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CHAOTIC SAMPLING, VERY WEAKLY COUPLING, AND CHAOTING MIXING: THREE SIMPLE SYNERGISTIC MECHANISMS TO MAKE NEW FAMILIES OF CHAOTIC PSEUDO RANDOM NUMBER GENERATORS
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We introduce and combine synergistically three simple new mechanisms: very weakly coupling of chaotic maps, chaotic sampling and chaotic mixing of iterated points in order to make new families of enhanced Chaotic Pseudo Random Number Generators (CPRNG).

The key feature of these CPRNG is that they use chaotic numbers themselves in order to sample and to mix chaotically several subsequences of chaotic numbers.

We analyze numerically the properties of these new families and underline their very high qualities and usefulness as CPRNG when series are computed up to 10 13 iterations.

Introduction

When a dynamical system is realized on a computer using floating point or double precision numbers, the computation is of a discretization, where finite machine arithmetic replaces continuum state space. For chaotic dynamical systems, the discretization often has collapsing effects to a fixed point or to short cycles [START_REF] Lanford | Some informal remarks on the orbit structure of discrete approximations to chaotic maps[END_REF][START_REF] Gora | Absolutely continuous invariant measures that cannot be observed experimentally[END_REF].

In order to preserve the chaotic properties of the continuous models in numerical experiments we have introduced as a first one mechanism the very weak multidimensional coupling of p onedimensional dynamical systems which is noteworthy [START_REF] Lozi | Giga-Periodic Orbits for Weakly Coupled Tent and Logistic Discretized Maps[END_REF].

Moreover each component of these numbers belonging to p ℝ are equally distributed over a given finite interval J ⊂ ℝ . Numerical computations show that this distribution is obtained with a very good approximation. They have also the property that the length of the periods of the numerically observed orbits is very large. However chaotic numbers are not pseudorandom numbers because the plot of the couples of iterated points (x n , x n+1 ) in the phase plane shows up the map f used as one-dimensional dynamical systems to generate them.

A second simple mechanism is then used to hide the graph of this genuine function f in the phase space ( ) x is strictly greater than a threshold T ∈ J, with l ≠ m, for 1 ≤ l, m ≤ p .

l
A third mechanism can improve the unpredictability of the chaotic sequence generated as above, using synergistically all the components of the vector X, instead of two. This simple third mechanism is based on the chaotic mixing of the p-1 sequences ( ) ,,,,1 1 + with respect to a given partition r 1 , r 2 , …, r p-1 of J , to distribute the iterated points.

… … , ,
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In this paper we explore numerically the properties of these new families and underline their very high qualities and usefulness as CPRNG when series are computed up to 10 13 iterations.

Generation of random or pseudorandom numbers, nowadays, is a key feature of industrial mathematics. Pseudorandom or chaotic numbers are used in many areas of contemporary technology such as modern communication systems and engineering applications. Everything we do to achieve privacy and security in the computer age depends on random numbers. More and more European or US patents using discrete mappings for this purpose are obtained by researchers of discrete dynamical systems [START_REF] Petersen | Method of generating pseudo-random numbers in an electronic device, and a method of encrypting and decrypting electronic data[END_REF][START_REF] Ruggiero | Method of generating successions of pseudo-random bits or numbers[END_REF].

The idea of construction of chaotic pseudorandom number generators (CPRNG) applying discrete chaotic dynamical systems,

          = p x x X ⋮ 1
intrinsically, exploits the property of extreme sensitivity of trajectories to small changes of initial conditions, since the generated bits are associated with trajectories in an appropriate way [Bofetta, Cencini, Falcioni and Vulpiani, 2002].

Recently some authors proposed the use of the Arnol'd cat maps as a PNRG [Barash and Schchur, 2006].

The process of chaotic sampling and mixing of chaotic sequences, which is pivotal for these new families, works perfectly in numerical simulation when floating point (or double precision) numbers are handled by a computer.

It is noteworthy that the new models of very weakly coupled maps are more powerful than the usual formulas used to generate chaotic sequences mainly because only additions and multiplications are used in the computation process; no division being required. Moreover the computations are done using floating point or double precision numbers, allowing the use of the powerful Floating Point Unit (FPU) of the modern microprocessors (built by both Intel and Advanced Micro devices (AMD)). In addition, a large part of the computations can be parallelized taking advantage of the multicore microprocessors.

