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Testing the number of parameters of

multidimensional MLP

Joseph Rynkiewicz1
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Université de Paris I
72 rue Regnault, 75013 Paris, France
(e-mail: joseph.rynkiewicz@univ-paris1.fr)

Abstract. This work concerns testing the number of parameters in one hidden
layer multilayer perceptron (MLP). For this purpose we assume that we have iden-
tifiable models, up to a finite group of transformations on the weights, this is for
example the case when the number of hidden units is know. In this framework, we
show that we get a simple asymptotic distribution, if we use the logarithm of the
determinant of the empirical error covariance matrix as cost function.
Keywords: Multilayer Perceptron, Statistical test, Asymptotic distribution.

1 Introduction

Consider a sequence (Yt, Zt)t∈N
of i.i.d.1 random vectors (i.e. identically

distributed and independents). So, each couple (Yt, Zt) has the same law
that a generic variable (Y, Z) ∈ R

d × R
d′

.

1.1 The model

Assume that the model can be written

Yt = FW 0 (Zt) + εt

where

• FW 0 is a function represented by a one hidden layer MLP with parameters
or weights W 0 and sigmoidal functions in the hidden unit.

• The noise, (εt)t∈N, is sequence of i.i.d. centered variables with unknown
invertible covariance matrix Γ (W 0). Write ε the generic variable with
the same law that each εt.

Notes that a finite number of transformations of the weights leave the MLP
functions invariant, these permutations form a finite group (see [Sussman, 1992]).
To overcome this problem, we will consider equivalence classes of MLP : two

1 It is not hard to extend all what we show in this paper for stationary mixing
variables and so for time series
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MLP are in the same class if the first one is the image by such transformation
of the second one, the considered set of parameter is then the quotient space
of parameters by the finite group of transformations.

In this space, we assume that the model is identifiable, this can be
done if we consider only MLP with the true number of hidden units (see
[Sussman, 1992]). Note that, if the number of hidden units is over-estimated,
then such test can have very bad behavior (see [Fukumizu, 2003]). We agree
that the assumption of identifiability is very restrictive, but we want empha-
size the fact that, even in this framework, classical test of the number of
parameters in the case of multidimensional output MLP is not satisfactory
and we propose to improve it.

1.2 testing the number of parameters

Let q be an integer lesser than s, we want to test “H0 : W ∈ Θq ⊂ R
q” against

“H1 : W ∈ Θs ⊂ R
s”, where the sets Θq and Θs are compact. H0 express

the fact that W belongs to a subset of Θs with a parametric dimension lesser
than s or, equivalently, that s − q weights of the MLP in Θs are null. If we
consider the classic cost function : Vn(W ) =

∑n

t=1 ‖Yt − FW (Zt)‖2 where
‖x‖ denotes the Euclidean norm of x, we get the following statistic of test :

Sn = n ×
(

min
W∈Θq

Vn(W ) − min
W∈Θs

Vn(W )

)

It is shown in [Yao, 2000], that Sn converges in law to a ponderated sum of
χ2

1

Sn
D→

s−q
∑

i=1

λiχ
2
i,1

where the χ2
i,1 are s− q i.i.d. χ2

1 variables and λi are strictly positives values,
different of 1 if the true covariance matrix of the noise is not the identity.
So, in the general case, where the true covariance matrix of the noise is not
the identity, the asymptotic distribution is not known, because the λi are not
known and it is difficult to compute the asymptotic level of the test.

