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In this work, we prove the existence of a center manifold for some partial functional differential equations, whose linear part is not necessarily densely defined but satisfies the Hille-Yosida condition. The attractiveness of the center manifold is also shown when the unstable space is reduced to zero. We prove that the flow on the center manifold is completely determined by an ordinary differential equation in a finite dimensional space. In some critical cases, when the exponential stability is not possible, we prove that the uniform asymptotic stability of the equilibrium is completely determined by the uniform asymptotic stability of the reduced system on the center manifold.

Introduction

The aim of this paper is to study the existence of a center manifold and stability in some critical cases for the following partial functional differential equation (1.1) d dt u(t) = Au(t) + L(u t ) + g(u t ), t ≥ 0

u 0 = ϕ ∈ C := C ([-r, 0] ; E) ,
where A is not necessarily densely defined linear operator on a Banach space E and C is the space of continuous functions from [-r, 0] to E endowed with the uniform norm topology. For every t ≥ 0 and for a continuous u : [-r, +∞) -→ E, the function u t ∈ C is defined by u t (θ) = u(t + θ) for θ ∈ [-r, 0] . L is a bounded linear operator from C into E and g is a Lipschitz continuous function from C to E with g(0) = 0.

In this work, we assume that A is a Hille-Yosida operator: there exist ω ∈ l R and M 0 ≥ 1 such that (ω, ∞) ⊂ ρ(A) and (λI -A) -n ≤ M 0 (λω) n for λ ≥ ω and n ∈ N, where ρ(A) is the resolvent set of A. In [START_REF] Travis | Existence and stability for partial functional differential equations[END_REF], the authors proved the existence, regularity and stability of solutions of (1.1) when A generates a strongly continuous semigroup, which is equivalent by Hille-Yosida Theorem to that A is a Hille-Yosida operator and D(A) = E. In [START_REF] Adimy | Local existence and linearized stability for partial functional differential equations[END_REF], the authors used the integrated semigroup approach to prove the existence and regularity of solutions of (1.1) when A is only a Hille-Yosida operator. Moreover, it was shown that the phase space of equation (1.1) is given by Y := ϕ ∈ C : ϕ(0) ∈ D(A) .

Assume that the function g is differentiable at 0 with g ′ (0) = 0. Then the linearized equation of (1.1) around the equilibrium zero is given by (1.2)

d dt v(t) = Av(t) + L(v t ), t ≥ 0 v 0 = ϕ ∈ C.
If all characteristic values (see section 2) of equation (1.2) have negative real part, then the zero equilibrium of (1.1) is uniformly asymptotically stable. However, if there exists at least one characteristic value with a positive real part, then the zero solution of (1.1) is unstable. In the critical case, when exponential stability is not possible and there exists a characteristic value with zero real part, the situation is more complicated since either stability or instability may hold. The subject of the center manifold is to study the stability in this critical case. For differential equations, the center manifold theory has been extensively studied, we refer to [START_REF] Carr | Applications of Center Manifold Theory[END_REF], [START_REF] Chow | Invariant manifolds for flows in Banach spaces[END_REF], [START_REF] Da Prato | Stability, instability and center manifold theorem for fully nonlinear autonomous parabolic equations in Banach spaces[END_REF], [START_REF] Hale | Critical cases for neutral functional differential equations[END_REF], [START_REF] Hale | Theory of Functional Differential Equations[END_REF], [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF], [START_REF] Keller | The stable, center-stable, center, center-unstable and unstable manifolds[END_REF], [START_REF] Keller | Stability of the center-stable manifold[END_REF], [START_REF] Palmer | On the stability of the center manifold[END_REF], [START_REF] Shimanov | On the stability in the critical case of a zero root for systems with time lag[END_REF] and [START_REF] Vanderbauwhede | Center manifolds and contractions on a scale of Banach spaces[END_REF].

In [START_REF] Lin | Centre manifolds for partial differential equations with delays[END_REF] and [START_REF] So | Center manifolds for functional partial differential equations: Smoothness and attractivity[END_REF], the authors proved the existence of a center manifold when D(A) = E. They established the attractiveness of this manifold when the unstable space is reduced to zero. In [START_REF] Faria | Smoothness of center manifolds for maps and formal adjoints for semilinear FDEs in general Banach spaces[END_REF], the authors proved the existence of a center manifold for a given map. Their approach was applied to show the existence of a center manifold for partial functional differential equations in Banach spaces in the case when the linear part generates a compact strongly continuous semigroup. Recently, in [START_REF] Minh | Invariant manifolds of partial functional differential equations[END_REF], the authors studied the existence of invariant manifolds for an evolutionary process in Banach spaces and in particularly for some partial functional differential equations. For more details about the center manifold theory and its applications in the context of partial functional differential equations, we refer to the monograph [START_REF] Wu | Theory and Applications of Partial Functional Differential Equations[END_REF]. Here we consider equation (1.1) when the domain D(A) is not necessarily dense in E. The nondensity occurs, in many situations, from restrictions made on the space where the equations are considered (for example, periodic continuous solutions, H"older continuous functions) or from boundary conditions ( the space C 1 with null value on the boundary is not dense in the space of continuous functions).

For more details, we refer to [START_REF] Adimy | Semi groupes intégrés et équations différentielles à retard en dimension infinie[END_REF], [START_REF] Adimy | A class of linear partial neutral functional differential equations with nondense domain[END_REF], [START_REF] Adimy | Local existence and linearized stability for partial functional differential equations[END_REF], [START_REF] Adimy | Existence and stability of solutions for a class of partial neutral functional differential equations[END_REF] and [START_REF] Adimy | Spectral decompostion for some partial neutral functional differential equations[END_REF]. The organization of this work is as follows: in section 2, we recall some results of integral solutions and the semigroup solution and we describe the variation of constants formula for the associated non-homogeneous problem of (1.2). We also give some results on the spectral analysis of the linear equation (1.2). In section 3, we prove the existence of a global center manifold. In section 4, we prove that this center manifold is exponentially attractive when the unstable space is reduced to zero. In section 5, we prove that the flow on the center manifold is governed by an ordinary differential equation in a finite dimensional space. In section 6, we prove a result on the stability of the equilibrium in the critical case. We also establish a new reduction principal for equation (1.1). In section 7, we study the existence of a local center manifold when g is only defined and C 1 -function in a neighborhood of zero. In the last section, we propose a result on the stability when zero is a simple characteristic value and no characteristic value lies on the imaginary axis.

Spectral analysis and variation of constants formula

In the following we assume (H 1 ) A is a Hille-Yosida operator.

Definition 2.1. A continuous function

u : [-r, +∞) → E is called an integral solution of equation (1.1) if i) t 0 u(s)ds ∈ D(A) for t ≥ 0, ii) u(t) = ϕ(0) + A t 0 u(s)ds + L t 0 u s ds + t 0 g(u s )ds for t ≥ 0, iii) u 0 = ϕ.
We will call, without causing any confusion, the integral solution the function u t , for t ≥ 0.

Let A 0 be the part of the operator A in D(A) which is defined by

D(A 0 ) = x ∈ D(A) : Ax ∈ D(A) A 0 x = Ax for x ∈ D(A 0 ).
The following result is well known (see [START_REF] Adimy | Local existence and linearized stability for partial functional differential equations[END_REF]).

Lemma 2.2. A 0 generates a strongly continuous semigroup (T 0 (t)) t≥0 on D(A).

For the existence and uniqueness of an integral solution of (1.1), we need the following condition.

