on F . In the following, we will check the mass distribution principle with
this measure.

Fix s < s0. By the definition of s0 and the fact that sk → ∞ (k → ∞) and that
N is a constant, there exists an integer n0 such that for all n ≥ n0,

n∏

k=1

(N − 1)sk ≥
(

sn+1(

n∏

k=1

Nsk)2

)s

. (3.4)

We take r0 =
1

2Nn0

1

sn0+1(s1 · · · sn0)
2
.
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For any x ∈ F , there exists an infinite sequence {a1, a2, · · · } with sk ≤ ak <
Nsk, ∀k ≥ 1 such that x ∈ J(a1, · · · , an), for all n ≥ 1. For any r < r0, there exists
an integer n ≥ n0 such that

|J(a1, · · · , an+1)| ≤ r < |J(a1, · · · , an)|.
We claim that the ball B(x, r) can intersect only one n-th basic interval, which

is just J(a1, · · · , an). We establish this only at the case that n is even, since for
the case that n is odd, the argument is similar.

Case (1): sn < an < Nsn − 1. The left and right adjacent n-th order basic
intervals to J(a1, · · · , an) are J(a1, · · · , an − 1) and J(a1, · · · , an + 1) respectively.
Then by (3.2) and the condition that sn ≥ 3, the gap between J(a1, · · · , an) and
J(a1, · · · , an − 1) is

pn

qn
− sn+1(pn − pn−1) + pn−1

sn+1(qn − qn−1) + qn−1
=

sn+1 − 1

qn

(

sn+1(qn − qn−1) + qn−1

) ≥
∣
∣
∣J(a1, · · · , an)

∣
∣
∣.

Hence B(x, r) can not intersect J(a1, · · · , an − 1). On the other hand, the gap
J(a1, · · · , an) and J(a1, · · · , an + 1) is

pn + pn−1

qn + qn−1
− sn+1pn + pn−1

sn+1qn + qn−1
=

sn+1 − 1

(qn + qn−1)(sn+1qn + qn−1)
≥
∣
∣
∣J(a1, · · · , an)

∣
∣
∣.

Hence B(x, r) can not intersect J(a1, · · · , an + 1) either.
Case (2): an = sn. The right adjacent n-th order basic interval to J(a1, · · · , an)

is J(a1, · · · , an + 1). The same argument as in the case (1) shows that B(x, r)
can not intersect J(a1, · · · , an + 1). On the other hand, the gap between the left
endpoint of J(a1, · · · , an) and that of In−1(a1, · · · , an−1) is

pn

qn
− pn−1 + pn−2

qn−1 + qn−2
=

sn − 1

(qn−1 + qn−2)qn
≥
∣
∣
∣J(a1, · · · , an)

∣
∣
∣.

It follows that B(x, r) can not intersect any n-th order CF -basic intervals on the
left of J(a1, · · · , an). In general, B(x, r) can intersect no other n-th order CF -basic
intervals than J(a1, · · · , an).

Case (3): an = Nsn − 1. From the case (1), we know that B(x, r) can not
intersect any n-th order CF -basic intervals on the left of J(a1, · · · , an). While
for on the right, the gap between the right endpoint of J(a1, · · · , an) and that of
In−1(a1, · · · , an−1) is

pn−1

qn−1
− sn+1pn + pn−1

sn+1qn + qn−1
=

sn+1

(sn+1qn + qn−1)qn−1
≥
∣
∣
∣J(a1, · · · , an)

∣
∣
∣.

It follows that B(x, r) can not intersect any n-th order CF -basic intervals on the
right of J(a1, · · · , an). In general, B(x, r) can intersect no other n-th order CF -
basic intervals than J(a1, · · · , an).

Now we distinguish two cases to estimate the measure of B(x, r).
Case (i). |J(a1, · · · , an+1)| ≤ r < |In+1(a1, · · · , an+1)|. By Lemma 2.5 and the

fact an+1 6= 1, B(x, r) can intersect at most five (n + 1)-th order basic intervals.
As a consequence, by (3.4), we have

µ(B(x, r)) ≤ 5

n+1∏

k=1

1

(N − 1)sk

≤ 5

(
1

sn+2(Nn+1s1 · · · sn+1)2

)s

. (3.5)
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Since

r >
∣
∣
∣J(a1, · · · , an+1)

∣
∣
∣ =

1

qn+1(sn+2qn+1 + qn)
≥ 1

2sn+2(Nn+1s1 · · · sn+1)2
,

it follows that

µ(B(x, r)) ≤ 10rs.

Case (ii). |In+1(a1, · · · , an+1)| ≤ r < |J(a1, · · · , an)|. In this case, we have

In+1(a1, · · · , an+1) =
1

qn+1(qn+1 + qn)
≥ 1

2q2n+1

≥ 1

2N2(n+1)

(
n+1∏

k=1

sk

)2

.

So B(x, r) can intersect at most a number 8rN2(n+1)(s1 · · · sn+1)
2 of (n + 1)-th

basic intervals. As a consequence,

µ(B(x, r)) ≤ min
{

µ(J(a1, · · · , an)), 8rN2(n+1)(s1 · · · sn+1)
2

n+1∏

k=1

1

(N − 1)sk

}

≤
n∏

k=1

1

(N − 1)sk

min
{

1, 8rN2(n+1)(s1 · · · sn+1)
2 1

(N − 1)sn+1

}

.

By (3.4) and the elementary inequality min{a, b} ≤ a1−sbs which holds for any
a, b > 0 and 0 < s < 1, we have

µ(B(x, r)) ≤
(

1

sn+1(Nns1 · · · sn)2

)s

·
(

8rN2(n+1)(s1 · · · sn+1)
2 1

(N − 1)sn+1

)s

≤ 16Nrs.

Combining these two cases, together with mass distribution principle, we have
dimF ≥ s0. �

Let

E′ = {x ∈ [0, 1) : eϕ(n)−ϕ(n−1) ≤ an(x) ≤ 2eϕ(n)−ϕ(n−1), ∀n ≥ 1}.
It is evident that E′ ⊂ Eξ(ϕ). Then applying Lemma 3.2, we have

Eξ(ϕ) ≥ lim inf
n→∞

ϕ(n)

ϕ(n+ 1) + ϕ(n)
=

1

b+ 1
.

3.2. Upper bound. We first give a lemma which is a little bit more than the
upper bound for the case b = 1. Its proof uses a family of Bernoulli measures with
an infinite number of states.

Lemma 3.3. If lim
n→∞

ϕ(n)
n

= ∞, then dimEξ(ϕ) ≤ 1
2 .

Proof. For any t > 1, we introduce a family of Bernoulli measures µt:

µt(In(a1, · · · , an)) = e−nC(t)−t
∑n

j=1 log aj(x) (3.6)

where C(t) = log
∞∑

n=1

1
nt .

Fix x ∈ Eξ(ϕ) and ǫ > 0. If n is sufficiently large, we have

(ξ − ǫ)ϕ(n) <

n∑

j=1

log aj(x) < (ξ + ǫ)ϕ(n). (3.7)
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So

Eξ(ϕ) ⊂
∞⋂

N=1

∞⋃

n=N

En(ǫ),

where

En(ǫ) = {x ∈ [0, 1) : (ξ − ǫ)ϕ(n) <

n∑

j=1

log aj(x) < (ξ + ǫ)ϕ(n)}.

