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Estimation of linear autoregressive models with

Markov-switching, the E.M. algorithm revisited.

Joseph Rynkiewicz∗

February 21, 2008

Abstract

This work concerns estimation of linear autoregressive models with
Markov-switching using expectation maximisation (E.M.) algorithm.
Our method generalise the method introduced by Elliot for general
hidden Markov models and avoid to use backward recursion.
Keywords : Maximum likelihood estimation, Expectation-Maximisation
algorithm, Hidden Markov models, Switching models.

1 Introduction

In the present paper we consider an extension of basic (HMM). Let (Xt, Yt)t∈Z

be the process such that

1. (Xt)t∈Z
is a Markov chain in a finite state space E = {e1, ..., eN},

which can be identified without loss of generality with the simplex of
R

N , where ei are unit vector in R
N , with unity as the ith element and

zeros elsewhere.

2. Given (Xt)t∈Z
, the process (Yt)t∈Z

is a sequence of linear autoregres-
sive model in R and the distribution of Yn depends only of Xn and
Yn−1, · · · , Yn−p.

Hence, for a fixed t , the dynamic of the model is :
Yt+1 = FXt+1

(Y t
t−p+1) + σXt+1

εt+1 with FXt+1
∈ {Fe1

, ..., FeN
} linear

functions, σXt+1
∈ {σe1

, ..., σeN
} strictly positive numbers and (εt)t∈N∗ a

i.i.d sequence of Gaussian random variable N (0, 1).
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Definition 1 Write Ft = σ {X0, · · · ,Xt}, for the σ-field generated by X0, · · · ,Xt,
Yt = σ {Y0, · · · , Yt}, for the σ-field generated by Y0, · · · , Yt and
Gt = σ {(X0, Y0) , · · · , (Xt, Yt)}, for the σ-field generated by X0, · · · ,Xt and
Y0, · · · , Yt.

The Markov property implies here that P (Xt+1 = ei |Ft ) = P (Xt+1 = ei |Xt ) .
Write aij = P (Xt+1 = ei |Xt = ej ) and A = (aij) ∈ R

N×N and define :
Vt+1 := Xt+1 − E [Xt+1 |Ft ] = Xt+1 − AXt. With the previous notations,
we obtain the general equation of the model, for t ∈ N :

{

Xt+1 = AXt + Vt+1

Yt+1 = FXt+1
(Y t

t−p+1) + σXt+1
εt+1

(1)

The parameters of the model are the transition probabilities of the ma-
trix A, the coefficients of the linear functions Fei

and the variances σei
. A

successfull method for estimating such model is to compute the maximum
likelihood estimator1 with the E.M. algorithm introduced by Demster , Lair
and Rubin (1977). Generally, this algorithm demands the calculus of the
conditional expectation of the hidden states knowing the observations (the
E.-step), this can be done with the Baum and Welch forward-backward al-
gorithm (see Baum et al. (1970)). The derivation of the M-step of the E.M.
algorithm is then immediate since we can compute the optimal parameters
of the regression functions thanks weighted linear regression.

However we show here that we can also embed these two steps in only
one. Namely we can compute, for each step of the E.M. algorithm, directly
the optimal coefficients of the regression functions as the variances and the
transition matrix thanks a generalisation of the method introduced by
Elliott (1994).

2 Change of measure

The fundamental technique employed throughout this paper is the discrete
time change of measure. Write σ the vector (σe1

, ..., σeN
), φ(.) for the density

of N (0, 1) and 〈., .〉 the inner product in R
N .

We wish to introduce a new probability measure P̄ , using a density Λ, so
that dP̄

dP
= Λ and under P̄ the random variables yt are N (0, 1) i.i.d. random

variables.

1This likelihood is computed conditionally to the first “p” observations.

