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Extreme Lagrangian acceleration in confined turbulent flow
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A Lagrangian study of two-dimensional turbulence for two different geometries, a periodic and
a confined circular geometry, is presented to investigate the influence of solid boundaries on the
Lagrangian dynamics. It is found that the Lagrangian acceleration is even more intermittent in
the confined domain than in the periodic domain. The flatness of the Lagrangian acceleration as
a function of the radius shows that the influence of the wall on the Lagrangian dynamics becomes
negligible in the center of the domain and it also reveals that the wall is responsible for the increased
intermittency. The transition in the Lagrangian statistics between this region, not directly influenced
by the walls, and a critical radius which defines a Lagrangian boundary layer, is shown to be very
sharp with a sudden increase of the acceleration flatness from about 5 to about 20.

PACS numbers: 47.27.E-, 47.27.T-, 47.27.N-

The Lagrangian point of view is in many aspects the
most natural way to obtain understanding of turbulent
transport and mixing. Therefore, for many years, La-
grangian studies have been proposed [1] but only quite re-
cently, using Direct Numerical Simulation (DNS) [2], and
new experimental techniques [3, 4], Lagrangian statistics,
such as the Lagrangian velocity and acceleration have be-
come fully accessible. For a review on Lagrangian stud-
ies in three dimensional turbulence we refer to [5]. Many
applications, like the mixing of pollutants in geophysi-
cal flows, or the dynamics of plasmas with a strong im-
posed magnetic field, can be considered within the frame-
work of bidimensional turbulence [6, 7]. Moreover, two-
dimensional turbulence contains a large range of nonlin-
early interacting scales, which is a feature it shares with
three-dimensional turbulence. Thanks to its lower di-
mensionality, two-dimensional turbulence is then a con-
venient test-bed for a first approach of physical phenom-
ena in three-dimensions. In two-dimensions, Lagrangian
statistics have been obtained for isotropic turbulence
[8, 9], in which it was shown that the probability den-
sity function (PDF) of the Lagrangian velocity is close
to Gaussian and that the coherent structures are respon-
sible for the transport. From three-dimensional experi-
ments [4] and DNS [3], it is known that the Lagrangian
acceleration shows a more intermittent behavior than the
velocity. Surprisingly, in two-dimensional turbulence, La-
grangian acceleration has not been studied so far. In all
previous numerical studies mentioned, periodic boundary
conditions allow the fluid elements to freely move in all
directions. On the contrary, in the aforementioned exper-
imental works, Lagrangian statistics were obtained in a
cylindrically confined flow between two counter-rotating
disks, in which the fluid elements are hindered in their
motion by the presence of solid boundaries. It can be
argued that practically all flows are wall bounded and
a fine knowledge of the influence of solid boundaries on

the turbulent flow is therefore of major importance. In
particular, the investigation of the influence of confine-
ment on Lagrangian statistics is useful for the analysis of
experimental results in which the effects due to the walls
are usually unknown.

In the present letter we will address this question: what
is the influence of solid boundaries on the Lagrangian
statistics? The problem is investigated in the framework
of two-dimensional turbulence. The influence of bound-
aries in confined two-dimensional flows was previously
studied in several works [10, 11, 12], focusing merely on
Eulerian statistics. In [10] it was shown that the build up
of a boundary layer altered the Eulerian spectral energy
density. This boundary layer can be expected to influ-
ence the Lagrangian statistics, the investigation of which
is the subject of the present work.

We now describe the method. In order to assess the
influence of walls, we consider two distinct geometries:
a biperiodic and a circular domain with no-slip bound-
ary conditions. Two-dimensional incompressible turbu-
lent flow with unit density is considered, governed by the
Navier-Stokes equations written in dimensionless form in
vorticity-velocity formulation:

∂ω

∂t
+ ~u · ∇ω − ν∇2ω = −1

η
∇× (χ~u) , (1)

where ~u = (u1, u2) is the velocity, ω = ∇ × ~u is the
vorticity, ν is the kinematic viscosity. The term on the
right hand side is a volume penalization term, that is re-
sponsible for the boundary conditions [13, 14], and which
is not present in the periodic case. The mask function
χ is 1 outside the flow-domain where no-slip walls are
to be imposed and 0 inside the flow, where the Navier-
Stokes equations are recovered. The permeability η is
chosen sufficiently small for given ν [14] in order to in-
sure the convergence of the volume penalization method.
No external forcing is present in equation (1). Typically,
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FIG. 1: Three typical trajectories in the circular geometry.
The trajectories are divided into particles inside and outside
the disk defined by the radius r0 (circle in dotted line). Each
trajectory is colored with the modulus of Lagrangian accelera-
tion normalized by its maximum value: |~aL(t)|/max(|~aL(t)|),
where max|~a1| = 3.6, max|~a2| = 11.7 and max|~a3| = 33.3 for
the particles 1, 2 and 3, respectively. The circles indicate the
initial position of the particles.

numerical investigations of the Lagrangian dynamics are
performed in turbulence, forced by a random isotropic
stirring to obtain a statistically stationary flow. The
choice of a similar forcing in a bounded domain is less
trivial. Furthermore, the presence of forcing involves a
model, so that for a proper comparison between confined
and periodic flow we choose to consider the freely decay-
ing case.

