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A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the gradient variable

Introduction

We investigate the regularity of solutions to the Hamilton-Jacobi equation -u t (x, t) + b(x, t)|Du(x, t)| q + f (x, t).Du(x, t) = 0 in I R N × (0, T ) u(x, T ) = g(x)

for x ∈ I R N (1) under the following assumptions:

q > 1 , (2) 
b : I R N × (0, T ) → I R, f : I R N × (0, T ) → I R N and g : I R N → I R are continuous and bounded by some constant M ,

(x, t) ≥ δ > 0 ∀(x, t) ∈ I R N × (0, T ) (3) b 
for some δ > 0.

Regularity of solutions of Hamilton-Jacobi equations with superlinear growth have been the object of several works (see in particular Lions [START_REF] Lions | Regularizing effects for first-order Hamilton-Jacobi equations[END_REF], Barles [START_REF] Barles | Regularity results for first order Hamilton-Jacobi equations[END_REF], Rampazzo, Sartori [START_REF] Rampazzo | Hamilton-Jacobi-Bellman equations with fast gradient-dependence[END_REF]). Our aim is to show that u is locally Hölder continuous with Hölder exponent and constant depending only M , δ, q and T . What is new compared to the previous works is that the regularity does not depend on the smoothness of the maps b, f and g, but only on the growth condition. The motivation for this is the homogenization of 1 Hamilton-Jacobi equations, where such estimates are needed. Here is our result.

Theorem 1.1 There is some constant θ = θ(M, δ, q, T ) and, for any τ > 0, some constant K τ = K(τ, M, δ, q, T ) such that, for any x 0 , x 1 ∈ I R N , for any t 0 , t 1 ∈ [0, T -τ ],

|u(x 0 , t 0 ) -u(x 1 , t 1 )| ≤ K τ |x 0 -x 1 | (θ-p)/(θ-1) + |t 0 -t 1 | (θ-p)/θ
The proof of the result relies on the representation of the solution u of (1) as the value function of a problem of calculus of variations (see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF], [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]): Namely, setting p = q q-1 , we have

u(x, t) = inf T t a(x(s), s) f (x(s), s) + x ′ (s) p ds + g(x(T )) (5) 
where the infimum is taken over the set of functions

x(•) ∈ W 1,p ([t, T ], I R N ) such that x(t) = x and where a(x, t) = 1 b(x, t) p-1 p -1/(p-1) -p -p/(p-1) p-1
.

From now on we work on the control representation of the solution u. To simplify the notations, we assume without loss of generality that b is also bounded by M and satisfies

a(x, t) ≥ δ > 0 ∀(x, t) ∈ I R N × (0, T )
The paper is organized as follows. In the first section, we use a kind of reverse Hölder inequality to prove that the optimal solutions of (5) are in some sense slightly "more integrable" than what we could expect. In the second step we show that this integrability implies the desired Hölder regularity for the value function. In Appendix, we prove the reverse Hölder inequality.

Aknowledgement : We wish to thank Guy Barles for useful discussions.

Estimate of the optimal of the controlled system

The key remark of this section is Lemma 2.5 stating that optimal controls are "more integrable" than what could be expected. This is proved through several steps and the use of a reverse Hölder inequality. Lemma 2.1 There is a constant K ≥ 0 depending only on M, δ, p, T , such that, for any optimal solution x of (5) starting from x 0 at time t 0 , we have

T t 0 |x ′ (s)| p ds ≤ K . ( 6 
)
Proof of Lemma 2.1 : Comparing x with the constant solution x(t) = x 0 we get

T t 0 a(x(s), s)|f (x(s), s)+x ′ (s)| p ds+g(x(T )) ≤ T t 0 a(x 0 , s)|f (x 0 , s)| p ds+g(x 0 ) with g(x 0 ) -g(x(T )) ≤ 2M , T t 0 a(x(s), s)|f (x(s), s) + x′ (s)| p ds ≥ δ T t 0 |f (x(s), s) + x′ (s)| p ds ≥ δ 2 p-1 T t 0 |x ′ (s)| p ds -M p (T -t 0 ) and T t 0 a(x 0 , s)|f (x 0 , s)| p ds ≤ M p+1 (T -t 0 ) .
Whence the result with K = 2 p-1 (M p+1 T + 2M )/δ + M p T . QED Lemma 2.2 There are some constants A ≥ 1 and B ≥ 0 depending only on M, δ, p, T , such that, for any optimal solution x of (5) starting from x 0 at time t 0 , we have

