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“—ABSTRACT

The purpose of this communication is to discuss the sim-
lulation of a free surface compressible flow between two fluids
«—dlypically air and water. We use a two fluid model with the same

elocity, pressure and temperature for both phases. In such
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general). Such a description is known to be valid as far a:
propagation in the open sea of waves with moderate amplitud
is concerned. Clearly it is not satisfactory when waveseeith
break or hit coastal structures like offshore platformstigs,
piers, breakwaterstc. .. .

umerical model, the free surface becomes a thin three dimen

-=sional zone. The present method has at least three advantage

i) the free-surface treatment is completely implicit) (ti can
(maturally handle wave breaking and other topological chesim
the flow; (iii) one can easily vary the Equation of States (EGfS

each fluid (in principle, one can even consider tabulated EOS
oreover, our model is unconditionally hyperbolic for reas
ble EOS.

o0

(L(I)ntroduction
One of the challenges in Computational Fluid Dynamics
CFD) is to determine efforts exerted by waves on coastal

1structures. Such flows can be quite complicated and in piatic

“mvhen the sea is rough, wave breaking can lead to flows that

_ctannot be described by simple models liég. free surface

Euler or Navier-Stokes equations. In a free surface model,
the boundary between the gas (air) and the liquid (water) is
a surface. The liquid flow is assumed to be incompressible
while the gas is represented by a media, above the liquid
where the pressure is constant (the atmospheric pressure

*Address all correspondence to this author.

In this work, our goal is to investigate a two-fluid model for
this kind of problem. It belongs to the family of averaged mod
els, that is although the two fluids considered are not mliscib
there exists a length scadein order that each averaging volume
(of size&®) contain representative samples of each of the fluids
Once the averaging process is done, it is assumed that the tv
fluids share, locally, the same pressure, temperature dod-ve
ity. Such models are called homogeneous models in the-litere
ture. They can be seen as limiting case of more general tig-flu
models where the two fluids could have different temperature
and velocities[]1].

The influence of the presence of air in wave impacts is a dif-
ficult topic. While it is usually thought that the presenceadf
softens the impact pressures, recent results by Bullock @]a
show that the cushioning effect due to aeration via the aszd
compressibility of the air-water mixture is not necesgaaitiom-
inant effect. First of all, air may become trapped or entdin
' in the water in different ways, for example as a single bubble
' trapped against a wall, or as a column or cloud of small bisdble
'Mn addition, it is not clear which quantity is the most appiep

ate to measure impacts. For example some researchers pay m
attention to the pressure impulse than to pressure peaks. TI
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pressure impulse is defined as the integral of pressure bgert ance laws

short duration of impact. Bagnol [3], for example, notidkdt

the maximum pressure and impact duration differed from one ow P

identical wave impact to the next, even in carefully cormbl ot +0-F (W) =Sw), @
laboratory experiments, while the pressure impulse appear

be more repeatable. For sure, the simple one-fluid modelshwhi ~ wherew(x,t) : RY x R* — R™Mis the vector of conservative vari-
are commonly used for examining the peak impacts are notonge ables (in the present study= 2 or 3 andm = 5), % (w) is the
appropriate in the presence of air. There are few studidgndea  advective flux function an&(w) the source term.

with two-fluid models. An exception is the work by Peregind an The conservative variables in the 2D case are defined as fo
his collaborators. Wood, Peregrine & Brutﬂa [4] used the pres lows:

sure impulse approach to model a trapped air pocket. Pagegri

& Th_ais [B] (_examined the effeqt of entrained gir on a pa_rt_icu- w=W)2,:=(atpt,a p, pu, pv, pE). (5)

lar kind of violent water wave impact by considering a filling
flow. Bullock et al. ES] found pressure reductions when compa
ing wave impact between fresh and salt water where, due to the
different properties of the bubbles in the two fluids, theatien
levels are much higher in salt water than in fresh. H. Bredmos