To overcome this difficulty we propose to use instead the cost function

Un (W ) := ln det

(

1

n

n
∑

t=1

(Yt − FW (Zt))(Yt − FW (Zt))
T

)

. (1)

we will show that, under suitable assumptions, the statistic of test :

Tn = n ×
(

min
W∈Θq

Un(W ) − min
W∈Θs

Un(W )

)

(2)

will converge to a classical χ2
s−q so the asymptotic level of the test will be

very easy to compute. The sequel of this paper is devoted to the proof of
this property.
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2 Asymptotic properties of Tn

In order to investigate the asymptotic properties of the test we have to prove
the consistency and the asymptotic normality of Ŵn = argminW∈Θs

Un(W ).
Assume, in the sequel, that ε has a moment of order at least 2 and note

Γn(W ) =
1

n

n
∑

t=1

(Yt − FW (Zt))(Yt − FW (Zt))
T

remark that these matrix Γn(W ) and it inverse are symmetric. in the same
way, we note Γ (W ) = limn→∞ Γn(W ), which is well defined because of the
moment condition on ε

2.1 Consistency of Ŵn

First we have to identify contrast function associated to Un(W )

Lemma 1

Un(W ) − Un(W 0)
a.s.→ K(W, W 0)

with K(W, W 0) ≥ 0 and K(W, W 0) = 0 if and only if W = W 0.

Proof : By the strong law of large number we have

Un(W ) − Un(W 0)
a.s.→ ln det(Γ (W )) − ln det(Γ (W 0)) = ln det(Γ (W ))

det(Γ (W 0)) =

ln det
(

Γ−1(W 0)
(

Γ (W ) − Γ (W 0)
)

+ Id

)

where Id denotes the identity matrix of R
d. So, the lemme is true if Γ (W )−

Γ (W 0) is a positive matrix, null only if W = W 0. But this property is true
since

Γ (W ) = E
(

(Y − FW (Z))(Y − FW (Z))T
)

=
E
(

(Y − FW 0(Z) + FW 0(Z) − FW (Z))(Y − FW 0(Z) + FW 0(Z) − FW (Z))T
)

=
E
(

(Y − FW 0(Z))(Y − FW 0(Z))T
)

+
E
(

(FW 0 (Z) − FW (Z))(FW 0 (Z) − FW (Z))T
)

=
Γ (W 0) + E

(

(FW 0 (Z) − FW (Z))(FW 0 (Z) − FW (Z))T
)

�

We deduce then the theorem of consistency :

Theorem 1 If E
(

‖ε‖2
)

< ∞,

Ŵn
P→ W 0
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Proof Remark that it exist a constant B such that

supW∈Θs
‖Y − FW (Z)|2 < ‖Y ‖2 + B

because Θs is compact, so FW (Z) is bounded. For a matrix A ∈ R
d×d, let

‖A‖ be a norm, for example ‖A‖2 = tr
(

AAT
)

. We have

lim infW∈Θs
‖Γn(W )‖ = ‖Γ (W 0)‖ > 0

lim supW∈Θs
‖Γn(W )‖ := C < ∞

and since the function :

Γ 7→ ln det Γ, for C ≥ ‖Γ‖ ≥ ‖Γ (W 0)‖

is uniformly continuous, by the same argument that example 19.8 of
[Van der Vaart, 1998] the set of functions Un(W ), W ∈ Θs is Glivenko-
Cantelli.

Finally, the theorem 5.7 of [Van der Vaart, 1998], show that Ŵn converge
in probability to W 0

�.

2.2 Asymptotic normality

For this purpose we have to compute the first and the second derivative with
respect to the parameters of Un(W ). First, we introduce a notation : if
FW (X) is a d-dimensional parametric function depending of a parameter W ,

write ∂FW (X)
∂Wk

(resp. ∂2FW (X)
∂Wk∂Wl

) for the d-dimensional vector of partial deriva-

tive (resp. second order partial derivatives) of each component of FW (X).