2



Define

λl =
〈σ,Xl−1〉φ(yl)

φ(εl)
, l ∈ N

∗, with Λ0 = 1 and Λt =
t

∏

l=1

λl

and construct a new probability measure P̄ by setting the restriction of
the Radon-Nikodym derivative to Gt equal to Λt. Then the following lemma
is a straightforward adaptation of lemma 4.1 of Elliot (1994) (see annexe).

Lemma 1 Under P̄ the Yt are N (0, 1) i.i.d. random variables.

Conversely, suppose we start with a probability measure P̄ such that
under P̄

1. (Xt)t∈N
is a Markov chain with transition matrix A.

2. (Yt)t∈N
is a sequence of N (0, 1) i.i.d. random variable.

We construct a new probability measure P such that under P we have
Yt+1 = FXt

(

Y t
t−p

)

+ σXt
εt+1. To construct P from P̄ , we introduce

λ̄l := (λl)
−1 and Λ̄t := (Λt)

−1 and we define P by putting
(

dP
dP̄

)

|Gt
= Λ̄t,

Definition 2 let (Ht), t ∈ N be a sequence adapted to (Gt), We shall write :

γt(Ht) = Ē
[

Λ̄tHt |Yt

]

and Γi (Yt+1) =
φ

(

Yt+1−FXt
(Y t

t−p+1
)

〈σ,ei〉

)

〈σ, ei〉φ (Yt+1)
.

The proof of the following theorem is a detailled adaption of the proof of
theorem 5.3 of Elliott (1994) (see annexe).

Theorem 1 Suppose Ht is a scalar G-adapted process of the form : H0

is F0 measurable, Ht+1 = Ht + αt+1 + 〈βt+1, Vt+1〉 + δt+1f (Yt+1), k ≥ 0,
where Vt+1 = Xt+1 − AXt, f is a scalar valued function and α, β, δ are G
predictable process (β will be N -dimensional vector process). Then :

γt+1 (Ht+1Xt+1) := γt+1,t+1 (Ht+1)

=
∑N

i=1

{〈

γt (HtXt) ,Γ
i (yt+1)

〉

ai

+γt

(

αt+1

〈

Xt,Γ
i (yt+1)

〉)

ai

+γt

(

δt+1

〈

Xt,Γ
i (yt+1)

〉)

f (yt+1) ai

+
(

diag (ai) − aia
T
i

)

γt

(

βt+1

〈

Xt,Γ
i (yt+1)

〉)

(2)

where ai := Aei, a
T
i is the transpose of ai and diag (ai) is the matrix with

vector ai for diagonal and zeros elsewhere.
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We will now consider special cases of processes H. In all cases, we will calcu-
late the quantity γt,t (Ht) and deduce γt (Ht) by summing the components
of γt,t (Ht). Then, we deduce from the conditional Bayes’ theorem the con-
ditional expectation of Ht :
Ĥt := E [Ht |Yt ] = γt(Ht)

γt(1)
.

3 Application to the Expectation (E.-step) of the

E.M. algorithm

We will use the previous theorem in order to compute conditional quantities
needed by the E.M. algorithm.

Let J rs
t =

t
∑

l=1

〈Xl−1, er〉 〈Xl, es〉 be the number of jump from state er to

state es at time t, we obtain :

γt+1,t+1

(

J rs
t+1

)

=
∑N

i=1

〈

γt,t (J rs
t ) ,Γi (Yt+1)

〉

ai

+ 〈γt (Xt) ,Γ
r(Yt+1)〉 asres.

(3)

Write now Or
t =

∑t+1
n=1 〈Xn, er〉 for the number of times, up to t, that X

occupies the state er. We obtain

γt+1,t+1

(

Or
t+1

)

=
∑N

i=1

〈

γt,t (Or
t ) ,Γ

i (Yt+1)
〉

ai

+ 〈γt (Xt) ,Γ
r(Yt+1)〉 ar.

(4)

For the regression functions, the M-Step of the E.M. algorithm is achieved
by finding the parameters minimising the weighted sum of squares :

n
∑

t=1

γi (t)
(

yt −
(

ai
0 + a1yt−1 + · · · + apyt−p

)2
)

where γi (t) is the conditional expectation of the hidden ei at time t knowing
the observations y−p+1, · · · , yn.