(H 2 ) g : C -→ E is Lipschitz continuous.
The following result can be found in [START_REF] Adimy | Local existence and linearized stability for partial functional differential equations[END_REF]. Proposition 2.3. Assume that (H 1 ) and (H 2 ) hold. Then for ϕ ∈ Y, equation (1.1) has a unique global integral solution on [-r, ∞) which is given by the following formula

(2.1) u(t) =    T 0 (t)ϕ(0) + lim λ→∞ t 0 T 0 (t -s)B λ (L(u s ) + g(u s )) ds, t ≥ 0 ϕ(t), t ∈ [-r, 0] ,
where

B λ = λ(λI -A) -1 for λ ≥ ω.
Assume that g is differentiable at zero with g ′ (0) = 0. Then the linearized equation of (1.1) at zero is given by equation (1.2). Define the operator U (t) on Y by

U (t)ϕ = v t (., ϕ),
where v is the unique integral solution of equation (1.2) corresponding to the initial value ϕ. Then (U (t)) t≥0 is a strongly continuous semigroup on Y . One has the following linearized principle.

Theorem 2.4. Assume that (H 1 ) and (H 2 ) hold. If the zero equilibrium of (U (t)) t≥0 is exponentially stable, in the sense that there exist N 0 ≥ 1 and ǫ ≥ 0 such that

|U (t)| ≤ N 0 e -ǫt for t ≥ 0,
then the zero equilibrium of equation (1.1) is locally exponentially stable, in the sense that there exist δ ≥ 0, µ ≥ 0 and k ≥ 1 such that 

|x t (., ϕ)| ≤ ke -µt |ϕ| for ϕ ∈ Y
)| ≥ ε.
The above theorem is a consequence of the following result. For more details on the proof, we refer to [START_REF] Adimy | Local existence and linearized stability for partial functional differential equations[END_REF].

Theorem 2.5. [START_REF] Desch | Linearized stability for nonlinear semigroups[END_REF] Let (V (t)) t≥0 be a nonlinear strongly continuous semigroup on a subset Ω of a Banach space Z and assume that x 0 ∈ Ω is an equilibrium of (V (t)) t≥0 such that V (t) is differentiable at x 0 , with W (t) the derivative at x 0 of V (t) for each t ≥ 0. Then, (W (t)) t≥0 is a strongly continuous semigroup of bounded linear operators on Z. If the zero equilibrium of (W (t)) t≥0 is exponentially stable, then x 0 is locally exponentially stable equilibrium of (V (t)) t≥0 . Moreover, if Z can be decomposed as Z = Z 1 ⊕ Z 2 where Z i are W -invariant subspaces of Z, Z 1 is a finite-dimensional space and with

ω 1 = lim h→∞ 1 h log |W (h)|Z 2 | we have inf {|λ| : λ ∈ σ (W (t)|Z 1 )} ≥ e ω 1 t for t ≥ 0,
then the equilibrium x 0 is unstable in the sense that there exist ε ≥ 0 and sequences (y n ) n converging to x 0 and (t n ) n of positive real numbers such that

|V (t n )y n -x 0 | ≥ ε.
Some informations of the infinitesimal generator of (U (t)) t≥0 can be found in [START_REF] Adimy | Spectral decompostion for some partial neutral functional differential equations[END_REF]. For example, we know that Theorem 2.6. The infinitesimal generator A U of (U (t)) t≥0 on Y is given by

   D(A U ) = ϕ ∈ C 1 ([-r, 0] ; E) : ϕ(0) ∈ D(A), ϕ ′ (0) ∈ D(A) and ϕ ′ (0) = Aϕ(0) + L(ϕ) A U ϕ = ϕ ′ for ϕ ∈ D(A U ).
We now make the next assumption about the operator A.

(H 3 ) The semigroup (T 0 (t)) t≥0 is compact on D(A) for t ≥ 0.

Theorem 2.7. Assume that (H 3 ) holds. Then, U (t) is a compact operator on Y for t ≥ r.

Proof. Let t ≥ r and D be a bounded subset of Y . We use Ascoli-Arzela's theorem to show that U (t)ϕ :

ϕ ∈ D is relatively compact in Y . Let ϕ ∈ D, θ ∈ [-r, 0] and ε ≥ 0 such that t + θ -ε ≥ 0. Then (U (t)ϕ) (θ) = T 0 (t + θ)ϕ(0) + lim λ→+∞ t+θ 0 T 0 (t + θ -s)B λ L(U (s)ϕ)ds. Note that t+θ 0 T 0 (t + θ -s)B λ L(U (s)ϕ)ds = t+θ-ε 0 T 0 (t + θ -s)B λ L(U (s)ϕ)ds + t+θ t+θ-ε T 0 (t + θ -s)B λ L(U (s)ϕ)ds and lim λ→+∞ t+θ-ε 0 T 0 (t+θ-s)B λ L(U (s)ϕ)ds = T 0 (ε) lim λ→+∞ t+θ-ε 0 T 0 (t+θ-ε-s)B λ L(U (s)ϕ)ds.
The assumption (H 3 ) implies that

T 0 (ε) lim λ→+∞ t+θ-ε 0 T 0 (t + θ -ε -s)B λ L(U (s)ϕ)ds : ϕ ∈ D is relatively compact in E. As the semigroup (U (t)) t≥0 is exponentially bounded, then there exists a positive constant b 1 such that lim λ→+∞ t+θ t+θ-ε T 0 (t + θ -s)B λ L(U (s)ϕ)ds ≤ b 1 ε for ϕ ∈ D.
Consequently, the set

lim λ→+∞ t+θ t+θ-ε T 0 (t + θ -s)B λ L(U (s)ϕ)ds : ϕ ∈ D is totally bounded in E. We deduce that (U (t)ϕ) (θ) : ϕ ∈ D is relatively compact in E, for each θ ∈ [-r, 0].
For the completeness of the proof, we need to show the equicontinuity property

. Let θ, θ 0 ∈ [-r, 0] such that θ ≥ θ 0 . Then (U (t)ϕ) (θ) -(U (t)ϕ) (θ 0 ) = (T 0 (t + θ) -T 0 (t + θ 0 )) ϕ(0) + lim λ→+∞ t+θ 0 T 0 (t + θ -s)B λ L(U (s)ϕ)ds -lim λ→+∞ t+θ 0 0 T 0 (t + θ 0 -s)B λ L(U (s)ϕ)ds. Furthermore, t+θ 0 T 0 (t + θ -s)B λ L(U (s)ϕ)ds = t+θ 0 0 T 0 (t + θ -s)B λ L(U (s)ϕ)ds + t+θ t+θ 0 T 0 (t + θ -s)B λ L(U (s)ϕ)ds. Consequently, |(U (t)ϕ) (θ) -(U (t)ϕ) (θ 0 )| ≤ |T 0 (t + θ) -T 0 (t + θ 0 )| |ϕ(0)| + lim λ→+∞ t+θ 0 0 (T 0 (t + θ -s) -T 0 (t + θ 0 -s)) B λ L(U (s)ϕ)ds + lim λ→+∞ t+θ t+θ 0 T 0 (t + θ -s)B λ L(U (s)ϕ)ds .
Assumption (H 3 ) implies that the semigroup (T 0 (t)) t≥0 is uniformly continuous for t ≥ 0. Then lim

θ→θ 0 |T 0 (t + θ) -T 0 (t + θ 0 )| = 0.
The semigroup (U (t)) t≥0 is exponentially bounded. Consequently, there exists a positive constant b 2 such that lim