Very Weakly Multi-dimensional Coupling

Two-dimensional Coupled Symmetric Tent Map

First, we recall the basic equation of the coupled symmetric tent maps. In sections 2, 3 and 4 of this paper, we will consider only the symmetric tent map defined by

x a x f a - = 1 ) ( (2.1)
with the value a = 2, later denoted simply as f, even though others map of the interval (as the logistic map) can be used for the same purpose. The associated dynamical system [START_REF] Sprott | Chaos and Time-Series Analysis[END_REF][START_REF] Alligood | Chaos. An introduction to dynamical systems[END_REF] is defined by the equation on the interval

J = [-1, 1] n n x a x - = + 1 1 (2.2)
Two tent maps are coupled in the following way, using a two dimensional coupling constant ε = (ε 1 , ε 2 )

   - + = + - = + + ) ( ) ε 1 ( ) ( ε ) ( ε ) ( ) ε 1 ( n 2 n 2 1 n n 1 n 1 1 n y f x f y y f x f x (2.3)
In this paper for the numerical studies we fix constant the ratio between ε 1 and ε 2 . We chose to set it equal to 2.

1 2 ε 2 ε = (2.4)
However, different ratios can also lead to good results and be used since a multidimensional variable can be instrumental in the increasing of the number of dimensions of the systems.

The coupling constant ε varies from (0, 0) to (1, 1). When ε = (0, 0) the maps are decoupled, when ε = (1, 1) they are fully cross coupled. Generally, researchers do not consider very small values of ε (as small as 10 -7 for floating point numbers or 10 -14 for double precision numbers), because it seems that the maps are quasi decoupled with those values. Hence no special effect of the coupling is expected. In fact it is not the case and this very very small coupling constant allows the construction of very long periodic orbits, leading to sterling chaotic generators.

The dynamical system (2.3) can be described more generally by ( ) (  )

) ( n n 1 n X f A X F X ⋅ = = + (2.5) with x X y   =     ,         = ) ( ) ( ) ( y f x f X f (2.6) and         - - = ) 1 ( ) 1 ( 2 2 1 1 ε ε ε ε A (2.7)
where

F is a map of the square [-1, 1] x [-1, 1] = J 2 into itself.

p-coupled Symmetric Tent Map

To improve the length of the period and the convergence of the invariant measure towards a given measure, we consider the dynamical system (2.5) in which p maps are coupled

with           = p x x X ⋮ 1 ,           = ) ( ) ( ) ( 1 p x f x f X f ⋮ (2.8) and                 = p p p 2 2 2 2 1 1 1 1 ε 1) - (p - 1 ε ε ε ε ε 1) - (p - 1 ε ε ε ε ε 1) - (p - 1 ⋯ ⋯ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋯ ⋯ A (2.9) with 1 i ε ε i = i = 2, …, p
(2.10) As stated earlier, others choices are possible. In this case, F is a map of J p into itself.

Uniform distribution of chaotic numbers

We give some numerical results about chaotic numbers produced by 2-, 3-and 4-coupled maps which show that they are equally distributed over the interval J. In order to compute numerically an approximation of the invariant measure [3] also called the probability distribution function P N (x) linked to the one dimensional map f we consider a regular partition of M small intervals (boxes) of

J= 2 0 M i r - ∪ r i = [s i , s i+1 [ , i = 0, M -2 (2.11) r M-1 = [s M-1 , 1] (2.12) M i s i 2 1 + - = i = 0, M (2.13) Its length is M s s i i 2 1 = - + (2.14)
All iterates f (n) (x) belonging to these boxes are collected (after a transient regime of q iterations decided a priori, i.e. the first q iterates are neglected). Once the computation of N+ q iterates is completed, the relative number of iterates with respect to N/M in each box r i represents the value P N (s i ). The approximated P N (x) defined in this article is then a step function, with M steps. As M may vary, we define

( ) i i N M r N M s P # 2 1 ) ( , = (2.15) 
where #r i is the number of iterates belonging to the interval r i and the constant 1/2 allows the normalisation of ) (

, x P N M on the interval J. i i N M N M r x s P x P ∈ ∀ = ) ( ) ( , ,
(2.16)

In the case of coupled maps, we are interested by the distribution of each component x 1 , …, x p of X rather than the distribution of the variable X itself in J p . We then consider the approximated probability distribution function P N (x j ) associated to one among several components of F(X) defined by (2.5) which are one-dimensional maps.