Now let I(n, ǫ) be the family of all n-th order cylinders In(a1, · · · , an) satisfying
(3.7). For each N ≥ 1, we select all those cylinders in

⋃∞
n=N I(n, ǫ) which are

maximal (I ∈ ⋃∞
n=N I(n, ǫ) is maximal if there is no other I ′ in

⋃∞
n=N I(n, ǫ)

such that I ⊂ I ′ and I 6= I ′). We denote by J (N, ǫ) the set of all maximal
cylinders in

⋃∞
n=N I(n, ǫ). It is evident that J (N, ǫ) is a cover of Eξ(ϕ). Let

In(a1, · · · , an) ∈ J (N, ǫ), we have

µt(In(a1, · · · , an)) = e
−nC(t)−t

n∑

j=1

log aj

≥ e−nC(t)−t(ξ+ǫ)ϕ(n).

On the other hand,

∣
∣
∣In(a1, · · · , an)

∣
∣
∣ ≤ e−2 log qn ≤ e

−2
n∑

j=1

log aj

≤ e−2(ξ−ǫ)ϕ(n).

Since lim
n→∞

ϕ(n)
n

= ∞, for each s > t/2 and N large enough, we have

∣
∣
∣In(a1, · · · , an)

∣
∣
∣

s

≤ µt(In(a1, · · · , an)).

This implies dimEξ(ϕ) ≤ 1/2 = 1
b+1 . �

Now we return back to the proof of the upper bound.
Case (i) b = 1. Since (ϕ(n+ 1) − ϕ(n)) ↑ ∞, Lemma 3.3 implies immediately

dimEξ(ϕ) ≤ 1
2 .

Case (ii) b > 1. By (3.7), for each x ∈ Eξ(ϕ) and n sufficiently large

(ξ − ǫ)ϕ(n+ 1) − (ξ + ǫ)ϕ(n) ≤ log an+1(x) ≤ (ξ + ǫ)ϕ(n+ 1) − (ξ − ǫ)ϕ(n).

Take

Ln+1 = e(ξ−ǫ)ϕ(n+1)−(ξ+ǫ)ϕ(n), Mn+1 = e(ξ+ǫ)ϕ(n+1)−(ξ−ǫ)ϕ(n).

Define

FN = {x ∈ [0, 1] : Ln ≤ an(x) ≤Mn, ∀n ≥ N}.
Then we have

Eξ(ϕ) ⊂
∞⋃

N=1

FN .

We can only estimate the upper bound of dimF1. Because FN can be written
as a countable union of sets with the same form as F1, then by the σ-stability of
Hausdorff dimension, we will have dimFN = dimF1. We can further assume that
Mn ≥ Ln + 2.

For any n ≥ 1, define

Dn = {(σ1, · · · , σn) ∈ Nn : Lk ≤ σk ≤Mk, 1 ≤ k ≤ n}.
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It follows that

F1 =
⋂

n≥1

⋃

(σ1,··· ,σn)∈Dn

J(σ1, · · · , σn),

where

J(σ1, · · · , σn) := Cl
⋃

σ≥Ln+1

I(σ1, · · · , σn, σ)

(called an admissible cylinder of order n). For any n ≥ 1 and s > 0, we have

∑

(σ1,··· ,σn)∈Dn

∣
∣
∣J(σ1, · · · , σn)

∣
∣
∣

s

≤
∑

(σ1,··· ,σn)∈Dn

∣
∣
∣

1

q2nLn+1

∣
∣
∣

s

≤ M1 · · ·Mn
(

(L1 · · ·Ln)2Ln+1

)s .

It follows that

dimF1 ≤ lim inf
n→∞

logM1 + · · · + logMn

n∑

k=1

logLk +
n+1∑

k=1

logLk

=
ξ + ǫ+ 2ǫ

b−1

(ξ − ǫ)(b+ 1) − 2ǫ− 4ǫ
b−1

.

Letting ǫ→ 0, we get

dimEξ(ϕ) ≤ 1

b+ 1
.

4. Ruelle operator theory

There have been various works on the Ruelle transfer operator for the Gauss
dynamics. See D. Mayer [32], [33], [34], O. Jenkinson [23], O. Jenkinson and M.
Pollicott [22], M. Pollicott and H. Weiss [36], P. Hanus, R. D. Mauldin and M.
Urbanski [17]. In this section we will present a general Ruelle operator theory for
conformal infinite iterated function system which was developed in [17] and then
apply it to the Gauss dynamics. We will also prove some properties of the pressure
function in the case of Gauss dynamics , which will be used later.

4.1. Conformal infinite iterated function systems. In this subsection, we
present the conformal infinite iterated function systems which were studied by P.
Hanus, R. D. Mauldin and M. Urbanski in [17]. See also the book of Mauldin and
Urbanski [31].

Let X be a non-empty compact connected subset of Rd equipped with a metric
ρ. Let I be an index set with at least two elements and at most countable elements.
An iterated function system S = {φi : X → X : i ∈ I} is a collection of injective
contractions for which there exists 0 < s < 1 such that for each i ∈ I and all
x, y ∈ X ,

ρ(φi(x), φi(y)) ≤ sρ(x, y). (4.1)
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Before further discussion, we are willing to give a list of notation.

• In := {ω : ω = (ω1, · · · , ωn), ωk ∈ I, 1 ≤ k ≤ n},
• I∗ := ∪n≥1I

n,

• I∞ := Π∞
i=1I,

• φω := φω1 ◦ φω2 ◦ · · · ◦ φωn
, for ω = ω1ω2 · · ·ωn ∈ In, n ≥ 1,

• |ω| denote the length of ω ∈ I∗ ∪ I∞,
• ω|n = ω1ω2 . . . ωn, if

∣
∣w
∣
∣ ≥ n,

• [ω|n] = [ω1 . . . ωn] = {x ∈ I∞ : x1 = ω1, · · · , xn = ωn},
• σ : I∞ → I∞ the shift transformation,

• ‖φ′ω‖ := sup
x∈X

|φ′ω(x)| for ω ∈ I∗,

• C(X) space of continuous functions on X,

• || · ||∞ supremum norm on the Banach space C(X).

For ω ∈ I∞, the set

π(ω) =

∞⋂

n=1

φω|n(X)

is a singleton. We also denote its only element by π(ω). This thus defines a coding
map π : I∞ → X . The limit set J of the iterated function system is defined by

J := π(I∞).

Denote by ∂X the boundary of X and by Int(X) the interior of X .
We say that the iterated function system S = {φi}i∈I satisfies the open set

condition if there exists a non-empty open set U ⊂ X such that φi(U) ⊂ U for each
i ∈ I and φi(U) ∩ φj(U) = ∅ for each pair i, j ∈ I, i 6= j.

An iterated function system S = {φi : X → X : i ∈ I} is said to be conformal if
the following are satisfied:

(1) the open set condition is satisfied for U = Int(X);
(2) there exists an open connected set V with X ⊂ V ⊂ Rd such that all maps

φi, i ∈ I, extend to C1 conformal diffeomorphisms of V into V ;
(3) there exist h, ℓ > 0 such that for each x ∈ ∂X ⊂ Rd, there exists an open

cone Con(x, h, ℓ) ⊂ Int(X) with vertex x, central angle of Lebesgue measure h and
altitude ℓ;

(4) (Bounded Distortion Property) there exists K ≥ 1 such that |φ′ω(y)| ≤
K|φ′ω(x)| for every ω ∈ I∗ and every pair of points x, y ∈ V .

The topological pressure function for a conformal iterated function systems S =
{φi : X → X : i ∈ I} is defined as

P(t) := lim
n→∞

1

n
log

∑

|ω|=n

||φ′ω ||t.