λ→+∞ t+θ t+θ 0 T 0 (t + θ -s)B λ L(U (s)ϕ)ds ≤ b 2 (θ -θ 0 ) and lim λ→+∞ t+θ 0 0 (T 0 (t + θ -s) -T 0 (t + θ 0 -s)) B λ L(U (s)ϕ)ds = (T 0 (θ -θ 0 ) -I) lim λ→+∞ t+θ 0 0 T 0 (t + θ 0 -s)B λ L(U (s)ϕ)ds.
We have proved that there exists a compact set

K 0 in E such that lim λ→+∞ t+θ 0 0 T 0 (t + θ 0 -s)B λ L(U (s)ϕ)ds ∈ K 0 for ϕ ∈ D.
Using Banach-Steinhaus's theorem, we obtain lim

θ→θ 0 (T 0 (θ -θ 0 ) -I)x = 0 uniformly in x ∈ K 0 .
This implies that lim

θ→θ + 0 (U (t)ϕ) (θ) -(U (t)ϕ) (θ 0 ) = 0 uniformly in ϕ ∈ D.
We can prove in similar way that lim

θ→θ - 0 (U (t)ϕ) (θ) -(U (t)ϕ) (θ 0 ) = 0 uniformly in ϕ ∈ D.
By Ascoli-Arzela's theorem, we conclude that U (t)ϕ : ϕ ∈ D is compact for t ≥ r. Now, we consider the spectral properties of the infinitesimal generator A U . We denote by E, without causing confusion, the complexication of E. For each complex number λ, we define the linear operator ∆(λ) :

D(A) → E by (2.2) ∆(λ) = λI -A -L(e λ• I),
where e λ• I : E → C is defined by

e λ• x (θ) = e λθ x, x ∈ E and θ ∈ [-r, 0] .
Definition 2.8. We say that λ is a characteristic value of equation (1.2) if there exists x ∈ D(A)\{0} solving the characteristic equation ∆(λ)x = 0.

Since the operator U (t) is compact for t ≥ r, the spectrum σ(A U ) of A U is the point spectrum σ p (A U ). More precisely, we have Theorem 2.9. The spectrum The growth bound ω 0 (U ) of the semigroup (U (t)) t≥0 is defined by 

σ(A U ) = σ p (A U ) = {λ ∈ C : ker ∆(λ) = {0}} . Proof. Let λ ∈ σ p (A U ). Then there exists ϕ ∈ D(A U )\{0} such that A U ϕ = λϕ, which is equivalent to ϕ(θ) = e λθ ϕ(0), for θ ∈ [-r, 0] and ϕ ′ (0) = Aϕ(0) -L(ϕ) with ϕ(0) = 0. Consequently ∆(λ)ϕ(0) = 0. Conversely, let λ ∈ C such that ker ∆(λ) = {0} .
ω 0 (U ) = inf κ ≥ 0 : sup t≥0 e -κt |U (t)| < ∞ . The spectral bound s(A U ) of A U is defined by s(A U ) = sup {Re(λ) : λ ∈ σ p (A U )} . Since U (t) is compact for t ≥ r, then it is well known that ω 0 (U ) = s(A U ).
Y = Y -⊕ Y 0 ⊕ Y + such that i) A U (Y -) ⊂ Y -, A U (Y 0 ) ⊂ Y 0 , and A U (Y + ) ⊂ Y + ; ii) Y 0 and Y + are finite dimensional; iii) σ(A U |Y 0 ) = {λ ∈ σ(A U ) : Re λ = 0} , σ(A U |Y + ) = {λ ∈ σ(A U ) : Re λ ≥ 0}; iv) U (t)Y -⊂ Y -for t ≥ 0, U (t) can be extended for t ≤ 0 when restricted to Y 0 ∪ Y + and U (t)Y 0 ⊂ Y 0 , U (t)Y + ⊂ Y + for t ∈ l R; v) for any 0 < γ < inf {|Re λ| : λ ∈ σ(A U ) and Re λ = 0} , there exists K ≥ 0 such that |U (t)P -ϕ| ≤ Ke -γt |P -ϕ| for t ≥ 0, |U (t)P 0 ϕ| ≤ Ke γ 3 |t| |P 0 ϕ| for t ∈ l R, |U (t)P + ϕ| ≤ Ke γt |P + ϕ| for t ≤ 0,
where P -, P 0 and P + are projections of Y into Y -, Y 0 and Y + respectively. Y -, Y 0 and Y + are called stable, center and unstable subspaces of the semigroup (U (t)) t≥0 .

The following result deals with the variation of constants formula for equation (1.1) which are taken from [START_REF] Adimy | Spectral decompostion for some partial neutral functional differential equations[END_REF]. Let X 0 be defined by

X 0 = {X 0 c : c ∈ E} ,
where the function X 0 c is defined by

(X 0 c) (θ) = 0 if θ ∈ [-r, 0) , c if θ = 0.
We introduce the space Y ⊕ X 0 , endowed with the following norm

|ϕ + X 0 c| = |ϕ| + |c| .
The following result is taken from [START_REF] Adimy | Spectral decompostion for some partial neutral functional differential equations[END_REF].

Theorem 2.12. The continuous extension A U of the operator A U defined on Y ⊕ X 0 by:

D( A U ) = ϕ ∈ C 1 ([-r, 0] ; E) : ϕ(0) ∈ D(A) and ϕ ′ (0) ∈ D(A) A U ϕ = ϕ ′ + X 0 (Aϕ(0) + L(ϕ) -ϕ ′ (0)), is a Hille-Yosida operator on Y ⊕ X 0 : there exist ω ∈ l R and M 0 ≥ 1 such that ( ω, ∞) ⊂ ρ( A U ) and (λI -A U ) -n ≤ M 0 (λ -ω) n for λ ≥ ω and n ∈ N, with ρ( A U ) the resolvent set of A U .
Moreover, the integral solution u of equation (1.1) is given for ϕ ∈ Y, by the following variation of constants formula

(2.3) u t = U (t)ϕ + lim λ→∞ t 0 U (t -s) B λ (X 0 g(u s )) ds for t ≥ 0,
where B λ = λ(λI -A U ) -1 for λ ≥ ω.

Remarks. i) Without loss of generality, we assume that M 0 = 1. Otherwise, we can renorm the space Y ⊕ X 0 in order to get an equivalent norm for which M 0 = 1. ii) For any locally integrable function ̺ : l R → E, one can see that the following limit exists:

lim λ→∞ t s U (t -τ ) B λ X 0 ̺(τ )dτ for t ≥ s.
3. Global existence of the center manifold Theorem 3.1. Assume that (H 1 ) and (H 3 ) hold. Then, there exists ε ≥ 0 such that if

Lip(g) = sup ϕ 1 =ϕ 2 |g(ϕ 1 ) -g(ϕ 2 )| |ϕ 1 -ϕ 2 | < ε,
then, there exists a bounded Lipschitz map h g : Y 0 → Y -⊕ Y + such that h g (0) = 0 and the Lipschitz manifold

M g := {ϕ + h g (ϕ) : ϕ ∈ Y 0 } is globally invariant under the flow of equation (1.1) on Y . Proof. Let B = B(Y 0 , Y -⊕ Y + ) denote the Banach space of bounded maps h : Y 0 → Y -⊕ Y +
endowed with the uniform norm topology. We define

F = {h ∈ B : h is Lipschitz, h(0) = 0 and Lip(h) ≤ 1} . Let h ∈ F and ϕ ∈ Y 0 .
Using the strict contraction principle, one can prove the existence of v ϕ t solution of the following equation

(3.1) v ϕ t = U (t)ϕ + lim λ→∞ t 0 U (t -τ ) B λ X 0 g(v ϕ τ + h(v ϕ τ )) 0 dτ, t ∈ l R.
We now introduce the mapping T g : F → B by