The discrepancies

E 1 (in norm L 1 ) and E 2 (in norm L 2 ) between ) ( , x P iter disc N N
and the Lebesgue measure which is the invariant measure associated to the symmetric tent map, are defined by

1 5 . 0 ) ( ) , ( , 1 L N N iter disc x P N N E iter disc - = (2.17) 2 5 . 0 ) ( ) , ( , 2 L N N iter disc x P N N E iter disc - = (2.18) Fig. 1 shows the error ) , ( 1 iter disc N N E
versus the number of iterates of the approximated distribution functions with respect to the first variable x 1 for 2, 3 and 4-coupled symmetric tent map. N disc is fixed to 10 4 , ε 1 to 10 -14 , N iter varies from 10 5 to 10 11 for the 2-coupled case and to 3.10 12 for the 3 and 4coupled one. E for 2, 3 and 4-coupled Symmetric Tent Maps.

There is no significant difference between 3 and 4-coupled equations, the numerical experiments have to be pursued up to 10 13 or 10 14 in order to discriminate the results.

Equivalent results are obtained for the variables x 2 , x 3 or x 4 .

No periodic solutions are observed up to 3×10 12 iterates (even up to 10 13 iterates as tested in Sec. 4). This is a key point when producing chaotic numbers, because the use of a computer discretizes the phase space of a dynamical system, canceling (at least) its asymptotic properties. Every orbit is periodic according to the finite number of states (i.e., the number of double precision numbers belonging to J p ). However, if the period of the realized sequence is long enough, these properties reasonably survive as a chaotic transient. In Fig. 2, we display the mutual influence of both N iter and N disc on the errors in L 1 norm. The results show a tremendous regularity. The corresponding numerical results are displayed in Tab. 3. 

Impact of the initial values on the results

It is well known that the choice of the seed of a PRNG is very important. Some seed can lead to the collapse of the period of the computed random numbers. In order to check if the choice of the initial condition (equivalent to the choice of the seed of a PRNG) is dramatically for the previous results, we have tested several series of different initial values. Fig. 3 shows the distribution of the error E 1 for 500,000 initial values for 4-coupled symmetric tent maps. The computations are done using double precision numbers (~14-15 digits), ε i = i.ε 1 , ε 1 = 10 -14 , N iter = 10 6 , N disc = 10 2 .

The initial values are selected following:

x 1 0,k = -0.92712 + 10 -7 × k , x 2 0,k = -0.9183636 + 10 -7 × 7k, x 3 0,k = -0.92576657 + 10 -7 × 13k, x 4 0,k = -0.92390643 + 10 -7 × 17k, k = 1 to 500,000.

The distribution follows more or less a Gaussian distribution, maximal and minimal results are displayed in Tab. 4. Others series tested with several values of N disc give the same kind of results. E errors for 500,000 initial values for 4-coupled symmetric tent maps.

Independency of the chaotic subsequences generated by each component

In next section, we propose the chaotic sampling of the chaotic sequences generated by Eq. (2.5) to enhance the properties of this chaotic number generator. The key feature of these enhanced chaotic number generators being their use of chaotic numbers themselves in order to do the sampling process. The main idea leading to this particular sampling is that the series of chaotic numbers produced by each component is independent of the others.

We need before to verify this independency.

Let consider now the coordinates of the iterated points ⋯ ⋯ , , , , , ,

1 n 2 1 0 + X X X X X n
of the multidimensional map F defined by (2.5). In order to check that they are uncorrelated, we plot every pair of coordinates of this sequence in the phase subspace (x l , x m ) imbedded in the phase space J p and we check if they are uniformly distributed in the square J 2 .

If no particular pattern is displayed and if the difference between the distribution of these points later called the correlation distribution function C N (x, y) converges towards the uniform distribution on the square when the number of iterations goes to the infinity, we can conclude the independency or the uncorrelation of the sequences of numbers generated by each component of the iterated points.