The system S is said to be regular if there exists t ≥ 0 such that P(t) = 0.
Let β > 0. A Hölder family of functions of order β is a family of continuous

functions F = {f (i) : X → C : i ∈ I} such that

Vβ(F ) = sup
n≥1

Vn(F ) <∞,
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where

Vn(F ) = sup
ω∈In

sup
x,y∈X

{|f (ω1)(φσ(ω)(x)) − f (ω1)(φσ(ω)(y))|}eβ(n−1).

A family of functions F = {f (i) : X → R, i ∈ I} is said to be strong if
∑

i∈I

||ef(i) ||∞ <∞.

Define the Ruelle operator on C(X) associated to F as

LF (g)(x) :=
∑

i∈I

ef(i)(x)g(φi(x)).

Denote by L∗
F the dual operator of LF .

The topological pressure of F is defined by

P (F ) := lim
n→∞

1

n
log

∑

|ω|=n

exp

(

sup
x∈X

n∑

j=1

fωj ◦ φσjω(x)

)

.

A measure ν is called F -conformal if the following are satisfied:
(1) ν is supported on J ;
(2) for any Borel set A ⊂ X and any ω ∈ I∗,

ν(φω(A)) =

∫

A

exp





n∑

j=1

f (ωj) ◦ φσjω − P (F )|ω|



 dν;

(3) ν(φω(X) ∩ φτ (X)) = 0 ω, τ ∈ In, ω 6= τ, n ≥ 1.
Two functions φ, ϕ ∈ C(X) are said to be cohomologous with respect to the

transformation T , if there exists u ∈ C(X) such that

ϕ(x) = φ(x) + u(x) − u(T (x)).

The following two theorems are due to Hanus, Mauldin and Urbanski [17].

Theorem 4.1 ([17]). For a conformal iterated function system S = {φi : X →
X : i ∈ I} and a strong Hölder family of functions F = {f (i) : X → C : i ∈ I},
there exists a unique F -conformal probability measure νF on X such that L∗

F νF =

eP (F )νF . There exists a unique shift invariant probability measure µ̃F on I∞ such
that µF := µ̃F ◦ π−1 is equivalent to νF with bounded Radon-Nikodym derivative.
Furthermore, the Gibbs property is satisfied:

1

C
≤ µ̃F ([ω|n])

exp
(
∑n

j=1 f
(ωj)(π(σjω)) − nP (F )

) ≤ C.

Let Ψ = {ψ(i) : X → R : i ∈ I} and F = {f (i) : X → R : i ∈ I} be two
families of real-valued Hölder functions. We define the amalgamated functions on
I∞ associated to Ψ and F as follows:

ψ̃(ω) := ψ(ω1)(π(σω)), f̃(ω) := f (ω1)(π(σω)) ∀ω ∈ I∞.

Theorem 4.2 ([17], see also [31], pp. 43-48). Let Ψ and F be two families of
real-valued Hölder functions. Suppose the sets {i ∈ I : supx(ψ(i)(x)) > 0} and {i ∈
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I : supx(f (i)(x)) > 0} are finite. Then the function (t, q) 7→ P (t, q) = P (tΨ + qF ),
is real-analytic with respect to (t, q) ∈ Int(D), where

D =

{

(t, q) :
∑

i∈I
exp(sup

x
(tψ(i)(x) + qf (i)(x))) <∞

}

.

Furthermore, if tΨ + qF is a strong Hölder family for (t, q) ∈ D and
∫

(|f̃ | + |ψ̃|)dµ̃t,q <∞,

where µ̃t,q := µ̃tΨ+qF is obtained by Theorem 4.1, then

∂P

∂t
=

∫

ψ̃dµ̃t,q and
∂P

∂q
=

∫

f̃dµ̃t,q.

If tψ̃+qf̃ is not cohomologous to a constant function, then P (t, q) is strictly convex
and

H(t, q) :=






∂2P
∂t2

∂2P
∂t∂q

∂2P
∂t∂q

∂2P
∂q2






is positive definite.

4.2. Continued fraction dynamical system. We apply the theory in the prece-
dent subsection to the continued fraction dynamical system. Let X = [0, 1] and
I = N. The continued fraction dynamical system can be viewed as an iterated
function system:

S =

{

ψi(x) =
1

i+ x
: i ∈ N

}

.

Recall that the projection mapping π : I∞ → X is defined by

π(ω) :=
∞⋂

n=1

ψω|n(X), ∀ω ∈ I∞.

Notice that ψ′
1(0) = −1, thus (4.1) is not satisfied. However, this is not a real

problem, since we can consider the system of second level maps and replace S by
S̃ := {ψi ◦ ψj : i, j ∈ N}. In fact, for any x ∈ [0, 1)

(ψi ◦ ψj)
′(x) =

( 1

i+ 1
j+x

)′
=
( 1

i(j + x) + 1

)2

≤ 1

4
.

In the following, we will collect or prove some facts on the continued fraction
dynamical system, which will be useful for applying Theorem 4.1 and 4.2.

Lemma 4.3 ([29]). The continued fraction dynamical system S is regular and
conformal.

For the investigation in the present paper, our problems are tightly connected
to the following two families of Hölder functions.

Ψ = {log |ψ′
i| : i ∈ N} and F = {− log i : i ∈ N}.

Remark 4.4. We mention that our method used here is also applicable to other
potentials than the two special families introduced here.
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The families Ψ and F are Hölder families and their amalgamated functions are
equal to

ψ̃(ω) = −2 log(ω1 + π(σω)), f̃(ω) = − logω1 ∀ω ∈ N∞.

For our convenience, we will consider the function tΨ − qF instead of tΨ + qF .

Lemma 4.5. Let D := {(t, q) : 2t− q > 1}. For any (t, q) ∈ D, we have
(i) The family tΨ − qF := {t log |ψ′

i| + q log i : i ∈ N} is Hölder and strong.
(ii) The topological pressure P associated to the potential tΨ−qF can be written

as

P (t, q) = lim
n→∞

1

n
log

∑

ω1,··· ,ωn

exp

(

sup
x

log

n∏

j=1

ωq
j ([ωj , · · · , ωn + x])2t

)

.

Proof. The assertion on the domain D follows from

1

4t
ζ(2t− q) = LtΨ−qF 1 =

∞∑

i=1

iq

(i+ x)2t
≤

∞∑

i=1

iq−2t = ζ(2t− q).

where ζ(2t− q) is the Riemann zeta function, defined by

ζ(s) :=

∞∑

n=1

1

ns
∀s > 1.

(i) For (t, q) ∈ D, write (tΨ − qF )(i) := t log |ψ′
i| + q log i. Then

∑

i∈I

∥
∥
∥ exp

{

(tΨ − qF )(i)
}∥
∥
∥
∞

=
∞∑

i=1

∥
∥
∥

iq

(i+ x)2t

∥
∥
∥
∞

=
∞∑

i=1

iq−2t = ζ(2t− q) <∞.

Thus tΨ − qF is strong.
(ii) It suffices to noticed that

sup
x

(
n∑

j=1

(t|ψ′
ωj
| + q logωj) ◦ ψσjω(x)

)

= sup
x

log

n∏

j=1

ωq
j ([ωj , · · · , ωn + x])2t.

�

Denote by L∗
tΨ−qF the conjugate operator of LtΨ−qF . Applying Theorem 4.1

with the help of Lemma 4.3 and Lemma 4.5, we get

Proposition 4.6. For each (t, q) ∈ D, there exists a unique tΨ − qF -conformal
probability measure νt,q on [0, 1] such that L∗

tΨ−qF νt,q = eP (t,q)νt,q, and a unique

shift invariant probability measure µ̃t,q on N∞ such that µt,q := µ̃t,q ◦ π−1 on [0, 1]
is equivalent to νt,q and

1

C
≤ µ̃t,q([ω|n])

exp
(
∑n

j=1(tΨ − qF )(ωj)(π(σjω)) − nP (t, q)
) ≤ C ∀ω ∈ N∞.