The numerical scheme is based on a classical pseudo-
spectral method with resolution N = 10242, and a semi-
implicit time integration with ∆t = 5.10−5 [12, 14]. The
Lagrangian quantities are calculated by interpolating the
Eulerian quantities and integrated in time using a second
order Runge-Kutta scheme. The Lagrangian acceleration
is the sum of the gradient of pressure and viscous diffu-
sion ~aL = −∇p + ν∇2~u. We compute the Lagrangian
statistics averaged over 1020 trajectories, for each geom-
etry. The viscosity is ν = 10−4, and the permeability
is η = 10−3. For both cases the initial condition corre-
sponds to a Gaussian correlated random field, with an ini-
tial enstrophy Z = 1

2
〈ω2〉x = 127 (〈·〉x denotes the spatial

average), an eddy turn over time Te = 1/
√

2Z = 0.062

and a Taylor microscale λ =
√

E/Z = 0.056, where
E = 1

2
〈~u2〉x is the initial kinetic energy. For the pe-

riodic geometry, the initial Reynolds number is Re =
S
√

E/ν = 5 · 104, where S = 2π corresponds to the do-
main size. For the circular geometry the initial Reynolds
number is Re = 2R

√
E/ν = 4.5 · 104 where R = 2.8 is

the radius of the circle.

We now present the results of different Lagrangian
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FIG. 2: PDFs of normalized Lagrangian velocities uL/σuL

where σuL
= 〈u2

L〉
1/2 (〈·〉 denotes the ensemble average), for

the periodic geometry and for the circular geometry.

quantities obtained for both geometries. We analyze for
each case the Lagrangian velocity and the Lagrangian
acceleration. Computations are carried out for approxi-
mately 5 · 105 timesteps, corresponding to about 403 ini-
tial eddy turnover times. As the turbulence is freely de-
caying, the statistics can not be interpreted properly if
the quantities considered are not made stationary. To
overcome this problem we divide the Lagrangian quanti-
ties L(t) by their instantaneous standard deviation com-
puted from all particles at each time: L(t)/σL(t), as
suggested by Yeung [5]. All the following statistics are
studied using this normalization and for notational con-
venience denoted by L(t). Three typical trajectories are
shown in Fig. 1. Different behaviors can be observed: the
particles can proceed in almost straight lines, spiraling
motion or follow a trajectory close to the wall for a while
before being reinjected into the bulk flow. The PDFs
of the Lagrangian velocities for both geometries, shown
in Fig. 2, are similar and exhibit the same Gaussian-like
behaviour. However, for the circular geometry, a small
cusp appears around zero which indicates a large prob-
ability of values with almost zero velocity. This higher
probability of velocities around zero can be explained by
fluid particles that stay for relatively long times near the
wall due to the no-slip boundary condition.

In Fig. 3 (left) and Fig. 3 (right), the PDFs of the time-
averaged Lagrangian velocity increments, defined by

∆uL(τ) = 〈uL(t + τ) − uL(t)〉t, (2)

are shown for the periodic and the confined case respec-
tively and where 〈·〉t denotes the time average during the
entire time computation corresponding to 403Te. The
PDFs are symmetric for both cases as is to be expected
because of the symmetry of the flows. Furthermore these
PDFs are qualitatively very similar to the ones obtained
in experimental results in three dimensional isotropic tur-
bulence [15]. For small τ , the PDF of the Lagrangian
velocity increments tends to the Lagrangian acceleration
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FIG. 3: PDFs of normalized Lagrangian velocity increments ∆uL(τ )/σ(τ ) where σ(τ ) = 〈(∆uL(τ ))2〉1/2, for periodic (left) and
circular geometry (right). The curves are shifted vertically for clarity. From top to bottom: τ = 0.1 ,0.2, 0.4, 0.8, 1.6, 3.2, 6.4,
12.8.
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FIG. 4: PDFs of the normalized Lagrangian acceleration
aL/σaL

where σaL
= 〈a2

L〉
1/2 for both cases. Inset: PDFs

of the normalized Lagrangian acceleration in double logarith-
mic scale

PDF and for large τ it tends to the PDF of the La-
grangian velocity. At small τ , the PDF of the velocity
increments in the circular geometry (Fig. 3, right), shows
heavy tails, which are much more pronounced than the
tails in the periodic case. This is highlighted in Fig. 4,
in which we superimpose the PDF of the Lagrangian ac-
celeration for the two geometries. It is observed that the
central part of the two PDFs nearly collapses. However,
the tails corresponding to extreme accelerations, present
a power law behavior with slope −4, while in the periodic
case we find a stretched exponential behavior (Fig. 4, in-
set).