The flux projection on the normal directioh= (n;,n,) can be
expressed in physical and conservative variables

recently performed numerical experiments on a two-fluidesys F A= (a"p"un,a” P Un, PUln+ PNy, PVl + P, PHUR) =
which is quite similar to the one we will use below. He develdp (w W3N1 +Wanp  WaNg+Wanp  WaNg + Waho 4 on
a finite volume solver for aerated flows named FIEir [7]. wi+w, 2 Wy 4+wo 3 W1 + W»p Pr,
W3N1 + Wahn2 W31 + Wghp
—— 4 pry, (W5 + 7) 6
WV pre, (Ws + p) WL W (6)

Mathematical model
In this section we present the equations which govern the whereu, := U-fi = un; + vrp is the velocity projection on the
motion of two phase mixtures in a computational dom@in normal directiori. The jacobian matrixin(w) ;= W can
First of all, we need to introduce the notation which will be pe easily computed. This matrix has three distinct eigemsal
used throughout this article. We use superscriptio denote
any quantity which is related to liquid and gas respectiveiyr
example,a™ anda~ denote the volume fraction of liquid and
gas and obviously satisfy the conditiart + a~ = 1. Then, we

Al =Un—Cs, A234=Un, As=Un+Cs,

+h—(eF)2( )2
have the following classical quantitieg:, T, p, e, E, g which wherec := B Ngﬁ(ﬁ’cg()gi)a@zi@)z)_ One can conclude that the
denote the density of each phase, the velocity field vedter, t  system[(1) —[(3) is hyperbolic. This hyperbolicity represehe
pressure, the internal & total energy and the acceleratientd major advantage of this model. The computation of the eigen
gravity correspondingly. vectors is trickier but can still be performed analyticalye do

Conservation of mass (one equation for each phase), mo- not give here the final expressions since they are cumbersome
mentum and energy lead to the four following equations:

Equation of state

(a*p) +0- (aFp*l) =0, 1) In the present work we assume that the light fluid is de-
(pU)+0- (pU® U+ pl) = pg, ) scribed by an ideal gas type law
E) +0:(pHU) = pg-q, 3 _ - -
(PE), 0 (pH) = 0 © p=-lpe, e=q¢T, )

wherep := a®p* +a~p~ (the total density)H := E+ 5 (the while the heavy fluid is modeled by Tait's law. In the literau
specific enthalpy)E = e+ %|EI|2 (the total energy). This system  Tait's law is sometimes called the stiffened gas I§{](8, 9]:
can be seen as the single energy and infinite drag limit of the
more _conyentional Six eiquiations modEI [1]. The above system pr+1H= (AN —1)pTe,
contains five unknowns*p=, U, p andk and only four govern-
ing equations[{1) -[{3). In order to close the system, we need t
provide the so-called equation of state (EQS¥ p*(p*,e). where the quantitieg, ¢t, .4/, 1 are constants. For example,
The construction of the EOS will be discussed below. pure water is well described when we take =7 andmp =

It is possible to rewrite these equations as a system of bal- 2.1 x 10° Pa.

o
N pt’

et =ci T+ (8)
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Remark 1. In practice, the constantsgccan be calculated after
simple algebraic manipulations of equatioﬂs (ﬂ, (8) andaha
ing with experimental values at normal conditions:

A Po+ T
(AN =D APy To

Po +
(y=Dpy To’

c,
The sound velocities in each phase are given by the follow-

ing formulas:

N pt+ 1
pt

2= (2=

(9)

In order to construct an equation of state for the mixture,

we make the additional assumption that the two phases are in

thermodynamic equilibrium:

=p, Tt=T". (10)

Below, values of the common pressure and common temperature

will be denoted byp and T respectively. The technical details
can be found in Chapter 4, [10].