1 h t 0 +h t 0 |x ′ (s)| p ds ≤ A 1 h t 0 +h t 0 |x ′ (s)|ds p + B ∀h ∈ [0, T -t 0 ] (7)
Proof of Lemma 2.2 : Let us fix h ∈ (0, T -t 0 ) and let us define

x(t) = x(t 0 +h)-x 0 h (t -t 0 ) + x 0 if t ∈ [t 0 , t 0 + h] x(t) otherwise
Since x is optimal and x(T ) = x(T ) we have 

≥ δ 2 p-1 t 0 +h t 0 |x ′ (s)| p ds -M p h and t 0 +h t 0 a(x(s), s)|f (x(s), s) + x′ (s)| p ds ≤ M t 0 +h t 0 |f (x(s), s) + x′ (s)| p ds ≤ 2 p-1 M (M p h + t 0 +h t 0 |(x(h) -x 0 )/h| p ds ≤ 2 p-1 M (M p h + h 1-p ( t 0 +h t 0 |x ′ (s)|ds) p ) QED
In the following Lemma we get rid of the constant B in [START_REF] Rampazzo | Hamilton-Jacobi-Bellman equations with fast gradient-dependence[END_REF]. Assume

that α ∈ L p ([t 0 , T ], I R + ) satisfies 1 h t 0 +h t 0 |α(s)| p ds ≤ A 1 h t 0 +h t 0 |α(s)|ds p + B ∀h ∈ [0, T -t 0 ] Let z(t) = t t 0 α(s)ds and z 1 (s) = max z(s), ( B A ) 1/p (s -t 0 ) ∀s ∈ [t 0 , T ] .
Set α 1 (t) = z ′ 1 (t). We note for later use that z 1 (t) ≥ z(t) on [t 0 , T ] and that, if z 1 (t) = z(t), then t t 0 (α 1 (s)) p ds ≤ t t 0 (α(s)) p ds. We claim:

Lemma 2.3 1 h t 0 +h t 0 |α 1 (s)| p ds ≤ 2A 1 h t 0 +h t 0 |α 1 (s)|ds p ∀h ∈ [0, T -t 0 ] Proof of Lemma 2.3 : Let γ = (B/A) 1/p . If z 1 (t 0 + h) = z(t 0 + h), then from the definition of z 1 we have B ≤ A(z(t 0 + h)/h) p = A(z 1 (t 0 + h)/h) p and therefore t 0 +h t 0 |α 1 (s)| p ds ≤ t 0 +h t 0 |α(s)| p ds ≤ A h p-1 (z(t 0 +h)) p +Bh ≤ 2A h p-1 (z 1 (t 0 +h)) p If on the contrary z 1 (t 0 + h) > z(t 0 + h), then there is some h 1 < h such that z 1 (t 0 + h 1 ) = z(t 0 + h 1 ) and z 1 (s) = γ(s -t 0 ) on [t 0 + h 1 , t 0 + h].
Then we have from the previous step

t 0 +h t 0 |α 1 (s)| p ds = t 0 +h 1 t 0 |α 1 (s)| p ds + t 0 +h t 0 +h 1 |α 1 (s)| p ds ≤ 2A h p-1 1 (z 1 (t 0 + h 1 )) p + (h -h 1 )γ p ≤ 2Aγ p h 1 + (h -h 1 )γ p ≤ 2A h p-1 (z 1 (t 0 + h)) p QED
Next we show-in a kind of reverse Hölder inequality-that if a map satisfies the inequality given by Lemma 2.3, then it is "more integrable" than what we could expect. There are several results of this nature in the literature since Gehring seminal work [START_REF] Gehring | The L p -integrability of the partial derivatives of a quasiconformal mapping[END_REF] (see for instance [START_REF] Bensoussan | Regularity results for nonlinear elliptic systems and applications[END_REF] and the references therein).