First derivatives : if Γn(W ) is a matrix depending of the parameter vector
W , we get from [Magnus and Neudecker, 1988]

∂

∂Wk

ln det (Γn(W )) = tr

(

Γ−1
n (W )

∂

∂Wk

Γn(W )

)

Hence, if we note

An(Wk) =
1

n

n
∑

t=1

(

−∂FW (zt)

∂Wk

(yt − FW (zt))
T

)

using the fact

tr
(

Γ−1
n (W )An(Wk)

)

= tr
(

AT
n (Wk)Γ−1

n (W )
)

= tr
(

Γ−1
n (W )AT

n (Wk)
)

we get
∂

∂Wk

ln det (Γn(W )) = 2tr
(

Γ−1
n (W )An(Wk)

)

(3)
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Second derivatives : We write now

Bn(Wk, Wl) :=
1

n

n
∑

t=1

(

∂FW (zt)

∂Wk

∂FW (zt)

∂Wl

T
)

and

Cn(Wk, Wl) :=
1

n

n
∑

t=1

(

−(yt − FW (zt))
∂2FW (zt)

∂Wk∂Wl

T
)

We get

∂2Un(W )
∂Wk∂Wl

= ∂
∂Wl

2tr
(

Γ−1
n (W )An(Wk)

)

=

2tr
(

∂Γ−1

n (W )
∂Wl

An(Wk)
)

+ 2tr
(

Γ−1
n (W )Bn(Wk, Wl)

)

+ 2tr
(

Γn(W )−1Cn(Wk, Wl)
)

Now, [Magnus and Neudecker, 1988], give an analytic form of the derivative
of an inverse matrix, so we get

∂2Un(W )
∂Wk∂Wl

= 2tr
(

Γ−1
n (W )

(

An(Wk) + AT
n (Wk)

)

Γ−1
n (W )An(Wk)

)

+

2tr
(

Γ−1
n (W )Bn(Wk, Wl)

)

+ 2tr
(

Γ−1
n (W )Cn(Wk, Wl)

)

so
∂2Un(W )
∂Wk∂Wl

= 4tr
(

Γ−1
n (W )An(Wk)Γ−1

n (W )An(Wk)
)

+2tr
(

Γ−1
n (W )Bn(Wk, Wl)

)

+ 2tr
(

Γ−1
n (W )Cn(Wk, Wl)

) (4)

Asymptotic distribution of Ŵn : The previous equations allow us to give the
asymptotic properties of the estimator minimizing the cost function Un(W ),
namely from equation (3) and (4) we can compute the asymptotic properties
of the first and the second derivatives of Un(W ). If the variable Z has a
moment of order at least 3 then we get the following lemma :

Theorem 2 Assume that E
(

‖ε‖2
)

< ∞ and E
(

‖Z‖3
)

< ∞, let ∆Un(W 0)
be the gradient vector of Un(W ) at W 0 and HUn(W 0) be the Hessian matrix

of Un(W ) at W 0.

Write finally

B(Wk, Wl) :=
∂FW (Z)

∂Wk

∂FW (Z)

∂Wl

T

We get then

1. HUn(W 0)
a.s.→ 2I0

2.
√

n∆Un(W 0)
Law→ N (0, 4I0)

3.
√

n
(

Ŵn − W 0
)

Law→ N (0, I−1
0 )

where, the component (k, l) of the matrix I0 is :

tr
(

Γ−1
0 E

(

B(W 0
k , W 0

l )
))
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proof : We can show easily that, for all x ∈ R
d, we have :

‖∂FW (Z)
∂Wk

‖ ≤ Cte(1 + ‖Z‖)
‖∂2FW (Z)

∂Wk∂Wl
‖ ≤ Cte(1 + ‖Z‖2)

‖∂2FW (Z)
∂Wk∂Wl

− ∂2F 0

W (Z)
∂Wk∂Wl

‖ ≤ Cte‖W − W 0‖(1 + ‖Z‖3)

Write

A(Wk) =

(

−∂FW (Z)

∂Wk

(Y − FW (Z))T

)

and U(W ) := log det(Y − FW (Z)).
Note that the component (k, l) of the matrix 4I0 is:

E

(

∂U(W 0)

∂Wk

∂U(W 0)

∂W 0
l

)

= E
(

2tr
(

Γ−1
0 AT (W 0

k )
)

× 2tr
(

Γ−1
0 A(W 0

l )
))

and, since the trace of the product is invariant by circular permutation,

E
(

∂U(W 0)
∂Wk

∂U(W 0)
∂W 0

l

)