Finite volume scheme on unstructured meshes

Finite volume methods are a class of discretization schemes

that have proven highly successful in solving numericallide

class of conservation law systems. These systems often com

from compressible fluid dynamics. When compared to other dis
cretization methods such as finite elements or finite diffees,
the primary interests of finite volume methods are robusines
applicability on very general unstructured meshes, andrthe
trinsic local conservation properties. Hence, with thigetyof
discretization, we conserve “exactly” the mass, momentoch a
total energy.

In order to solve numerically the system of balance Iaﬂvs (1)
- @) we use[(4). The systerf] (4) should be provided with initia
condition

w(x,0) = wp(X) (11)
and appropriate boundary conditions.

The computational domai@ C RY is triangulated into a set
of non overlapping control volumes that completely coves th
domain. Let7 denote a tesselation of the dom&inwith control
volumeK such that

1This statement is true in the absence of source terms andajgie bound-
ary conditions.

e

oK

Figure 1. An example of control volume K with barycenter O. The nor-
mal pointing from K to L is denoted by k.

For two distinct control volumeK andL in .7, the intersection

is either an edge (2D) or face (3D) with oriented normal or
else a set of measure at masst 2 (in 2D it is just a vertex, in
3D it can also be a segment, for example). We need to introduc
the following notation for the neighbourhood if

A (K):={Le .7 :aredKNL) # 0},

a set of all control volumek which share a face (or an edge in
2D) with the given volum&. In this article, we denote by vp)
and are&) thed andd — 1 dimensional measuregespectively.

The choice of control volume tesselation is flexible in the fi-
nite volume method. In the present study we retained a deetal
cell-centered approach, which means that degrees of freads
associated to cell barycenters.

The first steps in Finite Volume (FV) methods are classi-
cal. We start by integrating equatid]h (4) on the control oK
(see Figunﬂl for illustration) and we apply Gauss-Ostrdsks
theorem for advective fluxes. Then, in each control volume, a
integral conservation law statement is imposed:

d n n
a/Kwde/ﬁKﬁ’(w)-ﬁKLda:./KS(w)dQ. (12)

Physically an integral conservation law asserts that the o&
change of the total amount of a quantity (for example: mass
momentum, total energy, etc) with densityin a fixed control
volumeK is balanced by the flu¥# of the quantity through the
boundarydK and the production of this quantity” inside the
control volume.

2In other words, in 3D the notation arfegand vol-) are very natural and
mean area and volume respectively, while in 2D they refehéoarea and the
length.
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The next step consists in introducing the so-called control
volume cell average for eathe .7

Wi (t) 1= Fl(K)/KW(X,t) dQ

After the averaging step, the finite volume method can be in-
terpreted as producing a system of evolution equationsdtr c
averages, since

—/WXt dQ =vol(K )d(vjvtK

Godunov was the flrsml] who pursued and applied these ideas dWK

to the discretization of the gas dynamics equations.

However, the averaging process implies piecewise constant

solution representation in each control volume with valgead
to the cell average.
the numerical solution multivalued at control volume iféees.
Thereby the calculation of the fluxgg, .# (w) - fix. do at these
interfaces is ambiguous. The next fundamental aspect o€ fini
volume methods is the idea of substituting the true flux arint
faces by a numerical flux function

(Z (W) 1) | g oL

— CD(WK,WL; ﬁKL) ‘R"x R™— R™,
a Lipschitz continuous function of the two interface statgs
andw| . The heart of the matter in finite volume method consists
in the choice of the numerical flux functigh. In general this
function is calculated as an exact or even better approgifoedl
solution of the Riemann problem posed at these interfaodhel
present study we decided to choose the numerical flux fumctio
according to FVCF scheme extensively describeffih [12].

The numerical flux is assumed to satisfy the properties:

Conservation. This property ensures that fluxes from adjacent
control volumes sharing an interface exactly cancel when
summed. This is achieved if the numerical flux function sat-
isfies the identity

D(wi, W ; kL) = —P (W, Wk; ik ).

Consistency. The consistency is obtained when the numerical
flux with identical state arguments (in other words it means
that the solution is continuous through an interface) reduc
to the true flux of the same state, i.e.