Lemma 4.7. For the amalgamated functions ψ̃(ω) = −2 log(ω1 + π(σω)) and

f̃(ω) = − logω1, we have

−
∫

log |T ′(x)|µt,q =

∫

ψ̃dµ̃t,q and

∫

log a1(x)dµt,q = −
∫

f̃dµ̃t,q. (4.2)

and tψ̃ − qf̃ is not cohomologous to a constant.
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Proof. (i). Assertion (4.2) is just a consequence of the facts

− log |T ′(π(ω))| = ψ̃(ω), log a1(π(ω)) = −f̃(ω) ∀ω ∈ I∞.

Suppose tψ̃ − qf̃ was not cohomologous to a constant. Then there would be a
bounded function g such that tψ̃ − qf̃ = g − g ◦ T + C, which implies

lim
n→∞

1

n

n−1∑

j=0

(tψ̃ − qf̃)(σjω) = lim
n→∞

g − g ◦ σn

n
+ C = C

for all ω ∈ I∞. On the other hand, if we take ω1 = [1, 1, · · · , ], ω2 = [2, 2, · · · ] and
ω3 = [3, 3, · · · ], we have

lim
n→∞

1

n

n−1∑

j=0

(tψ̃ − qf̃)(σjωi) = Ci,

where

C1 = 2t log(

√
5 − 1

2
), C2 = 2t log(

√
5 − 2

2
)+q log 2, C3 = 2t log(

√
5 − 3

2
)+q log 3.

Thus we get a contradiction. �

By Theorem 4.2 and the proof of Lemma 4.5, we know that D = {(t, q) : 2t−q >
1} is the analytic area of the pressure P (t, q). Applying Lemma 4.7 and Theorem
4.2, we get more:

Proposition 4.8. On D = {(t, q) : 2t− q > 1},
(1) P (t, q) is analytic, strictly convex.
(2) P (t, q) is strictly decreasing and strictly convex with respect to t. In other

words, ∂P
∂t

(t, q) < 0 and ∂2P
∂t2

(t, q) > 0. Furthermore,

∂P

∂t
(t, q) = −

∫

log |T ′(x)|dµt,q . (4.3)

(3) P (t, q) is strictly increasing and strictly convex with respect to q. In other

words, ∂P
∂q

(t, q) > 0 and ∂2P
∂q2 (t, q) > 0. Furthermore,

∂P

∂q
(t, q) =

∫

log a1(x)dµt,q . (4.4)

(4)

H(t, q) :=






∂2P
∂t2

∂2P
∂t∂q

∂2P
∂t∂q

∂2P
∂q2






is positive definite.

At the end of this subsection, we would like to quote some results by D. Mayer
[34] (see also M. Pollicott and H. Weiss [36]).

Proposition 4.9 ([34]). Let P (t) := P (t, 0) and µt := µt,0, then P (t) is defined in
(1/2,∞) and we have P (1) = 0 and µ1 = µG. Furthermore,

P ′(t) = −
∫

log |T ′(x)|dµt(x). (4.5)
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In particular

P ′(0) = −
∫

log |T ′(x)|dµG(x) = −λ0. (4.6)

Remark 4.10. Since µ1,0 = µ1 = µG, by (4.4), we have

∂P

∂q
(1, 0) =

∫

log a1(x)dµG = ξ0. (4.7)

4.3. Further study on P (t, q). We will use the following simple known fact of
convex functions.

Fact 4.11. Suppose f is a convex continuously differentiable function on an interval
I. Then f ′(x) is increasing and

f ′(x) ≤ f(y) − f(x)

y − x
≤ f ′(y) x, y ∈ I, x < y.

First we give an estimation for the pressure P (t, q) and show some behaviors of
P (t, q) when q tends to −∞ and 2t− 1 (t being fixed).

Proposition 4.12. For (t, q) ∈ D, we have

− t log 4 + log ζ(2t− q) ≤ P (t, q) ≤ log ζ(2t− q). (4.8)

Consequently,
(1) P (0, q) = log ζ(−q), and for any point (t0, q0) on the line 2t− q = 1,

lim
(t,q)→(t0,q0)

P (t, q) = ∞;

(2) for fixed t ∈ R,

lim
q→2t−1

∂P

∂q
(t, q) = +∞; (4.9)

(3) for fixed t ∈ R, we have

lim
q→−∞

P (t, q)

q
= 0, lim

q→−∞
∂P

∂q
(t, q) = 0. (4.10)

Proof. Notice that 1
ωj+1 ≤ [ωj , · · · , ωn + x] ≤ 1

ωj
. for x ∈ [0, 1) and 1 ≤ j ≤ n.

Thus we have

1

4nt

∞∑

ω=1

(ωq−2t)n ≤
∑

ω1,··· ,ωn

n∏

j=1

ωq
j [ωj , · · · , ωn + x]2t ≤

∞∑

ω=1

(ωq−2t)n.

Hence by Lemma 4.5 (ii), we get (4.8).
We get (1) immediately from (4.8).
Look at (2). For all q > q0, by the convexity of P (t, q) and Fact 4.11, we have

∂P

∂q
(t, q) ≥ P (t, q) − P (t, q0)

q − q0
.

Thus

lim
q→2t−1

∂P

∂q
(t, q) ≥ lim

q→2t−1

P (t, q0) − P (t, q)

q0 − q
= ∞.

Here we use the fact that lim
q→2t−1

P (t, q) = +∞. Hence we get (4.8).
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In order to show (3), we consider P (t, q)/q as function of q on (−∞, 2t−1)\{0}.
Noticed that for fixed t ∈ R, limq→−∞ ζ(2t− q) = 1. Thus

lim
q→−∞

log ζ(2t− q)

q
= 0.

Then the first formula in (4.10) is followed from (4.8).
Fix q0 < 2t− 1. Then for all q < q0, by the convexity of P (t, q) and Fact 4.11,

we have

∂P

∂q
(t, q) ≤ P (t, q0) − P (t, q)

q0 − q
.

Thus

lim
q→−∞

∂P

∂q
(t, q) ≤ lim

q→−∞
P (t, q0) − P (t, q)

q0 − q
= 0.

Hence by Proposition 4.8 (3), we get the second formula in (4.10). �

4.4. Properties of (t(ξ), q(ξ)). Recall that ξ0 =
∫

log a1(x)µG and D0 := {(t, q) :
2t− q > 1, 0 ≤ t ≤ 1}.

Proposition 4.13. For any ξ ∈ (0,∞), the system







P (t, q) = qξ,
∂P

∂q
(t, q) = ξ

(4.11)

admits a unique solution (t(ξ), q(ξ)) ∈ D0. For ξ = ξ0, the solution is (t(ξ0), q(ξ0)) =
(1, 0). The function t(ξ) and q(ξ) are analytic.

Proof. Existence and uniqueness of solution (t(ξ), q(ξ)). Recall that P (1, 0) = 0
and P (0, q) = log ζ(−q) (Proposition 4.12).

We start with a geometric argument which will followed by a rigorous proof.
Consider P (t, q) as a family of function of q with parameter t. It can be seen from
the graph (see Figure 3) that for any ξ > 0, there exists a unique t ∈ (0, 1], such
that the line ξq is tangent to P (t, ·). This t = t(ξ) can be described as the unique
point such that

inf
q<2t(ξ)−1

(

P (t(ξ), q) − qξ
)

= 0. (4.12)

We denote by q(ξ) the point where the infimum in (4.12) is attained. Then the
tangent point is (q(ξ), P (t(ξ), q(ξ))) and the derivative of P (t(ξ), q) − qξ (with
respect to q) at q(ξ) equals 0, i.e.,

(

P (t(ξ), q) − qξ
)′
|q(ξ) = 0.