Write ψT (t) = (1, yt−1, ..., yt−p) and θi = (ai
0, ..., a

i
p), suppose that the

matrix
[
∑n

t=1 γi (t)ψ(t)ψT (t)
]

is invertible. The estimator θ̂i(n) of θi is
given by :

θ̂i(n) =

[

n
∑

t=1

γi (t)ψ(t)ψT (t)

]−1 n
∑

t=1

γi (t)ψ(t)Yt.

Hence, in order to compute θ̂i(n), we need to estimate the conditional
expectation of the following processes :
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1.

T Ar
t+1(j) =

t+1
∑

l=1

〈Xl, er〉Yl−jYl+1

for −1 ≤ j ≤ p and 1 ≤ r ≤ N .

2.

T Br
t+1(i, j) =

t+1
∑

l=1

〈Xl, er〉Yl−jYl−i

for 0 ≤ j, i ≤ p and 1 ≤ r ≤ N .

3.

T Cr
t+1 =

t+1
∑

l=1

〈Xl, er〉Yl+1.

4.

T Dr
t+1(j) =

t+1
∑

l=1

〈Xl, er〉Yl−j

for 0 ≤ j ≤ p and 1 ≤ r ≤ N .

Applying theorem (2) with Ht+1(j) = T Ar
t+1(j), H0 = 0, αt+1 = 0, βt+1 =

0, δt+1 = 〈Xt, er〉Yt−j and f(Yt+1) = Yt+1, if j 6= −1 or δt+1 = 〈Xt, er〉 and
f(Yt+1) = Y 2

t+1 if j = −1, gives us

γt+1,t+1

(

T Ar
t+1(j)

)

=
∑N

i=1

〈

γt,t (T Ar
t (j)) ,Γ

i(Yt+1)
〉

ai

+ 〈γt(Xt),Γ
r(Yt+1)〉Yt−jYt+1ar,

(5)

where ar is the r-th column of A.
Then, applying theorem (2) with
Ht+1(j) = T Br

t+1(i, j), H0 = 0, αt+1 = 0, βt+1 = 0 , δt+1 = 〈Xt, er〉Yt−jYt−i

and f(Yt+1) = 1 gives :

γt+1,t+1

(

T Br
t+1(i, j)

)

=
∑N

i=1

〈

γt,t (T Br
t (j)) ,Γ

i(Yt+1)
〉

ai

+ 〈γt(Xt),Γ
r(Yt+1)〉Yt−jYt−iar.

(6)

Next, applying theorem (2) with
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Ht+1 = T Cr
t+1, H0 = 0, αt+1 = 0, βt+1 = 0, δt+1 = 〈Xt, er〉 and

f(Yt+1) = Yt+1 gives :

γt+1,t+1

(

T Cr
t+1

)

=
∑N

i=1

〈

γt,t (T Cr
t (j)) ,Γ

i(Yt+1)
〉

ai

+ 〈γt(Xt),Γ
r(Yt+1)〉Yt+1ar.

(7)

Finally, applying theorem (2) with
Ht+1(j) = T Dr

t+1(j), H0 = 0, αt+1 = 0, βt+1 = 0 , δt+1 = 〈Xt, er〉Yt−j

and f(Yt+1) = 1 gives :

γt+1,t+1

(

T Dr
t+1(j)

)

=
∑N

i=1

〈

γt,t (T Dr
t (j)) ,Γ

i(Yt+1)
〉

ai

+ 〈γt(Xt),Γ
r(Yt+1)〉Yt−jar.

(8)

The “Maximisation” pass of the E.M. algorithm is now achieved by up-
dating the parameters in the following way.