®(w,w; i) = (Z -i)(w).

The use of such representation makes

After introducing the cell averag@g and numerical fluxes
into {L2), the integral conservation law statement becomes

dWK ; aria/g(ll_m K)GJ(WK,WL;FTKL) _
1
B vol(K) /KS(W) a0

We denote byS the approximation of the following quantity
voI jK S(w) dQ. Thus, the following system of ordinary dif-
ferent|al equations (ODE) is called a semi-discrete finitlime
method:

area(Lm K)

vKe 7.
vol(K

——————d(wg, W ;fikL) = K,

"2

e (K

(13)
The initial condition for this system is given by projecti(@)
onto the space of piecewise constant functions

1

Wik(0) = vol (K) .

/|;W0(X) dQ.

This system of ODE[(43) should also be discretized. There
is a variety of explicit and implicit time integration metth® We
chose the following third order four-stage SSP-RK(3,4)estl

[13,[4] with CFL= 2:

u® = um 1 Iy,

2
U = o 4 Zar ()
2 1 1
@ — Zym L =y@ L= (n)
u 3y 34 +6At.Z(u ),

mmw:u@+%mgw@y

Sign matrix computation

In the context of the FVCF scheme (s [12] for more de-
tails), we need to compute the so-called sign matrix which is
defined in the following way

Uy := sign(An) = Rsign(A)L,

whereR, L are matrices composed of right and left eigenvectors
correspondingly, and = diagA1, ..., An) is the diagonal matrix
of eigenvalues of the Jacobian.

This definition gives the first “direct” method of sign matrix
computation. Since the advection operator is relativetypde,

Copyright (© 2008 by ASME



after a few tricks, we can succeed in computing analytidky
matricesR andL. For more complicated two-phase models it is
almost impossible to perform this computation in closedira
cal form. In this case, one has to apply numerical technifpres
eigensystem computations. It turns out to be costly and gt v
accurate. In the present work we use physical informatiauab
the model in the humerical computations.

There is another way which is less expensive. The main idea
is to construct a kind of interpolation polynomial which ¢éskthe
following values

P(up£cs) =signun£c¢s), P(un) = sign(up).

These three conditions allow us to construct a second dégree
terpolation polynomial. Obviously, whelA(A) is evaluated at
A = Ap we obtain the sign matril, as a result. The construc-
tion of the Lagrange interpolation polynomPR(A ) is simple.

In our research code we have implemented both methods.
Our experience shows that the interpolation method is guick
and gives correct results in most test cases. However, wigen w
approach pure phase states, it shows a rather bad numegical b
haviour. It can lead to instabilities and diminish overaide
robustness. Thus, whenever possible we suggest to userthe co
putation of the Jacobian eigenstructure.

Second order scheme
If we analyze the above scheme, we understand that in fact,

scheme. In the above papers the authors used linear rasonstr
tion (it will be retained in this study as well) but this metheas
already extended to quadratic approximations in each]l [

In this paper we briefly describe the construction and prac
tical implementation of a second-order nonlinear schememsn
structured (possibly highly distorted) meshes. The mada ii$
to find our solution as a piecewise affine function on each cell
This kind of linear reconstruction operators on simplicah-
trol volumes often exploit the fact that the cell averageli®a
a pointwise value of any valid (conservative) linear retares
tion evaluated at the gravity center of a simplex. This reduc
the linear reconstruction problem to that of gradient estiom
at cell centers given cell averaged data. In this case, weessp
the reconstruction in the form

Wi (%) = Wi + (W) - (X~ %), KeZ,  (14)

wherew is the cell averaged value given by the finite volume
method, (Ow)k is the solution gradient estimate (to be deter-
mined) on the celK, X € K and the poinky is chosen to be the
gravity center for the simpleK.

Itis very important to note that with this type of representa
tion ) we remain absolutely conservative, i.e.