Lemma 2.4 Let A > 1 and p > 1. Then there are constants θ = θ(A, p) > p and C = C(A, p) > 0 such that, for any α ∈ L p (0, 1) such that

1 h h 0 |α(s)| p ds ≤ A 1 h h 0 |α(s)|ds p ∀h ∈ [0, 1], (8) 
we have

h 0 |α(s)|ds ≤ C α p h 1-1/θ ∀h ∈ [0, 1] .
Moreover, the optimal choice of θ is such that γ = 1 -1/θ is the smallest root of ϕ(s) = s p -A(1 -p + ps).

A possible proof of the Lemma is the following: using Gehring's result we can show that a map α satisfying (8) belongs in some L r for some r > p with a L r norm controlled by its L p norm, and then use Hölder inequality. We have choosen to present in Appendix a new and direct proof using a completely different approach.

Combining Lemma 2.2, Lemma 2.3 and Lemma 2.4 we get: Lemma 2.5 There are constants θ > p and C depending only on M, δ, p, T such that, for any x 0 ∈ I R N and any t 0 < T , if x is optimal for the initial position x 0 at time t 0 , then

t 0 +h t 0 |x ′ (s)|ds ≤ C(T -t 0 ) 1/θ-1/p h 1-1/θ ∀h ∈ [t 0 , T ]
Proof of Lemma 2.5 : Let x be optimal for (x 0 , t 0 ). From Lemma 2.2 we know that

1 h t 0 +h t 0 |x ′ (s)| p ds ≤ A 1 h t 0 +h t 0 |x ′ (s)|ds p + B ∀h ∈ [0, T -t 0 ]
for some constants A, B depending only on M, δ, T and p. Setting

α(t) = |x ′ (t)|, z(t) = t t 0 α(s)ds, z 1 (t) = max{z(t), (B/A) 1/p (t -t 0 )} and α 1 (t) = z ′ 1 (t)
, we have from Lemma 2.3:

1 h t 0 +h t 0 (α 1 (s)) p ds ≤ 2A 1 h t 0 +h t 0 α 1 (s)ds p ∀h ∈ [0, T -t 0 ]
Applying Lemma 2.4 to the constants p and 2A and with a proper scalling, we get that there exists θ > p and C 2 depending only on M, δ, T and p such that

t 0 +h t 0 |x ′ (s)|ds ≤ t 0 +h t 0 α 1 (s)ds ≤ (T -t 0 ) 1 θ -1 p C 2 α 1 p h 1-1/θ
where we can estimate α 1 L p ([t 0 ,T ]) as follows: Let

t = max{t ∈ [t 0 , T ] | z 1 (t) = z(t)} . Then T t 0 α p 1 (s)ds = t t 0 α p 1 (s)ds + T t B A p ds ≤ t t 0 α p (s)ds + B A p (T -t)
where, from Lemma 2.1, we have

t t 0 α p (s)ds ≤ K .
Therefore α 1 p ≤ C 3 , where C 3 = C 3 (M, δ, p, T ) and the proof is complete.

QED 3 Regularity of the value function

We are now ready to prove Theorem 1.1.

Space regularity : Let x 0 , x 1 ∈ I R N , t 0 < T . We assume that

|x 1 -x 0 | ≤ C (1 -p/θ) p -1 (T -t 0 ) 1-1/p ∧ 1 , (9) 
where C and θ are the constants which appear in Lemma 2.5. We claim that

u(x 1 , t 0 )-u(x 0 , t 0 ) ≤ K 1 (T -t 0 ) -(p-1)(θ-p)/(p(θ-1)) |x 1 -x 0 | (θ-p)/(θ-1) (10)
where