In order to compute numerically an approximation of the correlation distribution function C N (x, y) we build a regular partition of M 2 small squares (boxes) of J 2 imbedded in the phase subspace (x l , x m )

r i,j = [s i , s i+1 [ × [t j , t j+1 [ , i, j = 0, M -2 (2.19) r M-1,j = [s M-1 , 1] × [t j , t j+1 [ , j = 0, M -2 (2.20) r i , M-1 = [s i , s i+1 [× [t M-1 , 1] , i = 0, M -2 (2.21) r M-1 , M-1 = [s M-1 , 1] × [t M-1 , 1] (2.22) M i s i 2 1+ - = , M j t j 2 1+ - = , i, j = 0, M (2.23)
the measure of the area of each box is :

( ) ( ) 2 1 1 2       = - ⋅ - + + M t t s s i i i i (2.24) Once N + q iterated points ( ) m n l n x x ,
belonging to these boxes are collected the relative number of iterates with respect to N/M 2 in each box r i,j represents the value C N (s i , t j ). The approximated probability distribution function C N (x, y) defined in this article is then a 2-dimensional step function, with M 2 steps. As M can vary in the next sections, we define ( )

j i j i N M r N M t s C , 2 , # 4 1 ) , ( = (2.25)
where #r i,j is the number of iterates belonging to the square r i,j and the constant 1/4 allows the normalisation of ) , ( ,

y x C N M on the square J 2 . j i j i N M N M r y x t s C y x C , , , ) , ( ) , ( ) , ( ∈ ∀ = (2.26)               = p n n n x x X ⋮ ⋮ 1
The discrepancies E C1 (in norm L 1 between ) , ( N disc is fixed to 10 2 x 10 2 , ε i = i.ε 1 , ε 1 = 10 -14 , N iter varies from 10 5 to 10 11 . Computations are done using double precision numbers (~14-15 digits).

x 1 0 = 0.330, x 2 0 = 0.3387564, x 3 0 = 0.50492331, x 4 0 = 0.0.

Chaotic Sampling of Chaotic Numbers

If we plot the chaotic numbers produced by any component x l , 1 ≤ l ≤ p of the p-dimensional dynamical system Eq. (2.5) in the phase space ( )

l n l n x x 1
, + , the iterated points show the graph of the symmetrical tent map f used to define Eq. (2.5) (more exactly a graph with two lines having ε thickness). These numbers are not randomly produced. If we plot these points in the phase spaces ( )

l n l n x x 2 , + , ( ) l n l n x x 3 , + or ( ) l r n l n x x + ,
they will display the graph of f (2) , f (3) or f (r) (see Fig. 5).

Hence someone knowing a sequence of few iterated points is able to find the initial value X 0 of the dynamical system. In order to hide the graph of the genuine function f in the phase space ( )

l q n l n x x + ,
for any q, a pivotal idea is to sample chaotically the sequence

( ) … … , , , , , , 1 2 1 0 l n l n l l l x x x x x + selecting l n x every time the value of m x is greater than a threshold T, -1 < T < 1, with l ≠ m, for 1 ≤ l, m ≤ p .
The chaotically sampled subsequence

( ⋯ ⋯ , , , , , , 1 2 1 0 + q q x x x x x is defined as ] [ 1 , T x iff x x m n l n q ∈ = (3.1)
Choosing T > 0.5 implies that the selected subsequence

( ) ⋯ ⋯ , , , , , , 1 2 1 0 + q q x x x x x = ( ) … … , , , , , , 1 2 1 0 l p l p l p l p l p q q x x x x x
+ is such that the difference between p q and p q+1 is always greater than a minimal value K m depending upon T. The graph of the chaotically sampled chaotic number is a mix of the graphs of all the f (r) for r > K m . As seen in Sect. 2.5 every pair of components ( ) , + instead of the phase space (x l , x m ). In order to control that the enhanced chaotic numbers ( )

m n l n x x , of ⋯ ⋯ , , , , , , 1 n 2 1 0 + X X X X X
⋯ ⋯ , , , , , , 1 2 1 0 + q q x x x x x
are uncorrelated, we plot them in the phase subspace ( )

1 , + n n x x and
we check if they are uniformly distributed in the square J 2 . If no particular pattern is displayed and if the autocorrelation distribution function AC N (x, y) converges towards the uniform distribution on the square when the number of iterations goes to the infinity, we can conclude that the knowledge of a sequence of iterated points do not allow finding the initial value X 0 of the dynamical system. N disc =10×10, ε i = i.ε 1 , ε 1 = 10 -14 , NSampl iter varies from 10 3 to 10 10 . Computations done using double precision numbers (~14-15 digits).

x 1 0 = 0.330, x 2 0 = 0.3387564, x 3 0 = 0.50492331, x 4 0 = 0.0.