1

W(K)/KWK(Y) dQ = Wy

we have only one degree of freedom per data storage location.
Hence, it seems that we can expect to be first order accurateqye to the choice of the poiy. This point is crucial for fi-

at most. In the numerical community first order schemes are pjte volumes because of intrinsic conservative propeatfehis
generally considered to be too inaccurate for most qudingta  method.

calculations. Of course, we can always make the mesh spacing | gur numerical code we implemented two common tech-
extremely small but it cannot be a solution since it makes the piques of gradient reconstruction: Green-Gauss integratnd

scheme inefficient. From the theoretical point of view ttaasi

tion is even worse since azﬁ(h%) L;-norm error bound for the
monotone and E-flux schemds|[15] is known to be shirp [16],
although anz'(h) solution error is routinely observed in numer-
ical experiments. On the other hand, Godunov has sh@'n [11]
that all linear schemes that preserve solution monotgracé at
most first order accurate. This rather negative result sstggieat

a higher order accurate scheme has to be essentially nanime
order to attain simultaneously a monotone resolution afatis
tinuities and high order accuracy in continuous regions.

A significant breakthrough in the generalization of finité-vo
ume methods to higher order accuracy is due to KoI@mZ 18]
and van Leer|E9]. They proposed a kind of post-treatment pro
cedure currently known as solutiseconstructionor MUSCL®

3MUSCL stands for Monotone Upstream-Centered Scheme fos&wation
Laws.

least squares methods. In this paper we describe only the lee
squares reconstruction method. The Barth-Jesperseetij@i]
is incorporated to obtain non-oscillatory resolution oatinti-
nuities and steep gradients. We refer[td [10] for more ceetail

Least-squares gradient reconstruction method
In this section we consider a triangle control volukhevith
three adjacent neighbofg, T, and T3. Their barycenters are
denoted bYD(Xp), O1(X1), O2(X2) andO3(X3) respectively. In the
following we denote byw; the solution value at gravity centers
Oi:
wi ==w(X),

wWo :=wW(Xp).

Our purpose here is to estimaigv = (dyw, dyw) on the cell
K. Using Taylor formula, we can write down the three following

Copyright (© 2008 by ASME



Figure 2. lllustration for least-squares gradient reconstruction. We de-

pict a triangle control volume with three adjacent neighbors.

relations:
Wi —Wo = (Ow) - (%1 — Xo) + O(h?), (15)
W2 —Wo = (OW)k - (X2 — %) + O/(h?), (16)
W3 —Wo = (OW)k - (% — Xo) + O(h?). (17)

If we drop higher order termg/(h?), these relations can be
viewed as a linear system of three equations for two unknbwns
(6w, dyw). This situation is due to the fact that the number of
edges incident to a simplex meshR{ is greater or equal td
thereby producing linear constraint equatioE (15|ﬂ— (1ety
will be solved analytically here in a least squares sense.

First of all, each constrainf ({15) £ {17) is multiplied by a
weighta € (0,1) which will be chosen below to account for dis-
torted meshes. In matrix form our non-square system becomes

W Ax1 wilyy w1 (W1 —Wo)
WX Wy | (Ow)k = | wp(Wo —Wo) |,
WXz wiAy3 w3 (W3 —Wp)

whereAx; = X — Xo, Ay; = Vi — Yo. For further developments it is

convenient to rewrite our constraints in abstract form
[Ca, G- (Dw) = T (18)

We use a normal equation technique in order to solve symboli-

cally this abstract form in a least squares sense. Multiglyin
the left both sides of (18) b1 L]t yields

™

1

- Ly-L1) (LCy-
G(Ow)k =b, G = (lij)1<ij<2 = <E[§Iﬁ> (Ei

) ( ?) (19)

)

—

4This simple estimation is done for scalar case amly (w). For more gen-
eral vector problems the numbers of equations and unknoawestb be changed
depending on the dimension of vecter

where G is the Gram matrix of vector{fl,lfg} and b =

(E:}l %) . The so-called normal equatioE[19) is easily solved
5
by Cramer’s rule to give the following result

(DW)K : -

l1o(L1 -

1 (|22(E1 f)

_ : l1o(Lo- f
l11l22 — 12, \12(L2- f

f)

The form of this solution suggests that the least squaresiin
reconstruction can be efficiently computed without the rfeed
storing a non-square matrix.