T g (h)ϕ = lim λ→∞ 0 -∞ U (-τ ) B λ X 0 g(v ϕ τ + h(v ϕ τ )) - dτ + lim λ→∞ 0 +∞ U (-τ ) B λ X 0 g(v ϕ τ + h(v ϕ τ )) + dτ.
The first step is to prove that T g maps F into itself. Let ϕ 1 , ϕ 2 ∈ Y 0 and t ∈ l R. Suppose that Lip(g) < ε. Then

|v ϕ 1 t -v ϕ 2 t | ≤ Ke γ 3 |t| |ϕ 1 -ϕ 2 | + 2K |P 0 | ε t 0 e γ 3 |t-τ | |v ϕ 1 τ -v ϕ 2 τ | dτ .
By Gronwall's lemma, we get that

e -γ 3 |t| |v ϕ 1 t -v ϕ 2 t | ≤ K |ϕ 1 -ϕ 2 | e 2K|P 0 |ε|t| and |v ϕ 1 t -v ϕ 2 t | ≤ K |ϕ 1 -ϕ 2 | e [ γ 3 +2K|P 0 |ε]|t| for t ∈ l R. If we choose ε such that (3.2) 2K |P 0 | ε < γ 6 , then (3.3) |v ϕ 1 t -v ϕ 2 t | ≤ K |ϕ 1 -ϕ 2 | e γ 2 |t| for t ∈ l R.
Moreover,

|T g (h)ϕ 1 -T g (h)ϕ 2 | ≤ 0 -∞ |U (-τ )P -| |g(v ϕ 1 τ + h(v ϕ 1 τ )) -g(v ϕ 2 τ + h(v ϕ 2 τ ))| dτ + +∞ 0 |U (-τ )P + | |g(v ϕ 1 τ + h(v ϕ 1 τ )) -g(v ϕ 2 τ + h(v ϕ 2 τ ))| dτ.
Consequently,

|T g (h)ϕ 1 -T g (h)ϕ 2 | ≤ 2 0 -∞ Ke γτ |P -| ε |v ϕ 1 τ -v ϕ 2 τ | dτ +2 +∞ 0 Ke -γτ |P + | ε |v ϕ 1 τ -v ϕ 2 τ | dτ.
Using inequality (3.3), we obtain

|T g (h)ϕ 1 -T g (h)ϕ 2 | ≤ 2K 2 |P -| ε |ϕ 1 -ϕ 2 | 0 -∞ e γ 2 τ dτ +2K 2 |P + | ε |ϕ 1 -ϕ 2 | +∞ 0 e -γ 2 τ dτ.
It follows that

|T g (h)ϕ 1 -T g (h)ϕ 2 | ≤ 4ε γ K 2 (|P -| + |P + |) |ϕ 1 -ϕ 2 | . If we choose ε such that 4ε γ K 2 (|P -| + |P + |) < 1,
then T g maps F into itself. The next step is to show that T g is a strict contraction on F. Let h 1 , h 2 ∈ F. For ϕ ∈ Y 0 and for i = 1, 2, let v i t denote the solution of the following equation

v i t = U (t)ϕ + lim λ→∞ t 0 U (t -τ ) B λ X 0 g(v i τ + h i (v i τ )) 0 dτ for t ∈ l R.
Then,

v 1 t -v 2 t ≤ εK |P 0 | t 0 e γ 3 |t-τ | v 1 τ -v 2 τ + h 1 (v 1 τ ) -h 1 (v 2 τ ) + h 1 (v 2 τ ) -h 2 (v 2 τ ) dτ , and 
v 1 t -v 2 t ≤ 2εK |P 0 | t 0 e γ 3 |t-τ | v 1 τ -v 2 τ dτ + εK |P 0 | |h 1 -h 2 | t 0 e γ 3 |t-τ | dτ .
By Gronwall's lemma, we obtain that

v 1 t -v 2 t ≤ 3εK γ |P 0 | |h 1 -h 2 | e [ γ 3 +2K|P 0 |ε]|t| for t ∈ l R.
By (3.2), we obtain

v 1 t -v 2 t ≤ 3εK γ |P 0 | |h 1 -h 2 | e γ 2
|t| for all t ∈ l R.

For i = 1, 2, we have

T g (h i )ϕ = lim λ→∞ 0 -∞ U (-τ ) B λ X 0 g(v i τ + h i (v i τ )) - dτ + lim λ→∞ 0 +∞ U (-τ ) B λ X 0 g(v i τ + h i (v i τ )) + dτ.
It follows that

|T g (h 1 )ϕ -T g (h 2 )ϕ| ≤ 2K |P -| 6ε 2 K γ 2 |P 0 | |h 1 -h 2 | + K |P -| ε γ |h 1 -h 2 | + 2K |P + | 6ε 2 K γ 2 |P 0 | |h 1 -h 2 | + K |P + | ε γ |h 1 -h 2 | .
Consequently,

|T g (h 1 ) -T g (h 2 )| ≤ (|P -| + |P + |) Kε γ |P 0 | 12εK γ + 1 |h 1 -h 2 | .
We choose ε such that

(|P -| + |P + |) Kε γ |P 0 | 12εK γ + 1 < 1.
Then T g is a strict contraction on F, and consequently it has a unique fixed point h g in F : T g (h g ) = h g . Finally, we show that

M g := {ϕ + h g (ϕ) : ϕ ∈ Y 0 }
is globally invariant under the flow on Y . Let ϕ ∈ Y 0 and v be the solution of equation (3.1). We claim that t → v ϕ t + h g (v ϕ t ) is an integral solution of equation (1.1) with initial value ϕ + h g (ϕ). In fact, we have T g (h g )(v ϕ t ) = h g (v ϕ t ), t ∈ l R. Moreover, for t ∈ l R, one has

T g (h)(v ϕ t ) = lim λ→∞ 0 -∞ U (-τ ) B λ X 0 g(v ϕ t+τ + h g (v ϕ t+τ )) - dτ + lim λ→∞ 0 +∞ U (-τ ) B λ X 0 g(v ϕ t+τ + h g (v ϕ t+τ )) + dτ,
which implies that

h g (v ϕ t ) = lim λ→∞ t -∞ U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) - dτ + lim λ→∞ t +∞ U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) + dτ.
Then, for t ∈ l R, we have

v ϕ t + h g (v ϕ t ) = U (t)ϕ + lim λ→∞ t 0 U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) 0 dτ + lim λ→∞ t -∞ U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) - dτ + lim λ→∞ t +∞ U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) + dτ.
For any t ≥ a, we have

lim λ→∞ t -∞ U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) - dτ = lim λ→∞ a -∞ U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) - dτ + lim λ→∞ t a U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) - dτ,
and

lim λ→∞ a -∞ U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) - dτ = U (t -a) lim λ→∞ a -∞ U (a -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) - dτ .
By the same argument as above, we obtain

lim λ→∞ t +∞ U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) + dτ = lim λ→∞ a +∞ U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) + dτ + lim λ→∞ t a U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) + dτ,
and

lim λ→∞ a +∞ U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) + dτ = U (t -a) lim λ→∞ a +∞ U (a -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) + dτ .
Note that

h g (v ϕ a ) = lim λ→∞ a +∞ U (a -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) + dτ + lim λ→∞ a -∞ U (a -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) - dτ,
and in particular

v ϕ t = U (t -a)v ϕ a + lim λ→∞ t a U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) 0 dτ.
Consequently, for any t ≥ a, we obtain

v ϕ t + h g (v ϕ t ) = U (t -a) (v ϕ a + h g (v ϕ a )) + lim λ→∞ t a U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) 0 dτ + lim λ→∞ t a U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) + dτ + lim λ→∞ t a U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) - dτ,
which implies that for any t ≥ a,

v ϕ t + h g (v ϕ t ) = U (t -a) (v ϕ a + h g (v ϕ a )) + lim λ→∞ t a U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) dτ.
Finally, we conclude that v ϕ t + h g (v ϕ t ) is an integral solution of equation (1.1) on l R with initial value ϕ + h g (ϕ). 