Thus we have ∂P
∂q

(t(ξ), q(ξ)) = ξ. By (4.12), we also have P (t(ξ), q(ξ))− q(ξ)ξ = 0.

Therefore (t(ξ), q(ξ)) is a solution of (4.11). The uniqueness of q(ξ) follows by the
fact that ∂P

∂q
is monotonic with respect to q (Proposition 4.8).
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q

P (t, q)

t = 1

t = t(ξ)
t = 1

2

t = 0

q(ξ)

ξ0

0

ξ

Figure 3. Solution of (4.11)

Let us give a rigorous proof. By (4.9), (4.10) and the mean-value theorem, for
fixed t ∈ R and any ξ > 0, there exists a q(t, ξ) ∈ (−∞, 2t− 1) such that

∂P

∂q

(
t, q(t, ξ)

)
= ξ. (4.13)

The monotonicity of ∂P
∂q

with respect to q implies the uniqueness of q(t, ξ) (Propo-

sition 4.8).
Since P (t, q) is analytic, the implicit q(t, ξ) is analytic with respect to t and ξ.

Fix ξ and set

W (t) := P
(
t, q(t, ξ)

)
− ξq(t, ξ).

Since

W ′(t) =
∂P

∂t

(
t, q(t, ξ)

)
+
∂P

∂q

(
t, q(t, ξ)

)∂q

∂t
(t, ξ) − ξ

∂q

∂t
(t, ξ)

=
∂P

∂t

(
t, q(t, ξ)

)
(by(4.13))

< 0 (by Proposition 4.8(2)).

Thus W (t) is strictly decreasing.
Since P (0, q) = log ζ(−q) > 0 (q < −1), for ξ > 0 we have

W (0) = P
(
0, q(0, ξ)

)
− ξq(0, ξ) > 0.

Since P (1, q) is convex and P (1, 0) = 0, by Fact 4.11 we have

P
(
1, q(1, ξ)

)
− 0

q(1, ξ) − 0
≤ ∂P

∂q

(
1, q(1, ξ)

)
= ξ, if q(1, ξ) > 0,

and

0 − P
(
1, q(1, ξ)

)

0 − q(1, ξ)
≥ ∂P

∂q

(
1, q(1, ξ)

)
= ξ, if q(1, ξ) < 0.
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If q(1, ξ) = 0, we have in fact ξ = ξ0 and P
(
1, q(1, ξ)

)
= 0. Hence, in any case we

have

P
(
1, q(1, ξ)

)
− ξq(1, ξ) ≤ 0. (4.14)

Therefore, W (1) = P
(
1, q(1, ξ)

)
− ξq(1, ξ) ≤ 0.

Thus by the mean-value theorem and the monotonicity of W (t), there exists a
unique t = t(ξ) ∈ (0, 1] such that W (t(ξ)) = 0, i.e.

P
(

t(ξ), q
(
t(ξ), ξ

))

= ξq
(
t(ξ), ξ

)
. (4.15)

If we write q
(
t(ξ), ξ

)
as q(ξ), both (4.13) and (4.15) show that

(
t(ξ), q(ξ)

)
is

the unique solution of (4.11). For ξ = ξ0, the assertion in Proposition 4.9 that
P (0, 1) = 0 = 0 · ξ0 and the assertion of Remark 4.10 that ∂P

∂q
(1, 0) = ξ0 imply that

(0, 1) is a solution of (4.11). Then the uniqueness of the solution to (4.11) implies
(
t(ξ0), q(ξ0)

)
= (0, 1).

Analyticity of
(
t(ξ), q(ξ)

)
. Consider the map

F =

(
F1

F2

)

=

(
P (t, q) − qξ
∂P
∂q

(t, q) − ξ

)

.

Then the jacobian of F is equal to

J(F ) =:

(
∂F1

∂t
∂F1

∂q
∂F2

∂t
∂F1

∂q

)

=

(
∂P
∂t

∂P
∂q

− ξ
∂2P
∂t∂q

∂2P
∂q2

)

.

Consequently,

det(J(F ))|t=t(ξ),q=q(ξ) =
∂P

∂t
· ∂

2P

∂q2
6= 0.

Thus by the implicit function theorem, t(ξ) and q(ξ) are analytic. �

Now let us present some properties on t(ξ). Recall that ξ0 = ∂P
∂q

(1, 0).

Proposition 4.14. q(ξ) < 0 for ξ < ξ0; q(ξ0) = 0; q(ξ) > 0 for ξ > ξ0.

Proof. Since P (1, q) is convex and P (1, 0) = 0, by Fact 4.11, we have

P (1, q) − 0

q − 0
≥ ∂P

∂q
(1, 0) = ξ0, (q > 0);

0 − P (1, q)

0 − q
≤ ∂P

∂q
(1, 0) = ξ0, (q < 0).

Hence for all q < 1,

P (1, q) ≥ ξ0q. (4.16)

We recall that (t(ξ0), q(ξ0)) = (1, 0) is the unique solution of the system (4.11)
for ξ = ξ0. By the above discussion of the existence of t(ξ), t(ξ) = 1 if and only if
ξ = ξ0. Now we suppose t ∈ (0, 1). For ξ > ξ0, using (4.16), we have

P (t, q) > P (1, q) ≥ qξ0 ≥ qξ (∀q ≤ 0).

Thus q(ξ) > 0. For ξ < ξ0, using (4.16), we have

P (t, q) > P (1, q) ≥ qξ0 ≥ qξ (∀q ≥ 0).

Thus q(ξ) < 0. �
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Proposition 4.15. For ξ ∈ (0,+∞), we have

t′(ξ) =
q(ξ)

∂P
∂t

(t(ξ), q(ξ))
. (4.17)

Proof. Recall that






P (t(ξ), q(ξ)) = q(ξ)ξ,
∂P

∂q
(t(ξ), q(ξ)) = ξ.

(4.18)

By taking the derivation with respect to ξ of the first equation in (4.18), we get

t′(ξ)
∂P

∂t
(t(ξ), q(ξ)) + q′(ξ)

∂P

∂q
(t(ξ), q(ξ)) = q′(ξ)ξ + q(ξ).

Taking into account the second equation in (4.18), we get

t′(ξ)
∂P

∂t
(t(ξ), q(ξ)) = q(ξ). (4.19)

�

Proposition 4.16. We have t′(ξ) > 0 for ξ < ξ0, t
′(ξ0) = 0, and t′(ξ) < 0 for

ξ > ξ0. Furthermore,

t(ξ) → 0 (ξ → 0), (4.20)

t(ξ) → 1/2 (ξ → +∞). (4.21)

Proof. By Propositions 4.14 and 4.15 and the fact ∂P
∂t

> 0, t(ξ) is increasing on
(0, ξ0) and decreasing on (ξ0,∞). Then by the analyticity of t(ξ), we can obtain
two analytic inverse functions on the two intervals respectively. For the first inverse
function, write ξ1 = ξ1(t). Then ξ′1(t) > 0 and

ξ1(t) =
P (t, q(t))

q(t)
=
∂P

∂q
(t, q(t)).

(the equations (4.11) are considered as equations on t). By Proposition 4.14, we
have q(ξ1(t)) < 0 then P (t, q(ξ1(t))) < 0. By Proposition 4.12 (1), lim

q→2t−1
P (t, q) =

∞. Thus there exists q0(t) such that q0(t) > q(t) and P (t, q0(t)) = 0. Therefore

ξ1(t) =
∂P

∂q
(t, q(t)) <

∂P

∂q
(t, q0(t)).