Parameters of the transition matrix The parameter of the transition
matrix will be updates with the formula :

âsr =
γT (J sr

T )

γT

(

Or
T

) . (9)

Parameters of the regression functions For 1 ≤ r ≤ N , let

Rr :=
(

Rr
ij

)

1≤i,j≤p+1
be the symmetric with

Rr
11 = 1, Rr

1j = Rr
j1 = T̂ Dr(j), Rij = T̂ Br(i− 1, j − 1) and

Cr = (T̂ Cr, (T̂ Ar(i))0≤i≤p) we can then compute the updated parameter θ̂r

of the regression function Fer
with the formula :

θ̂r = (Rr)−1Cr (10)

Parameters of the variances Finally, thanks the previous conditional
expectations, we can directly calculate the parameters σ̂1, ..., σ̂N , since for
1 ≤ r ≤ N the conditional expectation of the mean square error of the rth
model is

σ̂2
r =

1

Or

(

T̂ Ar(−1) + θ̂T
r R

rθ̂r − 2θ̂T
r C

r
)

. (11)

This complete the M-step of the E.M. algorithm.
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4 conclusion

Using the discrete Girsanov measure transform, we propose an new way to
apply the E.M. algorithm in the case of Markov-switching linear autoregres-
sions.

Note that, contrary to the Baum and Welch algorithm, we don’t use
backward recurrence, altought the cost of calculus slighty increase since the
number of operations is multiplicated by N

2 , where N is the number of
hidden state of the Markov chain.
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Annexe

Proof of lemma 1

Lemma 2 Under P̄ the Yt are N (0, 1) i.i.d. random variables.

Proof The proof is based on the conditionnal Bayes’Theorem, it is a simple
rewriting of the Proof of Elliot , hence we have

P̄ (Yt+1 ≤ τ |Gt ) = Ē
[

1{Yt+1≤τ} |Gt

]

Thanks the conditionnal Bayes’ Theorem we have :

Ē
[

1{Yt+1≤τ} |Gt

]

=
E

[

Λt+11{Yt+1≤τ} |Gt

]

E [Λt+1 |Gt ]
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=
Λt

Λt

×
E

[

λt+11{Yt+1≤τ} |Gt

]

E [λt+1 |Gt ]
.

Now

E [λt+1 |Gt ] =

∫ ∞

−∞

〈σ,Xt〉φ(Yt+1)

φ(εt+1)
× φ(εt+1)dεt+1

=

∫ ∞

−∞
〈σ,Xt〉φ(FXt

(Y t
t−p+1) + 〈σ,Xt〉 × εt+1)dεt+1 = 1

and since εt+1 =
Yt+1−FXt(Y

t
t−p+1)

〈σ,Xt〉
:

P̄ (Yt+1 ≤ τ |Gt ) = E
[

λt+11{Yt+1≤τ} |Gt

]

=
∫ ∞
−∞

〈σ,Xt〉φ(Yt+1)
φ(εt+1)

× 1{Yt+1≤τ} × φ(εt+1)dεt+1

=
∫ τ

−∞ φ(Yt+1)dyt+1 = P̄ (Yt+1 ≤ τ)

�

Proof of Theorem 2

Theorem 2 Suppose Ht is a scalar G-adapted process of the form : H0

is F′ measurable, Ht+1 = Ht + αt+1 + 〈βt+1, Vt+1〉 + δt+1f (Yt+1), k ≥ 0,
where Vt+1 = Xt+1 − AXt, f is a scalar valued function and α, β, δ are G
predictable process (β will be N -dimensional vector process). Then :

γt+1 (Ht+1Xt+1) := γt+1,t+1 (Ht+1)

=
∑N

i=1

{〈

γt (HtXt) ,Γ
i (yt+1)

〉

ai

+γt

(

αt+1

〈

Xt,Γ
i (yt+1)

〉)

ai

+γt

(

δt+1

〈

Xt,Γ
i (yt+1)

〉)

f (yt+1) ai

+
(

diag (ai) − aia
T
i

)

γt

(

βt+1

〈

Xt,Γ
i (yt+1)

〉)

(12)

where ai := Aei, a
T
i is the transpose of ai and diag (ai) is the matrix with

vector ai for diagonal and zeros elsewhere.