=

4E
(

−∂F
W0 (Z)T

∂Wk
Γ−1

0 (Y − FW 0(Z))(Y − FW 0 (Z))T Γ−1
0

(

−∂F
W0(Z))

∂Wl

))

= 4E
(

∂F
W0 (Z)T

∂Wk
Γ−1

0
∂F

W0 (Z)

∂Wl

)

= 4tr
(

Γ−1
0 E

(

∂F
W0 (Z)

∂Wk

∂F
W0 (Z)T

∂Wl

))

= 4tr
(

Γ−1
0 E

(

B(W 0
k , W 0

l )
))

Now, the derivative ∂FW (Z)
∂Wk

is square integrable, so ∆Un(W 0) fulfills Linde-

berg’s condition (see [Hall and Heyde, 1980]) and
√

n∆Un(W 0)
Law→ N (0, 4I0)

For the component (k, l) of the expectation of the Hessian matrix, remark
first that

lim
n→∞

tr
(

Γ−1
n (W 0)An(W 0

k )Γ−1
n (W 0)An(W 0

k )
)

= 0

and
lim

n→∞
trΓ−1

n Cn(W 0
k , W 0

l ) = 0

so

limn→∞ Hn(W 0) = limn→∞ 4tr
(

Γ−1
n (W 0)An(W 0

k )Γ−1
n (W 0)An(W 0

k )
)

+
2trΓ−1

n (W 0)Bn(W 0
k , W 0

l ) + 2trΓ−1
n Cn(W 0

k , W 0
l ) =

= 2tr
(

Γ−1
0 E

(

B(W 0
k , W 0

l )
))

Now, since ‖∂2FW (Z)
∂Wk∂Wl

‖ ≤ Cte(1 + ‖Z‖2) and

‖∂2FW (Z)
∂Wk∂Wl

− ∂2F 0

W (Z)
∂Wk∂Wl

‖ ≤ Cte‖W − W 0‖(1 + ‖Z‖3), by standard arguments

found, for example, in [Yao, 2000] we get
√

n
(

Ŵn − W 0
)

Law→ N (0, I−1
0 )

�
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2.3 Asymptotic distribution of Tn

In this section, we write Ŵn = argminW∈Θs
Un(W ) and

Ŵ 0
n = argminW∈Θq

Un(W ), where Θq is view as a subset of R
s. The asymp-

totic distribution of Tn is then a consequence of the previous section, namely,
if we have to replace nUn(W ) by its Taylor expansion around Ŵn and Ŵ 0

n ,
following [Van der Vaart, 1998] chapter 16 we have :

Tn =
√

n
(

Ŵn − Ŵ 0
n

)T

I0

√
n
(

Ŵn − Ŵ 0
n

)

+ oP (1)
D→ χ2

s−q

3 Conclusion

It has been show that, in the case of multidimensional output, the cost func-
tion Un(W ) leads to a test for the number of parameters in MLP simpler than
with the traditional mean square cost function. In fact the estimator Ŵn is
also more efficient than the least square estimator (see [Rynkiewicz, 2003]).
We can also remark that Un(W ) matches with twice the “concentrated Gaus-
sian log-likelihood” but we have to emphasize, that its nice asymptotic prop-
erties need only moment condition on ε and Z, so it works even if the dis-
tribution of the noise is not Gaussian. An other solution could be to use an
approximation of the covariance error matrix to compute generalized least
square estimator :

1

n

n
∑

t=1

(Yt − FW (Zt))
T

Γ−1 (Yt − FW (Zt)) ,

assuming that Γ is a good approximation of the true covariance matrix of
the noise Γ (W 0). However it take time to compute a good the matrix Γ and
if we try to compute the best matrix Γ with the data, it leads to the cost
function Un(W ) (see for example [Gallant, 1987]).

Finally, as we see in this paper, the computation of the derivatives of
Un(W ) is easy, so we can use the effective differential optimization techniques
to estimate Ŵn and numerical examples can be found in [Rynkiewicz, 2003].
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