Since P (0, q) = log ζ(−q), we have limt→0 q0(t) = ∞. Thus we get

lim
t→0

∂P

∂q
(t, q0(t)) = lim

q→−∞
∂P

∂q
(0, q) = 0.

Hence by ξ1(t) ≥ 0, we obtain limt→0 ξ1(t) = 0 which implies (4.20).
Write ξ2 = ξ2(t) for the second inverse function. Then ξ′2(t) < 0 and

ξ2(t) =
P (t, q(t))

q(t)
=
∂P

∂q
(t, q(t)) >

∂P

∂q
(t, 0) → ∞ (t → 1/2).

This implies (4.21). �

Let us summarize. We have proved that t(ξ) is analytic on (0,∞), lim
ξ→0

t(ξ) =

0 and lim
ξ→∞

t(ξ) = 1/2. We have also proved that t(ξ) is increasing on (0, ξ0),

decreasing on (ξ0,∞) and t(ξ0) = 1.
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5. Khintchine spectrum

Now we are ready to study the Hausdorff dimensions of the level set

Eξ = {x ∈ [0, 1) : lim
n→∞

1

n

n∑

j=1

log aj(x) = ξ}.

Since Q is countable, we need only to consider

{x ∈ [0, 1) \ Q : lim
n→∞

1

n

n∑

j=1

log aj(x) = ξ}.

which admits the same Hausdorff dimension with Eξ and is still denoted by Eξ.

5.1. Proof of Theorem 1.2 (1) and (2). Let (t, q) ∈ D and µt,q, µ̃t,q be the
measures in Proposition 4.6. For x ∈ [0, 1) \ Q, let x = [a1, · · · , an, · · · ] and ω =
π−1(x). Then ω = a1 · · · an · · · ∈ NN and

µt,q(In(x)) = µt,q(In(a1, · · · , an)) = µ̃t,q([ω|n]).

By the Gibbs property of µ̃t,q,

µ̃t,q(π([ω|n])) ≍ exp(−nP (t, q))
n∏

j=1

ωq
j (ωj + π(σjω))−2t.

In other words,

µt,q(In(x)) ≍ exp(−nP (t, q))

n∏

j=1

aq
j [aj , · · · , an, · · · ]2t.

By Lemma 2.7, |In(x)| ≍ |(T n)′(x)|−1 =
∏n−1

j=0 |T j(x)|2. Thus we have the following
Gibbs property of µt,q:

µt,q(In(x)) ≍ exp(−nP (t, q))|In(x)|t
n∏

j=1

aq
j . (5.1)

It follows that

δµt,q
(x) = lim

n→∞
logµt,q(In(x))

log |In(x)| = t+ lim
n→∞

q · 1
n

∑n
j=1 log aj − P (t, q)
1
n

log |In(x)| .

The Gibbs property of µ̃t,q implies that µt,q is ergodic. Therefore,

δµt,q
(x) = t+

q
∫

log a1(x)dµt,q − P (t, q)

−
∫

log |T ′(x)|dµt,q

µt,q − a.e..

Using the formula (4.3) and (4.4) in Proposition 4.8, we have

δµt,q
(x) = t+

q ∂P
∂q

(t, q) − P (t, q)

∂P
∂t

(t, q)
µt,q − a.e.. (5.2)

Moreover, the ergodicity of µ̃t,q also implies that the Lyapunov exponents λ(x)
exist for µt,q almost every x in [0, 1). Thus by (5.1), Lemma 2.12 and Lemma 2.13,
we obtain

dµt,q
(x) = δµt,q

(x) = t+
q ∂P

∂q
(t, q) − P (t, q)

∂P
∂t

(t, q)
µt,q − a.e.. (5.3)
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For ξ ∈ (0,∞), choose (t, q) = (t(ξ), q(ξ)) ∈ D0 be the unique solution of (4.11).
Then (5.3) gives

dµt(ξ),q(ξ)
(x) = t(ξ) µt,q − a.e..

By the ergodicity of µ̃t(ξ),q(ξ) and (4.4), we have for µt(ξ),q(ξ) almost every x,

lim
n→∞

1

n

n∑

j=1

log aj(x) =

∫

log a1(x)dµt(ξ),q(ξ) =
∂P

∂q
(t(ξ), q(ξ)) = ξ.

So µt(ξ),q(ξ) is supported on Eξ. Hence

dim(Eξ) ≥ dimµt(ξ),q(ξ) = t(ξ). (5.4)

In the following we will show that

dim(Eξ) ≤ t (∀t > t(ξ)). (5.5)

Then it will imply that dim(Eξ) = t(ξ) for any ξ > 0. For any t > t(ξ), take an
ǫ0 > 0 such that

0 < ǫ0 <
P (t(ξ), q(ξ)) − P (t, q(ξ))

q(ξ)
if q(ξ) > 0,

and

0 < ǫ0 <
P (t, q(ξ)) − P (t(ξ), q(ξ))

q(ξ)
if q(ξ) < 0.

(For the special case q(ξ) = 0, i.e., ξ = ξ0, we have dimEξ = 1 which is a well-
known result). Such an ǫ0 exists, for P (t, q) is strictly decreasing with respect to t.
For all n ≥ 1, set

En
ξ (ǫ0) :=

{

x ∈ [0, 1) \ Q : ξ − ǫ0 <
1

n

n∑

j=1

log aj(x) < ξ + ǫ0

}

.

Then we have

Eξ ⊂
∞⋃

N=1

∞⋂

n=N

En
ξ (ǫ0).

Let I(n, ξ, ǫ0) be the collection of all n-th order cylinders In(a1, · · · , an) such that

ξ − ǫ0 <
1

n

n∑

j=1

log aj(x) < ξ + ǫ0.

Then
En

ξ (ǫ0) =
⋃

J∈I(n,ξ,ǫ0)

J.

Hence {J : J ∈ I(n, ξ, ǫ0), n ≥ 1} is a cover of Eξ. When q(ξ) > 0, by (5.1), we
have

∞∑

n=1

∑

J∈I(n,ξ,ǫ0)

|J |t

≤
∞∑

n=1

∑

(a1···an)>en(ξ−ǫ0)

enP (t,q(ξ))

(a1 · · · an)q(ξ)
· |J |

t(a1 · · · an)q(ξ)

enP (t,q(ξ))

≤ C ·
∞∑

n=1

en(P (t,q(ξ))−(ξ−ǫ0)q(ξ)) ·
∑

J∈I(n,ξ,ǫ0)

µt,q(ξ)(J) <∞
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where C is a constant. When q(ξ) < 0,

∞∑

n=1

∑

J∈I(n,ξ,ǫ0)

|J |t

≤
∞∑

n=1

∑

(a1···an)<en(ξ+ǫ0)

enP (t,q(ξ))

(a1 · · ·an)q(ξ)
· |J |

t(a1 · · · an)q(ξ)

enP (t,q(ξ))

≤ C ·
∞∑

n=1

en(P (t,q(ξ))−(ξ+ǫ0)q(ξ)) ·
∑

J∈I(n,ξ,ǫ0)

µt,q(ξ)(J) <∞.

Hence we get (5.5).
For the special case ξ = 0, we need only to show dim(E0) = 0. This can be

induced by the same process. For any t > 0, since limξ→0 t(ξ) = 0, there exists
ξ > 0 such that 0 < t(ξ) < t. We can also choose ǫ0 > 0 such that

P (t, q(ξ)) − P (t(ξ), q(ξ))

q(ξ)
> ǫ0.