u t = U (t -s)u s + lim λ→∞ t s U (t -τ ) B λ X 0 g(u τ )dτ for t ≥ s.
On the other hand,

u + t = U (t -s)u + s + lim λ→∞ t s U (t -τ ) B λ X 0 g(u τ ) + dτ for s ≥ t.
Moreover, for s ≥ t and s ≥ 0, we have

U (t -s)u + s ≤ Ke γ(t-s) |P + u s | ≤ k 0 K |P + | e γ(t-s) e γ 2 |s| = k 0 K |P + | e γt e -γ 2 s . Therefore, lim s→∞ U (t -s)u + s = 0. It follows that u + t = lim λ→∞ t +∞ U (t -τ ) B λ X 0 g(u τ ) + dτ.
Similarly, we can prove that

u - t = lim λ→∞ t -∞ U (t -τ ) B λ X 0 g(u τ ) - dτ.
We conclude that

u t = u + t + u - t + U (t)u 0 0 + lim λ→∞ t 0 U (t -τ ) B λ X 0 g(u τ ) 0 dτ for t ∈ l R.
Let φ ∈ Y 0 such that φ = u 0 . By Theorem 3.1, there exists an integral solution w of equation (1.1) on l R with initial value φ + h g (φ) such that w t ∈ M g for all t ∈ l R and

w t = U (t)φ + lim λ→∞ t 0 U (t -τ ) B λ X 0 g(w τ ) 0 dτ + lim λ→∞ t -∞ U (t -τ ) B λ X 0 g(w τ ) + dτ + lim λ→∞ t +∞ U (t -τ ) B λ X 0 g(w τ ) - dτ.
Then, for all t ∈ l R, we have

|u t -w t | ≤ lim λ→∞ t 0 U (t -τ ) B λ X 0 (g(u τ ) -g(w τ )) 0 dτ + lim λ→∞ t -∞ U (t -τ ) B λ X 0 (g(u τ ) -g(w τ )) + dτ + lim λ→∞ t +∞ U (t -τ ) B λ X 0 (g(u τ ) -g(w τ )) - dτ .
This implies that

|u t -w t | ≤ Kε |P 0 | t 0 e γ 3 |t-τ | |u τ -w τ | dτ + |P -| t -∞ e -γ(t-τ ) |u τ -w τ | dτ + |P + | ∞ t e γ(t-τ ) |u τ -w τ | dτ . Let N (t) = e -γ 2 |t| |u t -w t | for all t ∈ l R. Then, N = sup t∈lR N (t) < ∞.
On the other hand, we have

N (t) ≤ Kε N |P 0 | t 0 e -γ 6 |t-τ | dτ + |P -| t -∞ e -γ 2 (t-τ ) dτ + |P + | ∞ t e γ 2 (t-τ ) dτ .
Finally we arrive at

N ≤ 2Kε γ (3 |P 0 | + |P -| + |P + |) N .
Consequently, N = 0 and u t = w t for t ∈ l R.

The initial values ϕ 0 and ψ 0 correspond to the solutions of the following equations for 0

≤ s ≤ τ v s = U (s -τ )v τ + lim λ→∞ s τ U (s -σ) B λ X 0 g(v σ + p(σ, v σ , ϕ -)) 0 dσ, v * s = U (s -τ )v * τ + lim λ→∞ s τ U (s -σ) B λ X 0 g(v * σ + p(σ, v * σ , ψ -)) 0 dσ. Note that v τ = v * τ . It follows, for 0 ≤ s ≤ τ , that |v s -v * s | ≤ K(1+K 0 )ε |P 0 | τ s e γ 3 (σ-s) |v σ -v * σ | dσ+KK 0 ε |P 0 | τ s e γ 3 (σ-s) e -ασ dσ ϕ --ψ -.
Then by Gronwall's lemma, we deduce that there exists a positive constant ν which depends only on constants γ, K, K 0 and ε such that, for 0 ≤ s ≤ τ , we have

|v s -v * s | ≤ ν ϕ --ψ -. If we assume that Lip(g) is small enough such that ν < 1, then ϕ 0 -ψ 0 ≤ ν ϕ --ψ -≤ ν ϕ --h g (ϕ 0 ) + h g (ϕ 0 ) -h g (ψ 0 ) , which gives that ϕ 0 -ψ 0 ≤ ν 1 -ν ϕ --h g (ϕ 0 ) .
We conclude that

u - t -h g (u 0 t ) ≤ 1 1 -ν K 0 e -αt ϕ --h g (ϕ 0 ) for t ≥ 0.
As an immediate consequence, we obtain the following result on the attractiveness of the center manifold.

Corollary 4.3. Assume that Lip(g) is small enough and the unstable space Y + is reduced to zero. Then the center manifold M g is exponentially attractive.

We also obtain.

Proposition 4.4. Assume that Lip(g) is small enough and the unstable space Y + is reduced to zero. Let w be an integral solution of equation (1.1) that is bounded on R. Then w t ∈ M g for all t ∈ R.

Proof. Let w be a bounded integral solution of equation (1.1). Since, the equation (1.1) is autonomous, then for σ ≤ 0, w t ′ +σ is also an integral solution of equation (1.1) for t ′ ≥ 0 with initial value w σ at 0. It follows by the estimation (4.1) that

w - t ′ +σ (ϕ) -h g (w 0 t ′ +σ (ϕ)) ≤ K 1 e -αt ′ w - σ -h g (w 0 σ ) for t ′ ≥ 0. Let t ≥ σ. Then (4.5) w - t -h g (w 0 t ) ≤ K 1 e -α(t-σ) w - σ -h g (w 0 σ ) for t ≥ σ.
Since w is bounded on R, letting σ → -∞, we obtain that w - t = h g (w 0 t ) for all t ∈ R.

Flow on the center manifold

In this section, we establish that the flow on the center manifold is governed by an ordinary differential equation in a finite dimensional space. In the sequel, we assume that the function g satisfies the conditions of Theorem 4.1. We also assume that the unstable space Y + is reduced to zero. Let d be the dimension of the center space Y 0 and Φ = (φ 1 , ...., φ d ) be a basis of Y 0 . Then there exists d-elements Φ = (φ * 1 , ...., φ * d ) in Y * , the dual space of Y, such that andφ * i = 0 on Y -. Denote by Ψ the transpose of (φ * 1 , ...., φ * d ). Then the projection operator P 0 is given by

φ * i , φ j := φ * i (φ j ) = δ ij , 1 ≤ i, j ≤ d,
P 0 φ = Φ Ψ, φ .
Since (U 0 (t)) t≥0 is a strongly continuous group on the finite dimensional space Y 0 , by Theorem 2.15, p. 102 in [START_REF] Diekmann | Delay Equations, Functional Complex and Nonlinear Analysis[END_REF], we get that there exists a d × d matrix G such that U 0 (t)Φ = Φe Gt for t ≥ 0.