As the chaotic numbers are regularly distributed on the interval J, when T > 0.98 one chaotic number over approximately 100 is sampled, when T > one chaotic number over approximately 1,000 is sampled. We call NSampl iter the number of sampled points. ( )

1 1 1 , + n n x x .
Nevertheless the computing process is very fast. A desktop computer can produce more than 50,000,000 chaotic numbers per second, thus 50,000 iterated sampled points per second for T > 0.998. The sampling threshold 0.998 gives very good results. 

Chaotic Mixing and Chaotic Sampling of Chaotic Numbers

One can improve again the unpredictability of the chaotic numbers generated as above, using all the components of the vector X instead of one. For example for 4-coupled equations, the value of 4 n x command the sampling process as follows Let us set three threshold values T 1 , T 2 and T

3 -1 < T 1 < T 2 < T 3 < 1 (4.1)
we sample and mix together chaotically the sequences ( ) NSampl N E for a system of 4 coupledequations when the first component x 1 is sampled by x 4 for both the threshold values 0.98 and 0.998 and when the three components x 1 , x 2 , x 3 are mixed and sampled by x 4 for the threshold values T 1 = 0.98, T 2 = 0.987, T 3 = 0.994 or T 1 = 0.998, T 2 = 0.9987, T 3 = 0.9994. NSampl N E for a system of 4 coupled-equations when the first component x 1 is sampled by x 4 for the threshold value 0.998 and when the three components x 1 , x 2 , x 3 are mixed and sampled by x 4 for the threshold values T 1 = 0.998, T 2 = 0.9987, T 3 = 0.9994.

… … , , , , , , 1 1 1 1 2 1 1 1 0 + n n x x x x x , ( ) … … , , , , , , 2 1 2 2 2 2 1 2 0 + n n x x x x x and ( ) … … , , , , , , 3 1 3 3 2 3 1 3 0 + n n x x x x x defining ( ) ⋯ ⋯ , , , , , , 1 2 1 0 + q q x x x x x by ] [ [ [ [ [      ∈ ∈ ∈ = 1 , , , 3 4 3 3 2 4 2 2 1 4 1 T x iff x T T x iff x T T x iff x x n n n n n n q (4.

N

Further improvements

As said in Sec. 2.1, we have only considered the symmetric tent map (2.1). We have now to consider others maps of the interval: non symmetric tent map, baker map. We have also to consider the coupling (2. 

Conclusion

We have introduced and combined synergistically three simple new mechanisms: very weakly coupling of chaotic maps, chaotic sampling and chaotic mixing of iterated points in order to make new families of enhanced Chaotic Pseudo Random Number Generators (CPRNG). The properties of these new families are explored numerically up to 10 13 iterations. The numerical experiments give good results. Now other tests have to be performed in order to check their usefulness as Chaotic PRNG. Others functions and combination of functions have also to be explored in order to obtain
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 1 Figure 1. Error E 1 for 2, 3 and 4-coupled Symmetric Tent Maps. Computations done using double precision numbers (~14-15 digits), ε i = i.ε 1 , ε 1 = 10 -14 , N disc = 10 4 . Initial values 1 0 x = 0.330000013113, 2 0 x = 0.338756413113,
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 2 Figure 2. Error E 1 for 3-coupled Symmetric Tent Maps. Computations done using double precision
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 3 Figure 3. Distribution of the error E 1 for 500,000 initial values for 4-coupled symmetric tent maps. Ndisc 10 2 10 3 10 4
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 4 Fig. 4 shows the error ) , ( 1 iter disc C N N E versus the number of iterated points of the approximated correlation function between the first and the second components (x 1 , x 2 ) for the 4-coupled symmetric tent map. Moreover, every couple of components checked simultaneously gives the same results.
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 5 Figure 5. Graphs of the symmetric tent map f, f (2) and f (3) on the interval [-1,1].
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 6 Figure 6. Error E AC1 for the first component x 1 , sampled by x 4 for the threshold values 0.98 and 0.998 of the 4-coupled symmetric tent map.
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 7 Figure 7. Difference between the autocorrelation distribution function AC NSAMPLDISC ( ) 1 1 1 , + n n x x and the uniform distribution of the 4-coupled symmetric tent map sampled by x 4 for the threshold value 0.998. N disc = 10 2 ×10 2 , NSampl iter = 10 10 , ε i = i.ε 1 , ε 1 = 10 -14 . Initial values:x 1 0 = 0.330, 2 0 = 0.3387564, x 3 0 = 0.50492331, x 4 0 = 0.0.
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 8 Figure 8. Projection of the Fig. 7 on the plane