K 1 = K 1 (M, p, T, δ).
Indeed, let x be an optimal trajectory for (x 0 , t 0 ). For h ∈ (0, T -t 0 ) let

x(t) = x(t 0 +h)-x 1 h (t -t 0 ) + x 1 if t ∈ [t 0 , t 0 + h] x(t) otherwise
From Lemma 2.5 we have

|x(t 0 + h) -x 0 | ≤ t 0 +h t 0 |x ′ (s)|ds ≤ C(T -t 0 ) 1/θ-1/p h 1-1/θ .
Therefore, since x(T ) = x(T ), we have

u(x 1 , t 0 ) ≤ T t 0 a(x(s), s)|f (x(s), s) + x′ (s)| p ds + g(x(T )) ≤ u(x 0 , t 0 ) + t 0 +h t 0 a(x(s), s)|f (x(s), s) + x′ (s)| p ds ≤ u(x 0 , t 0 ) + M 2 p-1 (M p h + h 1-p |x(t 0 + h) -x 1 | p ) ≤ u(x 0 , t 0 ) + M 2 p-1 (M p h + h 1-p (|x(t 0 + h) -x 0 | + |x 0 -x 1 |) p ≤ u(x 0 , t 0 ) + M 2 p-1 (M p h + h 1-p (C 0 h 1-1/θ + |x 0 -x 1 |) p
where we have set

C 0 = C(T -t 0 ) 1/θ-1/p . Choosing h = 1 C 0 p -1 1 -p/θ |x 0 -x 1 | θ/(θ-1)
we have h ≤ (T -t 0 ) (from assumption (9)) and therefore

u(x 1 , t 0 ) -u(x 0 , t 0 ) ≤ K ′ 1 (T -t 0 ) -(θ-p)(p-1)/(p(θ-1)) |x 1 -x 0 | (θ-p)/(θ-1)
where K ′ 1 = K ′ 1 (M, δ, p, T ). Whence (10).

Time regularity : Let x 0 be fixed and t 0 < t 1 < T -τ . We assume that t 1 -t 0 ≤ K 3 τ (2θp-p-θ)/(p(θ-1)) (11)

for some constant K 3 = K 3 (M, δ, p, T ) to be fixed later, where θ is given by Lemma (2.5). We claim that

|u(x 0 , t 0 ) -u(x 0 , t 1 )| ≤ K 2 τ -(θ-p)/θ (t 1 -t 0 ) (θ-p)/θ
for some constant K 2 = K 2 (M, δ, p, T ). Indeed, let x be optimal for (x 0 , t 1 ). Then setting

x(t) = x 0 if t ∈ [t 0 , t 1 ] x(t) otherwise we have u(x 0 , t 0 ) ≤ t 1 t 0 a(x 0 , s)|f (x 0 , s)| p ds + u(x 0 , t 1 ) ≤ M p+1 |t 1 -t 0 | + u(x 0 , t 1 )
which gives the desired inequality provided K 2 is sufficiently large.

To get a reverse inequality, let x be now optimal for (x 0 , t 0 ). Using Lemma 2.5 we have that

|x(t 1 ) -x 0 | ≤ t 1 t 0 |x ′ (s)|ds ≤ C(T -t 0 ) 1/θ-1/p (t 1 -t 0 ) 1-1/θ ≤ C (1-p/θ) p-1 (T -t 1 ) 1-1/p ∧ 1 (12)
from the choice of t 1 -t 0 in (11) and K 3 sufficiently small. Note that we have u(x(t 1 ), t 1 ) ≤ u(x 0 , t 0 ) -

t 1 t 0 a(x(s), s)|f (x(s), s) + x′ (s)| p ds ≤ u(x 0 , t 0 )
Hence, using the space regularity of u (recall that (12) holds) we get u(x 0 , t 1 ) ≤ u(x 0 , t 1 ) -u(x(t 1 ), t 1 ) + u(x 0 , t 0 )

≤ u(x 0 , t 0 ) + K 1 C(T -t 1 ) -(p-1)(θ-p)/(p(θ-1)) |x(t 1 ) -x 0 | (θ-p)/(θ-1) ≤ u(x 0 , t 0 ) + K 2 τ -(θ-p)/θ (t 1 -t 0 ) (θ-p)/θ QED 4 Appendix : proof of Lemma 2.4
We note later use that the map ϕ(s) = s p -A(1 -p + ps) has two roots, the smallest one-denoted by γ-belonging to the interval (1 -1/p, A 1/(p-1) ), the other one being larger than A 1/(p-1) . Moreover, if ϕ(s) ≤ 0, then s ≥ γ. Let E = {α ∈ L p (0, 1) , α ≥ 0, α satisfies (8) and α p ≤ 1}