Let n ∈ N, n ≥ n 0 ≥ ω and i ∈ {1, ...., d} . We define the function x * ni on E by

x * ni (y) = φ * i , B n (X 0 y) .
Then x * ni is a bounded linear operator on E. Let x * n be the transpose of (x * n1 , ..., x * nd ), then

x * n , y = Ψ, B n (X 0 y) .

Consequently,

sup n≥n 0 |x * n | < ∞,
which implies that (x * n ) n≥n 0 is a bounded sequence in L(E, R d ). Then, we get the following important result. Theorem 5.1. There exists x * ∈ L(E, R d ) such that (x * n ) n≥n 0 converges weakly to x * in the sense that x * n , y → x * , y as n → ∞ for y ∈ E. For the proof, we need the following fundamental theorem [25, pp. 776] Theorem 5.2. Let X be a separable Banach space and (z * n ) n≥0 be a bounded sequence in X * . Then there exists a subsequence z * n k k≥0 of (z * n ) n≥0 which converges weakly in X * in the sense that there exists z * ∈ X * such that

z * n k , y → z * , y as k → ∞ for x ∈ X.
Proof of Theorem 5.1. Let Z 0 be a closed separable subspace of E. Since (x * n ) n≥n 0 is a bounded sequence, by Theorem 5.2 there is a subsequence x * n k k∈N which converges weakly to some x * Z 0 in Z 0 . We claim that all the sequence (x * n ) n≥n 0 converges weakly to x * Z 0 in Z 0 . This can be done by way of contradiction. Namely, suppose that there exists a subsequence x * n p p∈N of (x * n ) n≥n 0 which converges weakly to some x * Z 0 with x * Z 0 = x * Z 0 . Let u t (., σ, ϕ, f ) denote the integral solution of the following equation

d dt u(t) = A u(t) + L( u t ) + f (t), t ≥ σ u σ = ϕ ∈ C,
where f is a continuous function from R to E. Then by using the variation of constants formula and the spectral decomposition of solutions, we obtain

P 0 u t (., σ, 0, f ) = lim n→+∞ t σ U (t -ξ) B n X 0 f (ξ) 0 dξ, and 
P 0 B n X 0 f (ξ) = Φ Ψ, B n X 0 f (ξ) = Φ x * n , f (ξ) . It follows that P 0 u t (., σ, 0, f ) = lim n→+∞ Φ t σ e (t-ξ)G Ψ, B n X 0 f (ξ) dξ, = lim n→+∞ Φ t σ e (t-ξ)G x * n , f (ξ) dξ.
For a fixed a ∈ Z 0 , set f = a to be a constant function. Then Consequently x * Z 0 = x * Z 0 , which yields a contradiction. We now conclude that the whole sequence (x * n ) n≥n 0 converges weakly to x * Z 0 in Z 0 . Let Z 1 be another closed separable subspace of X. By using the same argument as above, we obtain that (x * n ) n≥n 0 converges weakly to

lim k→+∞ t σ e (t-ξ)G x * n k , a dξ = lim
x * Z 1 in Z 1 . Since Z 0 ∩ Z 1 is a closed separable subspace of E, we get that x * Z 1 = x * Z 0 in Z 0 ∩ Z 1 .
For any y ∈ E, we define x * by x * , y = x * Z , y , where Z is an arbitrary given closed separable subspace of E such that y ∈ Z. Then x * is well defined on E and x * is a bounded linear operator from E to R d such that

|x * | ≤ sup n≥n 0 |x * n | < ∞,
and (x * n ) n≥n 0 converges weakly to x * in E. As a consequence, we conclude that Corollary 5.3. For any continuous function f : R → E, we have

lim n→+∞ t σ U (t -ξ) B n X 0 f (ξ) 0 dξ = Φ t σ e (t-ξ)G x * , f (ξ) dξ for t, σ ∈ R.
Let ϕ ∈ Y 0 such that ϕ + h g (ϕ) ∈ M g . From the properties of the center manifold, we know that the integral solution starting from ϕ + h(ϕ) is given by v ϕ t + h g (v ϕ t ), where v ϕ t is the solution of

v ϕ t = U (t)ϕ + lim λ→∞ t 0 U (t -τ ) B λ X 0 g(v ϕ τ + h g (v ϕ τ )) 0 dτ for t ∈ l R.
Let z(t) be the component of v ϕ t . Then Φz(t) = v ϕ t for t ∈ l R. By Theorem 5.1 and Corollary 5.3, we have

Φz(t) = v ϕ t = Φe Gt z(0) + Φ t 0 e (t-τ )G x * , g(v ϕ τ + h g (v ϕ τ )) dτ for t ∈ l R.
We conclude that z satisfies

z(t) = e Gt z(0) + lim n→∞ t 0 e G(t-τ ) x * n , g(v ϕ τ + h g (v ϕ τ )) dτ for t ∈ l R.
Finally we arrive at the following ordinary differential equation, which determines the flow on the center manifold (5.1) z ′ (t) = Gz(t) + x * , g(Φz(t) + h g (Φz(t))) for t ∈ l R.

Stability in critical cases

In this section, we suppose that Lip(g) < ε, where ε is given by Theorem 4.1. Here we study the critical case where the unstable space Y + is reduced to zero and the exponential stability is not possible, which implies that there exists at least one characteristic value with a real part equals zero. Theorem 6.1. Assume that Lip(g) is small enough. Then there exists a positive constant K 2 such that for each ϕ ∈ Y, there exists z 0 ∈ R d such that (6.1)

u 0 t -Φ z(t) + u - t -h g (Φ z(t)) ≤ K 2 e -αt ϕ --h g (ϕ 0
) for t ≥ 0, where z is the solution of the reduced system (5.1) with initial value z 0 and u is the integral solution of equation (1.1) with initial value ϕ.

Proof. Let ϕ ∈ Y and u be the corresponding integral solution of equation (1.1). Then

u 0 s = U (s -t)u 0 t + lim λ→∞ s t U (s -τ ) B λ X 0 g(u - τ + u 0 τ ) 0 dτ for 0 ≤ s ≤ t.
Also let s → w s,t be the solution of the following equation

w s,t = U (s -t)u 0 t + lim λ→∞ s t U (s -τ ) B λ X 0 g(w τ,t + h g (w τ,t )) 0 dτ for 0 ≤ s ≤ t.
Then, for 0 ≤ s ≤ t, we have

u 0 s -w s,t ≤ 2Kε |P 0 | t s e γ 3 (τ -s) u 0 τ -w τ,t dτ + Kε |P 0 | t s e γ 3 (τ -s) u - τ -h g (u 0 τ ) dτ.
It follows that

e γ 3 s u 0 s -w s,t ≤ 2Kε |P 0 | t s e γ 3 τ u 0 τ -w τ,t dτ + Kε |P 0 | t s e γ 3 τ u - τ -h g (u 0 τ ) dτ.
Using Gronwall's lemma, we obtain that

u 0 s -w s,t ≤ 2Kε |P 0 | t s e µ(τ -s) u - τ -h g (u 0 τ ) dτ for 0 ≤ s ≤ t,
where µ = 2Kε |P 0 | + γ 3 . By Theorem 4.1, we obtain

u 0 s -w s,t ≤ 2KK 1 ε |P 0 | t s e (µ-α)(τ -s) dτ u - s -h g (u 0 s ) for 0 ≤ s ≤ t.
Let us recall that α ∈ γ 3 , γ . Then we can choose ε small enough such that µα < 0. Consequently, (6.2)

u 0 s -w s,t ≤ 2KK 1 ε |P 0 | α -µ u - s -h g (u 0 s ) for 0 ≤ s ≤ t,
and for s = 0, we have

u 0 0 -w 0,t ≤ 2KK 1 ε |P 0 | α -µ u - 0 -h g (u 0 0 ) for t ≥ 0.
We deduce that {w 0,t : t ≥ 0} is bounded in Y 0 and then there exists a sequence t n → ∞ as n → ∞ and φ ∈ Y 0 such that w 0,tn → φ as n → ∞.