  Figure 9. ) , ( 1 iter disc AC NSampl N E for the first component x 1 , sampled by x 4 for the threshold value 0.998 of the 4-coupled symmetric tent map versus N disc , NSampl iter = 10 10 , ε i = i.ε 1 , ε 1 = 10 -14 . Initial values x 1 0 = 0.330, x 2 0 = 0.3387564, x 3 0 = 0.50492331, x 4 0 = 0.0.

Fig

  Figure 10. Error of ) , ( 1 iter disc ACNSampl N E N disc =10 2 ×10 2 , NSampl iter = 10 3 to 10 10 , ε i = i.ε 1 , ε 1 =10 -14 .

  being for example a general parameter value characterizing the general baker map)

Table 1 .

 1 Error E 1 for 2, 3 and 4-coupled Symmetric Tent Maps.

	Same results are obtained in norm L 2 .
	The corresponding numerical results are displayed
	in Tab. 1 for ( ) 2 2 ) , ( iter disc N N E	1 E .	(	N	, disc N	iter	)	for and Tab. 2 for
	Remark: in order to made easier the comparison of
	the results, we display the square of the discrepancy
	2 2 E instead of E 2 itself, the discrepancy being
	divided by 10 each time the number of iterations is
	multiplied by 10.												
	One can observe that for 3 and 4-coupled
	equations the convergence is excellent up to 3×10 12
	iterates. For 2-coupled equations the convergence
	seems lower bounded by a minimal error.
		1 E	(	N	, disc N	iter	)	1 E	(	N	, disc N	iter	)	1 E	(	N	, disc N	iter	)
	Niter	2-coupled			3-coupled		4-coupled
			equation				equation			equation
	10 5	0.25071335		0.25035328		0.2499133
	10 6	0.079655103	0.079437105		0.080739109
	10 7	0.025794703	0.025343302		0.025266304
	10 8	0.0081966502	0.0079505501	0.0080771501
	10 9	0.003147609	0.002513533		0.002562893
	10 10	0.002171746	0.0007908719	0.00079702
	10 11	0.002055097	0.000257910		0.000252414
	10 12									8.4195287.10 -5	7.8803383.10 -5
	3.10 12									5.0625114.10 -5	4.5317128.10 -5

10 9 0.008005619 0.025207567 0.079757051 10 10 0.0025136649 0.0079736449 0.025230797 10 11 0.00080110625 0.002522144 0.0079771447 10 12 0.00025407246 0.00079907514 0.0025234708

  

	Ndisc	1 E	(	N	, disc N	iter	)	1 E	(	N	, disc N	iter	)	1 E	(	N	, disc N	iter	)
	Niter				10 2								10 3							10 4
	10 5	0.023590236	0.074390944	0.25035328
	10 6	0.0077829878	0.024115036	0.079437105
	10 7	0.0027963003	0.0078734998	0.025343302
	10 8	0.00070102901	0.0024396098	0.0079505501
	10 9	0.00024907298 0.00078846501	0.002513533
	10 10	7.4041294.10 -5	0.0002472693	0.0007908719
	10 11	2.821469.10 -5	8.540793.10 -5	0.00025791013
	10 12	1.4600127.10 -5	3.2358931.10 -5	8.4195287.10 -5
	Ndisc	1 E	(	N	, disc N	iter	)	1 E	(	N	, disc N	iter	)	1 E	(	N	, disc N	iter	)
	Niter				10 5								10 6							10 7
	10 5		0.73832			1.810124		1.9801114
	10 6	0.24974733			0.735708			1.809666
	10 7	0.079959311	0.25029673		0.7353684
	10 8	0.02518029		0.079508971	0.25000429

Table 3 .

 3 Error E 1 for 3-coupled Symmetric Tent Maps with respect to both N iter and N disc .

Table 4 .

 4 Minimal and maximal values of the E 1 and

	2
	2