To give a quantitative measure for the departure from
Gaussianity of the Lagrangian velocity increments, its
flatness is shown in Fig. 5. For the Lagrangian veloc-
ity increments, at small τ the flatness tends to a value
of 30 for the circular geometry which is close to 3 times

the value of the periodic geometry. At larger τ a steep
descent is observed, approaching the Gaussian value 3
rapidly, which corresponds to the flatness of the La-
grangian velocity. In the periodic case this descent is
slower.
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FIG. 5: Flatness of the Lagrangian velocity increments as a
function of τ for the periodic and circular geometry.

From Fig. 4 it could be concluded that the no-slip walls
are responsible for the extreme events in the acceleration.
Indeed, one of the main differences between periodic and
wall bounded flows, is the production of vorticity at the
walls. As illustrated in Fig. 1, particles trapped in the
vortices generated at the wall experience extreme acceler-
ation, corresponding to the heavy tails of the Lagrangian
acceleration PDF shown in Fig. 4. These vortices are
ejected from the wall by the detachment of the bound-
ary layer, and hereby the influence of the walls can be
observed in a part of the domain larger than the vicinity
of the wall only. In the following we want to investigate
whether these events remain confined to a region close to
the wall or if the influence of the walls penetrates into the
center of the domain. We proceed as follows: we choose
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an arbitrary radius r0 ≤ R and we separate the statistics
into two parts, inside (denoted by Lr<r0

(t)) and out-
side (Lr>r0

(t)) the selected radius. A single trajectory
can contribute to both regions as illustrated in Fig. 1.
The flatness of the conditional Lagrangian acceleration
aLr<r0

(t) is defined as

FaL
(r) =

〈aLr<r0
(r)4〉

〈aLr<r0
(r)2〉2 , (3)

where 〈·〉 denotes the ensemble average for the particles
confined to circular subdomain defined by the radius r0.
It is plotted in Fig. 6 for the case of the circular geome-
try.
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FIG. 6: Conditional flatness of the Lagrangian acceleration
as a function of radius r0/R.

For a radius r0/R < 0.3 the flatness is nearly constant
with a value of about 5. Hence, no significant influence
of the wall can be found for the acceleration. When the
radius is between 0.3 < r0/R < 0.4, the flatness increases
rapidly, which corresponds to a sudden appearance of in-
termittent acceleration due to the wall. This part corre-
sponds to a transition region between isotropic and con-
fined turbulence. We could introduce a critical radius
which measures the Lagrangian boundary layer thickness

δL, corresponding to the region r0/R > 0.3, in which
the influence of the boundaries on the Lagrangian statis-
tics becomes important. For 0.4 < r0/R < 0.8 the flat-
ness increases slowly with values around 20. Finally, for
r0/R > 0.8 the flatness strongly increases. In this region
the influence of the wall becomes most important.

To conclude, we showed by DNS of decaying two-
dimensional incompressible Navier-Stokes turbulence, to
what extend no-slip boundaries influence the Lagrangian
statistics of velocity and acceleration. Whereas the PDF
of the Lagrangian velocity is only slightly influenced by
the no-slip conditions in a region close to the boundary,
reflected by a small cusp around zero in its PDF, the
PDF of the acceleration shows the appearance of heavy
tails which are much more pronounced than in the case of
periodic boundary conditions. By computing the acceler-
ation statistics only in a subdomain of radius r0 < R, we
were able to measure a Lagrangian boundary layer thick-

ness δL. For the center of the flow, outside this boundary
layer, the influence on the acceleration is nearly negligi-
ble. The transition between the Lagrangian boundary

layer and a region, not directly influenced by the walls,
is shown to be very sharp with a sudden increase of the
acceleration flatness from ∼ 5 to ∼ 20. Subsequently, a
region of slowly increasing flatness is observed followed
by a near-wall region in which, again, a sharp increase of
the flatness is observed. The influence of the Reynolds
number on the relation between δL and r0/R deserves
attention and will be addressed in a more detailed study.
We would like to stress the importance of the observation
of a critical radius which measures a Lagrangian bound-
ary layer thickness. In particular the fact that in our
case it extends up to r0/R ≈ 0.3, which implies that ap-
proximately 90% of the domain surface is influenced by
the walls. Indeed, this information is necessary to assess
the validity of the assumption of homogeneity in exper-
imental results. If in three-dimensional turbulence δL is
of the same order, a careful reassessment of experimental
results would be needed.
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tionale de la Recherche, project ”M2TFP”. We thank C.
Baudet for fruitful discussion.
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