Now we have to discuss the choice of weight coefficients
{oq}?:l. The basic idea is to attribute bigger weights to cells
barycenters closer to the noNleunder consideration. One of the
possible choices consists in taking a harmonic mean of ctispe
distances; = ||X — Xn||. This purely metric argument takes the
following mathematical form:

IR ==l
W=—3 —
Si=1 1% =Xl

wherek in practice is taken to be one or two (in our numerical
code we choosk=1).

Numerical results: falling water column

A classical test in violent flows is the dam break problem.
This problem can be simplified as follows: a water column is re
leased at timé= 0 and falls under gravity. In addition, there is a
step in the bottom. During its fall, the liquid hits this stepd re-
circulation is generated behind the step. Then the liquilthie
vertical wall and climbs along this wall. The geometry and in
tial condition for this test case are depicted on Fid{ire Rialty
the velocity field is taken to be zero. The grid used in this €om
putation contained about 108000 control volumes (whiclhis t
case are triangles). The results of this simulation aregntesl
on Figureg}t 8. We emphasize here that there is no interéace b
tween the liquid and the gas. The dark mixture contains mostl
liquid (90%) and the light mixture contains mostly gas (90%)
An interesting quantity is the impact pressure along the.wal
is shown in Figureﬂ9, where the maximal pressure on the righ
wall is plotted as a function of time— maxyy)c1. (0,1 P(X, ;)

Then, we performed other computations with volume frac-
tions closer to pure phases. For example, we show somegesu
with the gas mixture modelled witi™ = 0.05,a~ = 0.95. The
pressure is recorded as well and this result is plotted on Fig
ure. One can see that the peak value is higher and the impz
is more localised in time.
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Figure 3. Falling water column test case. Geometry and initial condition.

(a)t = 0.005

(b)t =0.06

Figure 4. Initial condition and the beginning of column dropping process.

Conclusions

In this article we presented a simple mathematical model
for simulating water wave impacts. The preliminary resalts
encouraging and the validation of this approach will be the s
ject of future work. Namely, we are going to perform quaiitat
and quantitative comparisons with the more general sixt@mns
model []].

We also presented an efficient numerical approach for dis-
cretizing the governing equations. It is a second orderefinit
volume scheme on unstructured meshes. This method was im-
plemented in our research code. By construction, our code ha
excellent mass, momentum and energy conservation preperti
Numerical tests presented E[lO] partially validate thetmod.

We also plan to carry out a parametric study with our solver.
The influence of aeration, gas properties and other factothe
impact pressures is very important for industrial appiaat.

Full compressiols homogeneois bwo phass oter Fuy comprass
Mixure deniy at = D 100

(] 02 04 06 05

(@t=0.1

(b)t =0.125

Figure 5. Splash creation due to the interaction with the step.

Fuycampressibs orogengavs o s skt
= density a1 =

(@)t=02 (b)t =0.225

Figure 6. The liquid hits the wall.
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Figure 7. The splash is climbing along the wall.
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Figure 8. Turbulent mixing process.
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Maximal pressure on the right wall

18

pmax/pﬂ

0.9 i i i i
0 0.3 0.4 0.5 0.6
t, time

0.1 0.2 0.7

Figure 9. Maximal pressure on the right wall. Heavy gas case.

Maximal pressure on the right wall
2.2 T T T T

pmax/pﬂ

0.8 i i i i
0 0.3 0.4 0.5 0.6
t, time

01 02 0.7
Figure 10. Maximal pressure on the right wall as a function of time. Light

gas.
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