Proof Here again it is only a rewriting of the proof of Elliot.
We begin with the two folowwing results :

Result 1

Ē [Vt+1 |Yt+1 ] = Ē
[

Ē [Vt+1 |Gt,Yt+1 ] |Yt+1

]

= Ē
[

Ē [Vt+1 |Gt ] |Yt+1

]

= 0.
(13)
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Result 2

Xt+1X
T
t+1 = AXt(AXt)

T +AXtV
T
t+1 + Vt+1(AXt)

T + Vt+1V
T
t+1.

Since Xt is of the form (0, · · · , 0, 1, 0, · · · , 0) we have

Xt+1X
T
t+1 = diag(Xt+1) = diag(AXt) + diag(Vt+1)

so

Vt+1V
T
t+1 = diag(AXt)+diag(Vt+1)−A diag(Xt) A

T−AXtV
T
t+1−Vt+1(AXt)

T .

Finaly we obtain the result

〈Vt+1〉 := E[Vt+1V
T
t+1 |Ft ]

= E[Vt+1V
T
t+1 |Xt ]

= diag(AXt) −A diag(Xt) A
T .

(14)

Main proff We have

γt+1,t+1(Ht+1) = Ē
[

Λ̄t+1Ht+1Xt+1 |Yt+1

]

= Ē
[

(AXt + Vt+1) (Ht + αt+1+ < βt+1, Vt+1 > +δt+1f(yt+1)) × Λ̄t+1 |Yt+1

]

Thanks equation (13),

γt+1,t+1(Ht+1) = Ē
[

((Ht + αt+1 + δt+1f(yt+1))AXt+ < βt+1, Vt+1 >) × Λ̄t+1 |Yt+1

]

.

so :

γt+1,t+1(Ht+1) =
N

∑

j=1

{

Ē
[

((Ht + αt+1 + δt+1f(yt+1)) < AXt, ej > ej) Λ̄t+1 |Yt+1

]}

+Ē
[

< βt+1, Vt+1 > ×Λ̄t+1 |Yt+1

]

,

hence

γt+1,t+1(Ht+1) =

N
∑

j=1

N
∑

i=1

{

Ē
[

((Ht + αt+1 + δt+1f(yt+1)) < Xt, ei >) Λ̄t+1ajiej |Yt+1

]}

+Ē
[

< βt+1, Vt+1 > ×Λ̄t+1 |Yt+1

]

.

we have noted ai = Aei, so

γt+1,t+1(Ht+1) =

N
∑

i=1

{

Ē
[

((Ht + αt+1 + δt+1f(yt+1)) < Xt, ei >) Λ̄t+1ai |Yt+1

]}

+Ē
[

< βt+1, Vt+1 > ×Λ̄t+1 |Yt+1

]

.
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Since for an adapted process Ht to the sigma-algebra Gt

Ē
[

Λ̄t+1Ht |Yt+1

]

=
N

∑

i=1

〈

γt(HtXt),Γ
i(yt+1)

〉

So, for all er ∈ E

Ē
[

Λ̄t+1Ht < Xt, er > |Yt+1

]

=
∑N

i=1

〈

γt(HtXt < Xt, er >),Γi(yt+1)
〉

=
∑N

i=1

〈

γt(HtXtX
T
t er),Γ

i(yt+1)
〉

But we have also :

γt(HtXtX
T
t ) =

N
∑

i=1

〈γt(HtXt), ei〉 eie
T
i ,

So we have :

Ē
[

Λ̄t+1Ht < Xt, er > |Yt+1

]

=

N
∑

i=1

〈

γt(HtXtX
T
t er),Γ

i(yt+1)
〉

= 〈γt(HtXt),Γ
r(yt+1)〉 .

Since α, β, δ are G predictible and f(yt+1) mesurable with respect to Yt+1,
the result (14) yield us the conclusion �
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