We note that E is convex, closed and bounded in L p (0, 1). Therefore the problem

ξ(τ ) = max τ 0 α(s)ds , α ∈ E
has a unique maximum denoted ᾱτ for any τ ∈ (0, 1] (uniqueness comes from the fact that inequality (8) is positively homogeneous, which entails that at the optimum inequality α p ≤ 1 is an equality).

In order to prove the Lemma, we only need to show that

ξ(τ ) ≤ Cτ γ ∀τ ∈ [0, 1] (13) 
for a suitable choice of C, because again inequality (8) is positively homogeneous in α.

The proof of ( 13) is achieved in two steps. In the first one, we explain the structure of the optima. Then we deduce from this that ξ satisfies a differential equation, which gives the desired bound.

Structure of the optima :

We claim that there is some τ > 0 such that for any τ ∈ (0, τ ),

ᾱτ (t) =    a τ on [0, τ ) b τ on [τ, τ 1 ) A -1/p γt γ-1 on [τ 1 , 1]
where 0 < b τ ≤ a τ and τ < τ 1 < 1.

Proof of the claim : Let xτ (t) = t 0 ᾱτ (s)ds. To show that ᾱτ is constant on [0, τ ), we introduce the map α(s) = xτ (τ ) τ on [0, τ ), α = ᾱτ otherwise. Then α belongs to E and is also optimal. Hence α = ᾱτ , which shows that ᾱτ is constant on [0, τ ).

With similar arguments we can prove that, if there is a strict inequality in (8) for ᾱτ at some h ≥ τ , then ᾱτ is locally constant in a neighbourhood of h in [τ, 1]. In particular, since ᾱτ is constant on [0, τ ), inequality (8) is strict for ᾱτ at τ , and there is a maximal interval [τ, τ 1 ) on which ᾱτ is constant. We set a τ = ᾱτ (0 + ) and b τ = ᾱτ (τ + ).

In order to show that a τ ≥ b τ , we prove that the map t → xτ (t)/t is nonincreasing.

Indeed, let t > 0 be fixed and x(s) = max{x τ (s), xτ (t) t s} if s ∈ [0, t] and x = xτ otherwise. Let us check that x ′ is admissible and optimal. Let I ⊂ (0, t) be the open set {x > xτ }. We can write I as the (at most) enumerable union of disjoint intervals (c i , d i ). Since x is affine on each interval (c i , d i ) with x(c i ) = x(c i ) and x(d i ) = x(d i ) we have

d i c i |x ′ | p ≤ d i c i |x ′ τ | p ∀i . (15) 
Since x ′ = xτ a.e. in [0, 1]\I, we get x ′ p ≤ x′ τ p = 1. Moreover, for any h > 0 such that x(h) = xτ (h), (15) and the admissibility of x′ τ also give 

1 h h 0 |x ′ | p ≤ 1 h h 0 |x ′ τ | p ≤ A 1 h xτ (h) p = A 1 h x(h) p . If x(h) > xτ (h), let h 1 = max{s ≤ h | x(s) = xτ (s)}. Then x(s) = xτ (t) t s on [h 1 , h] and so 1 h h 0 |x ′ | p = 1 h h 1 0 |x ′ | p + 1 h h h 1 |x ′ | p ≤ Ah 1 h 1 h 1 x(h 1 ) p + 1 h (h -h 1 ) xτ (t) t p ≤ Ah 1 h xτ (t) t p + A 1 h (h -h 1 ) xτ (t) t p ≤ A xτ (t) t p = A 1 h x(h)
Let us now assume that τ 1 < 1. To prove that ᾱτ (s) = A -1/p γs γ-1 on [τ 1 , 1], we show that there is an equality in (8) for ᾱτ on [τ 1 , 1]. Indeed, otherwise, ᾱτ is constant on some maximal interval (u, v) with τ 1 ≤ u < v ≤ 1. We note that equality holds in (8) at u because ᾱτ is not locally constant at this point. Taking the derivative with respect to h in (8) at u we get