For n ≥ 1, set

En
0 (ǫ0) :=

{

x ∈ [0, 1) \ Q :
1

n

n∑

j=1

log aj(x) < ξ + ǫ0

}

.

We have

E0 ⊂
∞⋃

N=1

∞⋂

n=N

En
0 (ǫ0).

By the same calculation, we get dim(E0) ≤ t. Since t can be arbitrary small, we
obtain dim(E0) = 0.

By the discussion in the preceding subsection, we have proved Theorem 1.2 (1)
and (2).

5.2. Proof of Theorem 1.2 (3) and (4). We are going to investigate more
properties of the functions q(ξ) and t(ξ).

Proposition 5.1. We have

lim
ξ→0

q(ξ) = −∞, lim
ξ→∞

q(ξ) = 0.

Proof. We prove the first limit by contradiction. Suppose there exists a subsequence
ξδ → 0 such that q(ξδ) → M > −∞. Then by (4.20) and Proposition 4.8 (3), we
have

lim
ξδ→0

∂P

∂q
(t(ξδ), q(ξδ)) =

∂P

∂q
(0,M) > 0.

This contradicts with

∂P

∂q
(t(ξδ), q(ξδ)) = ξδ → 0.

On the other hand, we know that q(ξ) ≥ 0 when ξ ≥ ξ0, and 0 ≤ q(ξ) < 2t(ξ) − 1.
Then by (4.21), we have lim

ξ→∞
q(ξ) = 0. �
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Apply this proposition and (4.17), combining (4.9) and (4.10). We get

lim
ξ→0

t′(ξ) = +∞, lim
ξ→∞

t′(ξ) = 0.

This is the assertion (3) of Theorem 1.2.

Now we will prove the last assertion of Theorem 1.2, i.e., t′′(ξ0) < 0 and there
exists ξ1 > ξ0 such that t′′(ξ1) > 0, basing on the following proposition.

Proposition 5.2. For ξ ∈ (0,+∞), we have

q′(ξ) =
1 − t′(ξ) ∂2P

∂t∂q

(
t(ξ), q(ξ)

)

∂2P
∂q2

(
t(ξ), q(ξ)

) ; (5.6)

t′′(ξ) =
t′(ξ)2 ∂2P

∂t2

(
t(ξ), q(ξ)

)
− q′(ξ)2 ∂2P

∂q2

(
t(ξ), q(ξ)

)

−∂P
∂t

(
t(ξ), q(ξ)

) . (5.7)

Proof. Taking derivative of (4.19) with respect to ξ, we get

t′(ξ)2
∂2P

∂t2
(
t(ξ), q(ξ)

)
+ q′(ξ)t′(ξ)

∂2P

∂q∂t

(
t(ξ), q(ξ)

)
+ t′′(ξ)

∂P

∂t

(
t(ξ), q(ξ)

)
= q′(ξ).

(5.8)
Taking derivative of the second equation of (4.18) with respect to ξ, we get

t′(ξ)
∂2P

∂t∂q

(
t(ξ), q(ξ)

)
+ q′(ξ)

∂2P

∂q2
(
t(ξ), q(ξ)

)
= 1, (5.9)

which gives immediately (5.6).
Subtract (5.9) multiplied by q′(ξ) from (5.8), we get (5.7). �

We divide the proof of the assertion (4) of Theorem 1.2 into two parts.

Proof of t′′(ξ0) < 0. By Proposition 4.8, ∂P
∂t

(1, 0) < 0. Since q(ξ0) = 0, by (4.17)
we have t′(ξ0) = 0. Also by Proposition 4.8, we get

0 <
∂2P

∂t2
(t(ξ0), q(ξ0)) =

∂2P

∂t2
(1, 0) < +∞,

and

0 ≤ ∂2P

∂q2
(t(ξ0), q(ξ0)) =

∂2P

∂q2
(1, 0) < +∞.

By (5.6) and (5.7), we have

t′′(ξ) =
t′(ξ)2 ∂2P

∂t2
(t(ξ), q(ξ))∂2P

∂q2 (t(ξ), q(ξ)) −
(

1 − t′(ξ) ∂2P
∂t∂q

(t(ξ), q(ξ))
)2

−∂P
∂t

(t(ξ), q(ξ))∂2P
∂q2 (t(ξ), q(ξ))

. (5.10)

Thus by t′(ξ0) = 0, we have t′′(ξ0) < 0. �

Proof of t′′(ξ1) > 0. Proposition 5.1 shows lim
ξ→∞

q(ξ) = 0 and we know that

q(ξ0) = 0. However, q(ξ) is not always equal to 0, so there exists a ξ1 ∈ [ξ0,+∞),
such that q′(ξ1) < 0. Write

H(t, q) :=






∂2P
∂t2

∂2P
∂t∂q

∂2P
∂t∂q

∂2P
∂q2
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and add (5.9) multiplied by q′(ξ) to (5.8), we get
(

t′(ξ), q′(ξ)
)

H(t, q)
(
t′(ξ), q′(ξ)

)T
+
∂P

∂t

(
t(ξ), q(ξ)

)
t′′(ξ) = 2q′(ξ). (5.11)

Since H(t, q) is definite positive, ∂P
∂t

(t, q) < 0 and q′(ξ1) < 0, we have t′′(ξ1) > 0.
This completes the proof. �

6. Lyapunov spectrum

In this last section, we follow the same procedure as in Section 4 and Section 5 to
deduce the Lyapunov spectrum of the Gauss map. Kesseböhmer recently pointed
out to us that the Lyapunov spectrum was also studied by M. Kesseböhmer and B.
Stratmann [25].

Take
F = Ψ = {log |ψ′

i| : i ∈ N}.
instead of F = {− log i : i ∈ N} and Ψ = {log |ψ′

i| : i ∈ N}. Then the strong Hölder
family becomes (t̃− q)Ψ and D should be changed to

D̃ := {(t̃, q) : t̃− q > 1/2}.
Here and in the rest of this section we will use t̃ instead of t to distinguish the present
situation from that of Khintchine exponents. What we have done in Section 4 is
still useful. Denote by P1(t̃, q) the pressure P ((t̃− q)Ψ). Then

P1(t̃, q) = P (t̃− q), with P (·) = P (·, 0),

where P (·, ·) is the pressure function studied in Section 4. Hence P1(t̃, q) is analytic
and similar equations (4.3) and (4.4) are obtained just with log |T ′(x)| instead of
log a1(x).

To determine the Lyapunov spectrum, we begin with the following proposition
which take the place of Proposition 4.12.

Proposition 6.1. For (t̃, q) ∈ D̃, we have

− (t̃− q) log 4 + log ζ(2t̃− 2q) ≤ P1(t̃, q) ≤ log ζ(2t̃− 2q). (6.12)

Consequently,
(1) for any point (t̃0, q0) on the line t̃− q = 1/2,

lim
(t̃,q)→(t̃0,q0)

P (t̃, q) = ∞;

(2) for fixed t̃ ∈ R,

lim
q→t̃− 1

2

∂P1

∂q
(t̃, q) = +∞;

(3) recalling γ0 = 2 log 1+
√

5
2 , for fixed t̃ ∈ R,

lim
q→−∞

P1(t̃, q)

q
= γ0, lim

q→−∞
∂P1

∂q
(t̃, q) = γ0.

Proof. P1(t̃, q) is defined as

P1(t̃, q) := lim
n→∞

1

n
log

∞∑

ω1=1

· · ·
∞∑

ωn=1

exp



 sup
x∈[0,1]

log

n∏

j=1

([ωj , · · · , ωn + x])2(t̃−q)



 .