Let w(., φ) be the solution of the following equation By (4.4) and (6.2), there exists a positive constant K 2 such that u 0 sw s (0, φ) ≤ K 2 e -αs u - 0h g (u 0 0 ) for all s ≥ 0. If we put Φ z(t) = w t (0, φ) for t ∈ l R, then z(t) = e Gt z(0) + t 0 e (t-τ )G x * , g(Φ z(τ ) + h g (Φ z(τ ))) dτ for t ∈ l R.

w t (., φ) = U (t)φ + lim
Finally, the estimation (6.1) follows from (4.4). Now, we can state the following result on the stability by using the reduction to the center manifold. Theorem 6.2. If the zero solution of equation (5.1) is uniformly asymptotically stable (unstable), then the zero solution of equation (1.1) is uniformly asymptotically stable (unstable).

Moreover, Lip(h g ) can be chosen such that 1 -Lip(h g ) ≥ 0. It follows that |Φz(t n , z n ) + h g (Φz(t n , z n ))| ≥ (1 -Lip(h g )) σ 2 , for some σ 2 ≥ 0. Consequently, the zero solution of equation (1.1) is unstable.

Local existence of the center manifold

In this section we prove the existence of the local center manifold when g is only defined in a neighborhood of zero. We assume that (H 4 ) There exists ρ 1 ≥ 0 such that g : B(0, ρ 1 ) → E is C 1 -function, g(0) = 0 and g ′ (0) = 0, where B(0, ρ 1 ) = {ϕ ∈ C : |ϕ| < ρ 1 } . We deduce that the local center manifold contains all bounded integral solutions of equation (1.1) which are bounded by ρ. Moreover, the following interesting results hold. Theorem 7.3. (Attractiveness). Assume that (H 1 ), (H 3 ), (H 4 ) hold and the unstable space Y + is reduced to zero. Then there exist 0 < ρ < ρ 1 , K 3 ≥ 0 and α ∈ γ 3 , γ such that any integral solution u t (ϕ) of equation (1.1) with initial data ϕ ∈ B(0, ρ 1 ), exists on R + and satisfies (7.2) u - t (ϕ)h g ρ (u 0 t (ϕ)) ≤ K 3 e -αt ϕ -h g ρ (ϕ 0 ) for t ≥ 0.

  Then there exists x ∈ D(A)\{0} such that ∆(λ)x = 0. If we define the function ϕ by ϕ(θ) = e λθ x for θ ∈ [-r, 0] , then ϕ ∈ D(A U ) and A U ϕ = λϕ, which implies that λ ∈ σ p (A U ).

Theorem 3 . 2 .

 32 Let v ϕ be the solution of equation (3.1) on l R. Then, for t ∈ l R|v ϕ t | ≤ K |ϕ| e γ 2 |t| and |v ϕ t + h g (v ϕ t )| ≤ 2K |ϕ| e γ 2 |t| . Conversely, if we choose ε such that 2Kε γ (|P -| + |P + | + 3 |P 0 |) < 1,then for any integral solution u of equation (1.1) on l R with u t = O(e γ 2 |t| ), we have u t ∈ M g for all t ∈ l R.Proof. Let v ϕ be the solution of equation (3.1). Then, using the estimate (3.3), we obtain that |v ϕ t | ≤ K |ϕ| e γ 2 |t| for t ∈ l R and from the fact that Lip(h) ≤ 1 and h g (0) = 0, we obtain|v ϕ t + h g (v ϕ t )| ≤ 2K |ϕ| eγ 2 |t| for t ∈ l R. Let u be an integral solution of equation (1.1) such that u t = O(e γ 2 |t| ). Then there exists a positive constant k 0 such that |u t | ≤ k 0 e γ 2 |t| for all t ∈ l R. Note that

e

  (t-ξ)G x * np , a dξ for a ∈ Z 0 , which implies that t σ e (t-ξ)G x * Z 0 , a dξ = t σe (t-ξ)G x * Z 0 , a dξ for a ∈ Z 0 .

λ→∞ t 0 U

 0 (tτ ) B λ X 0 g( w τ (., φ) + h g ( w τ (., φ))) 0 dτ for t ≥ 0.By the continuous dependence on the initial data, we obtain, for all s ≥ 0 w s (0, φ) = lim n→∞ w s (0, w 0,tn ) = lim n→∞ w s (0, w -tn (0, u tn )), = lim n→∞ w s-tn (0, u tn ) = lim n→∞ w s,tn .

For ρ < ρ 1 ,Theorem 7 . 1 .Definition 7 . 2 .

 17172 we define the cut-off function g ρ : C → E byg ρ (ϕ) = g(ϕ) if |ϕ| ≤ ρ, g( ρ |ϕ| ϕ) if |ϕ| ≥ ρ.We consider the following partial functional differential equation (7.1)d dt u(t) = Au(t) + L(u t ) + g ρ (u t ) for t ≥ 0 u 0 = ϕ ∈ C. Assume that (H 1 ), (H3 ) and (H 4 ) hold. Then there exist 0 < ρ < ρ 1 and Lipschitz continuous mapping h gρ : Y 0 → Y -⊕ Y + such that h gρ (0) = 0 and the local Lipschitz manifold M gρ = ϕ + h gρ (ϕ) : ϕ ∈ Y 0 is globally invariant under the flow associated to equation (7.1).Proof. Using the same arguments as in[START_REF] Webb | Theory of Nonlinear Age-dependent Population Dynamics[END_REF], Proposition 3.10, p.95, one can show that g ρ is Lipschitz continuous withLip(g ρ ) ≤ 2 sup |ϕ|<ρ |g ′ (ϕ)| .It follows that Lip(g ρ ) goes to zero when ρ goes to zero. According to Theorem 3.1, we deduce that there exist ρ ≥ 0 and mapping h gρ : Y 0 → Y -⊕ Y + with h gρ (0) = 0 such that the Lipschitz manifold M gρ = ϕ + h gρ (ϕ) : ϕ ∈ Y 0 is globally invariant under the flow of equation (7.1). The local center manifold associated to equation (1.1) is defined byM gρ = ϕ + h gρ (ϕ) : ϕ ∈ Y 0 ∩ B(0, ρ).

  with |ϕ| ≤ δ and t ≥ 0, where x t (., ϕ) is the integral solution of equation (1.1) corresponding to initial value ϕ. Moreover, if Y can be decomposed as Y = Y 1 ⊕ Y 2 where Y i are U -invariant subspaces of Y , Y 1 is a finite-dimensional space and with ω 0 = lim ) is the spectrum of U (t)|Y 1 , then the zero equilibrium of equation (1.1) is unstable, in the sense that there exist ε ≥ 0 and sequences (ϕ n ) n converging to 0 and (t n ) n of positive real numbers such that |x tn (., ϕ n

	h→∞	1 h	log |U (h)|Y 2 | we have
	inf {|λ| : λ ∈ σ (U (t)|Y 1 )} ≥ e ω 0 t for t ≥ 0,
	where σ (U (t)|Y 1		

  Consequently, the asymptotic behavior of the solutions of the linear equation (1.2) is completely obtained by s(A U ). More precisely, we have the following result.As a consequence of the compactness of the semigroup U (t) for t ≥ r and by Theorem 2.11, p.100, in[START_REF] Diekmann | Delay Equations, Functional Complex and Nonlinear Analysis[END_REF], we get the following general spectral decomposition of the phase space Y .Theorem 2.11. There exist linear subspaces of Y denoted by Y -, Y 0 and Y + respectively with

	Corollary 2.10. Assume that (H 1 ), (H 2 ) and (H 3 ) hold. Then, the following properties
	hold,
	i) if s(A U ) < 0, then (U (t)) t≥0 is exponentially stable and zero is locally exponentially
	stable for equation (1.1);
	ii) if s(A

U ) = 0, then there exists ϕ ∈ Y such that |U (t)ϕ| = |ϕ| for t ≥ 0 and either stability or instability may hold; iii) if s(A U ) ≥ 0, then there exists ϕ ∈ Y such that |U (t)ϕ| → ∞ as t → ∞ and zero is unstable for equation (1.1).