(ᾱ τ (u + )) p ≤ - (p -1)A u p (x τ (u)) p + pA u p-1 (x τ (u)) p-1 ᾱτ (u + ) , i.e., ( uᾱ τ (u + ) xτ (u) ) p -A(1 -p + p uᾱ τ (u + ) xτ (u) ) ≤ 0 .
From the analysis of ϕ, this implies that ᾱτ (u + ) ≥ γ xτ (u) u .

Let us define

x(s) = xτ (s) on [0, u], x(s) = xτ (u) u γ s γ on [u, v], x(s) = x(v -) xτ (v) xτ (s) on [v, 1] and α = x ′ . Since α(u + ) = γ xτ (u)
u ≤ ᾱτ (u + ), one easily checks that x ≤ xτ and α ≤ ᾱτ on [0, 1]. Moreover, a straightforward verification shows that x satisfies (8). Hence x is also optimal, which is impossible. So there is an equality in (8) for ᾱτ on [τ 1 , 1]. Taking the derivative in this equality shows that ᾱτ solves

ᾱp τ (s) = - pA s p-1 (x τ (s)) p + A s p (x τ (s)) p-1 ᾱτ (s) on [τ 1 , 1] .
From ( 16) and the analysis of ϕ, this implies that x′ τ (s) = γ xτ (s) s on [τ 1 , 1]. Hence xτ (s) = Cs γ for some constant C. Since there is an equality in (8) at h = 1 and since ᾱτ p = 1, 1 = A(x τ (1)) p and therefore C = A -1/p .

Finally we have to show that τ 1 < 1 for any τ ∈ (0, τ ). Indeed, assume otherwise that τ 1 = 1 for arbitrary small τ . Since x(t) = A -1/p t γ is admissible, we have a τ τ ≥ A -1/p τ γ . Hence a τ → +∞ as τ → 0 + . Moreover the constraint ᾱτ p = 1 implies that b τ is bounded when τ → 0 + . Hence, for any k large, we can find τ > 0 such that a τ > kb τ . Writing inequality (8) at h = kτ then gives a p τ τ ≤ A (1 + k) p-1 τ p-1 (a τ τ +b τ kτ ) p ≤ A (1 + k) p-1 τ p-1 (2a τ τ ) p = 2 p A (1 + k) p-1 a p τ τ whence a contradiction since k is arbitrarily large.

A differential equation for ξ : To complete the proof of (13), we are going to show that ξ is locally Lipschitz continous and satisfies (-τ )ξ ′ (τ ) + γξ(τ ) = 0 for a.e. τ ∈ (0, τ ) .

From this (13) follows easily for a suitable choice of C.

Proof of (17) : Let us extend the optimal solutions by A -1/p γs γ-1 on [1, +∞) for τ ∈ (0, τ ). For λ > 0, let α λτ (s) = ᾱτ (λs) s ≥ 0 .

Then α λτ satisfies (8) and α λτ p = λ -1/p 1 + QED

p

  So x ′ is admissible. Since x(τ ) ≥ xτ (τ ), x is also optimal. So x = xτ and (14) is proved.Note that (14) implies that a τ ≥ b τ andsx ′ τ (s) xτ (s) ≤ 1 < A 1/(p-1)for a.e. s ∈ [0, 1] .

  Hence α λτ / α λτ p is admissible and for λ = 1. In particular, this shows that ξ is locally Lipschitz continuous in (0, 1]. Moreover, at each point τ at which ξ has a derivative, we have, by taking the derivative with respect to λ at λ = 1 in (18):(-τ )ξ ′ (τ ) = (1/p -1)ξ(τ ) -ξ(τ ) p ᾱp τ (1) = ξ(τ )(1/p -1 -Aγ p /p) = -γξ(τ )on (0, τ ). Whence (17).
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