The proofs of (1) and (2) are the same as in the proof of Proposition 4.12.
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To get (3), we follow another method. Since P1(t̃, q) = P (t̃ − q), we need only
to show

lim
t̃→∞

P ′(t̃) = −γ0, P (t̃) + t̃γ0 = o(t̃) (t̃→ ∞).

By Proposition 4.9, P (t̃) is analytic on (1/2,∞). Let E := {P ′(t̃) : t̃ > 1/2},
denote by Int(E) and Cl(E) the interior and closure of E. By a result in [24], we
have

Int(E) ⊂
{

−
∫

log |T ′(x)|dµ : µ ∈ M
}

⊂ Cl(E),

where M is the set of the invariant measures on [0, 1]. By Birkhoff’s theorem, for
any µ ∈ M, we have

∫

λ(x)dµ =

∫

log |T ′(x)|dµ.

However, we know that λ(x) ≥ γ0 = 2 log 1+
√

5
2 . Thus

−
∫

log |T ′(x)|dµ ≤ −γ0 ∀µ ∈ M. (6.13)

Let θ0 =
√

5−1
2 . Then T (θ0) = θ0 and the Dirac measure µ = δθ0 is invariant, and

−
∫

log |T ′(x)|dδθ0 = − log |T ′(θ0)| = −γ0.

However, by the continuity of P ′, we know that E is an interval. Therefore −γ0 is
the right endpoint of E. Since P ′(t̃) is increasing, we get

lim
t̃→∞

P ′(t̃) = −γ0.

Let {βn}n≥1 be such that βn < −γ0 and lim
n→∞

βn = −γ0. There exist tn ∈ R

such that tn → ∞ and P ′(tn) = βn. By the variational principle ([40], see also
[34]), there exists an ergodic measure µtn

such that

P (tn) = hµtn
− tn

∫

log |T ′|(x)dµtn
,

where hµtn
stands for the metric entropy of µtn

. By the compactness of M there
exists an invariant measure µ∞ which is the weak limit of µtn

(more precisely some
subsequence of µtn

. But, without loss of generality, we write it as µtn
). By the

semi-continuity of metric entropy, for any ǫ > 0 we have hµtn
≤ hµ∞

+ ǫ when tn
is large enough. Thus by (6.13),

P (tn) ≤ hµ∞
+ ǫ− tnγ0.

We will show that hµ∞
= 0 (see the next lemma), which will imply

P (tn) ≤ ǫ− tnγ0.

However, by the definition of P1(t̃, q), P (t̃) can be written as

P (t̃) = lim
n→∞

1

n
log

∞∑

ω1=1

· · ·
∞∑

ωn=1

exp

(

sup
x∈[0,1]

log

n∏

j=1

([ωj , · · · , ωn + x])2t̃

)

.
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Thus if we just take one term in the summation, we have

P (t̃) ≥ lim
n→∞

1

n
log exp

(

sup
x∈[0,1]

log

n∏

j=1

([1, · · · , 1
︸ ︷︷ ︸

n−j

, 1 + x])2t̃

)

= −t̃γ0.

Hence we get

P (t̃) + t̃γ0 = o(t̃) (t̃ → ∞).

�

Now we are led to show

Lemma 6.2. hµ∞
= 0.

Proof. Let hµ∞
(x) be the local entropy of µ∞ at x which is defined by

hµ∞
(x) = lim

n→∞
logµ∞(In(x))

n
,

if the limit exists. Let Dµ∞

(x) be the lower local dimension of µ∞ at x which is
defined by

Dµ∞

(x) := lim inf
r→0

logµ∞(B(x, r))

log r
.

By Shannon-McMillan-Breiman theorem, hµ∞
(x) exists µ∞-almost everywhere. It

is also known that λ(x) exists almost everywhere (by Birkhoff’s theorem). So, by
the definitions, we have

hµ∞
(x) = Dµ∞

(x)λ(x) µ∞ − a.e..

By Birkhoff’s theorem and (4.5),
∫

λ(x)dµ∞(x) =

∫

log |T ′|(x)dµ∞(x)

= lim
n→∞

∫

log |T ′|(x)dµtn

= − lim
n→∞

P ′(tn) = γ0 <∞.

Hence λ(x) is almost everywhere finite. Recall that [8]

hµ∞
=

∫

hµ∞
(x)dµ∞(x).

Thus it suffices to prove

Dµ∞

(x) = 0 µ∞ − a.e..

That means ([13]) the upper dimension of µ∞ is zero, i.e., µ∞ is supported by a
zero-dimensional set.

Since
∫
λ(x)dµ∞(x) = γ0 and λ(x) ≥ γ0 for any x, we have for µ∞ almost ev-

erywhere λ(x) = γ0. Thus by Birkhoff’s theorem, µ∞ is supported by the following
set

{

x ∈ [0, 1] : lim
n→∞

1

n

n−1∑

j=0

log |T ′(T jx)| = γ0

}

. (6.14)

Thus we need only to show that the Hausdorff dimension of this set is zero.
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Recall

lim
n→∞

1

n

n−1∑

j=0

log |T ′(T jx)| = 2 lim
n→∞

1

n
log qn(x).

By Lemma 2.8, (6.14) is in fact the following

{

x ∈ [0, 1] : lim
n→∞

1

n

n∑

j=1

log aj(x) = 0

}

. (6.15)

However, the Hausdorff dimension of (6.15) is nothing but t(0), the special case
ξ = 0 discussed in the subsection 5.1., which was proved to be zero. Thus the proof
is completed. �

Recall that λ0 =
∫

log |T ′(x)|dµG. Let D̃0 := {(t̃, q) : t̃ − q > 1/2, 0 ≤ t̃ ≤ 1}.
We have a proposition similar to Proposition 4.13.

Proposition 6.3. For any β ∈ (γ0,∞), the system






P1(t̃, q) = qβ,
∂P1

∂q
(t̃, q) = β

(6.16)

admits a unique solution (t̃(β), q(β)) ∈ D̃0. For β = λ0, the solution is (t̃(λ0), q(λ0)) =
(1, 0). The functions t̃(β) and q(β) are analytic.

With the same argument, we can prove that t̃(β) is the spectrum of Lyapunov
exponent. It is analytic, increasing on (γ0, λ0] and decreasing on (λ0,∞). It is also
neither concave nor convex. In other words, Theorem 1.3 can be similarly proved.

1
2− 1

2 β

t = 0

t = 1
2

t(β)

t = 1

0 q

P (t, q)

Figure 4. Solution of (6.16)

We finish the paper by the observation that the Lyapunov spectrum can be
stated as follows, which is similar to the classic formula, but with the difference
that we have to divide the Legendre transform by β.
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Proposition 6.4.

t̃(β) =
P (−q(β))

β
− q(β) =

1

β
inf
q
{P (−q) − qβ}. (6.17)

Proof. In fact, the family of functions P1(t̃, q) with parameter t̃ are just right trans-
lation of the function P (−q) with the length t̃. Write the system (6.16) as follows

{
P (t̃− q) = qβ,
dP
dq

(t̃− q) = β.
(6.18)

If we denote by µq, the Gibbs measure with respect to potential qΨ, then by a left
translation the system (6.18) can be written as

{
P (−q) = (t̃+ q)β,
dP
dq

(−q) = β.

Thus
{

t̃ = P (−q)
β

− q,
dP
dq

(−q) = β.

By using the second equation, we can write q as a function of β, hence we get
(6.17). �

− 1
2 ββ

t = 0

P (−q)

t(β)

P (t− q)

0
−1 q

P1(t, q)

Figure 5. The other way to see t(β)
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[30] R. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to

the geometry of continued fractions, Trans. Amer. Math. Soc., 351 (12) (1999), 4995-5025.
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