Acknowledgements: A part of this work has been done when the second author was visiting the Abdus Salam International Centre for Theoretical Physics, ICTP, Trieste-Italy. He would like to acknowledge the centre for the support.

1 This research is supported by Grant from CNCPRST (Morocco) and CNRS(France) Ref. SPM 17769, by TWAS Grant under contract Ref. 03-030 RG/MATHS/AF/AC, by the Canada Research Chairs Program, by Natural Sciences and Engineering Research Council of Canada, and by Mathematics for Information Technology and Complex Systems.

Attractiveness of the center manifold

In this section, we assume that there exists no characteristic value with a positive real part and hence the unstable space Y + is reduced to zero. We establish the following result on the attractiveness of the center manifold. Theorem 4.1. There exist ε ≥ 0, K 1 ≥ 0 and α ∈ γ 3 , γ such that if Lip(g) < ε, then any integral solution u t (ϕ) of equation (1.1) on R + satisfies (4.1) u - t (ϕ)h g (u 0 t (ϕ)) ≤ K 1 e -αt ϕ -h g (ϕ 0 ) for t ≥ 0. Proof. The proof of this theorem is based on the following technically lemma.

Lemma 4.2.

There exist ε ≥ 0, K 0 ≥ 0 and α ∈ γ 3 , γ such that if Lip(g) < ε, then there is a continuous bounded mapping

Idea of the proof of Lemma 4.2. The proof is similar to the one given in [START_REF] So | Center manifolds for functional partial differential equations: Smoothness and attractivity[END_REF]. Let ϕ ∈ Y 0 and ψ ∈ Y -. For t ≥ 0 and 0 ≤ τ ≤ t, we consider the system q(τ, t, ϕ, ψ) = U (τ -t)ϕ-lim λ→∞ t τ U (τ -s) B λ X 0 g (q(s, t, ϕ, ψ) + p(s, q(s, t, ϕ, ψ), ψ)) 0 ds, and p(t, ϕ, ψ) = U (t)ψ + lim λ→∞ t 0 U (ts) B λ X 0 g(q(s, t, ϕ, ψ) + p(s, q(s, t, ϕ, ψ), ψ))

ds.

Using the contraction principle, we can prove the existence of q and p. The expression (4.2) and the estimate (4.3) are obtained in a completely similar fashion to that in [START_REF] So | Center manifolds for functional partial differential equations: Smoothness and attractivity[END_REF].

Proof of Theorem 4.1. Let M g be the center manifold of equation (1.1). Then any integral solution lying in M g must satisfy (4.2). Let u t = u t (ϕ -+ϕ 0 ) be an integral solution of equation (1.1) on R + with initial value ϕ -+ ϕ 0 . Let τ ≥ 0. Then, u 0 τ + h g (u 0 τ ) ∈ M g and the corresponding integral solution exists on R and lies on M g . This solution can be considered as an integral solution of equation (1.1) starting from ψ -+ ψ 0 at 0. Let

Proof. Assume that 0 is uniformly asymptotically stable for equation (5.1). For ς ≥ 0, let

and M g ∩ B ρ for some ρ ≥ 0, be the region of attraction of 0 for equation (5.1). First, we prove that 0 is stable for equation (1.1). Let ε ≥ 0. Then there exists δ < ρ such that |z(t)| < ε for t ≥ 0, provided that |z(0)| < δ, where z is a solution of (5.1). As 0 is assumed to be uniformly asymptotically stable for equation (5.1), there exists t 0 = t 0 (δ) such that |z(t)| < δ 2 , for t ≥ t 0 . Without loss of generality, we can choose δ and t 0 so that max(K 1 , K 2 )e -αt 0 < 1 2 . By the continuous dependence on the initial value for equation (1.1), there exists

then the corresponding integral solution u t = u t (ϕ -+ ϕ 0 ) of equation (1.1) satisfies

Moreover,

Furthermore, by Theorem 6.1, there exists z 0 ∈ R d such that (6.3)

) for t ≥ 0, where z is a solution of the reduced system (5.1) with initial value z 0 such that | z 0 | < δ. It follows that u 0 t 0 < δ. Consequently, u t 0 ∈ B ε and u t must be in B ε for all t ≥ 0. This completes the proof of the stability. Now we deal with the local attractiveness of the zero solution. For a given integral solution u(., ϕ) of equation (1.1) which is assumed to be bounded for t ≥ 0, it is well known that the ω-limit set ω(ϕ) is nonempty, compact, invariant and connected since the map ϕ → u t (•, ϕ) is compact for t ≥ r.

For the attractiveness of 0, let V δ be chosen as above and ϕ ∈ V δ . Then the integral solution u of equation (1.1) starting from ϕ lies in B ε . The ω-limit set ω(ϕ) of u is nonempty and invariant and must be in M g ∩ B ε . Since the equilibrium 0 of (1.1) is uniformly asymptotically stable, we deduce by Theorem 11.4, p. 111 [START_REF] Yoshizawa | Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions[END_REF] and by the LaSalle invariance principle that the only invariant set in M g ∩ B ε must be zero. Consequently, the ω-limit set ω(ϕ) is zero and u t (., ϕ) → 0 as t → 0.

Assume now that the zero solution of the reduced system (5.1) is unstable. Then there exist σ 1 ≥ 0, a sequence (t n ) n of positive real numbers and a sequence (z n ) n converging to 0 such that |z(t n , z n )| ≥ σ 1 , where z(., z n ) is a solution of (5.1). On the other hand Φz(., z n ) + h g (Φz(., z n )) is an integral solution of equation (1.1) and

Theorem 7.4. (Reduction principle and stability). Assume that (H 1 ), (H 3 ), (H 4 ) hold and the unstable space Y + is reduced to zero. If the zero solution of equation (5.1) is uniformly asymptotically stable (unstable), then the zero solution of equation (1.1) is uniformly asymptotically stable (unstable).

Application

In this section, we assume that (H 5 ) σ(A U ) ∩ {λ ∈ C : Re(λ) ≥ 0} = {0} and 0 is a simple eigenvalue of A U .

In this case, the reduced system (5.1) on the center manifold becomes

where υ is the scalar function given by υ(z) = x * , g(Φz + h gρ (Φz)) for z ∈ R. Concluding remark. Assumption (8.1) is natural and it is a consequence of the smoothness of the center manifold, which states that if g is a C k -function, for k ≥ 1, then h gρ is also a C k -function. Consequently if g is a C ∞ -function, then the center manifold h gρ is also a C ∞ -function. Assumption (8.1) can be obtained by using the approximation of the center manifold h gρ . The proof of the smoothness result is omitted here and it can be done in similar way as in [START_REF] Faria | Smoothness of center manifolds for maps and formal adjoints for semilinear FDEs in general Banach spaces[END_REF].