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Abstract

We introduce and combine synergistically three
simple new mechanisms: very weakly coupling of
chaotic maps, chaotic sampling and chaotic mixing
of iterated points in order to make new families of
enhanced Chaotic Pseudo Random Number
Generators (CPRNG).

The key feature of these CPRNG is that they use
chaotic numbers themselves in order to sample and
to mix chaotically several subsequences of chaotic
numbers.

We analyze numerically the properties of these
new families and underline their very high quatitie
and usefulness as CPRNG when series are
computed up to I8iterations.

Key words
Chaos, pseudo random numbers, coupled maps.

1. Introduction

When a dynamical system is realized on a
computer using floating point or double precision
numbers, the computation is of a discretization,
where finite machine arithmetic replaces continuum
state space. For chaotic dynamical systems, the
discretization often has collapsing effects toxadi
point or to short cycles [Lanford IIl, 1998; Gora,
Boyarsky, Islam and Bahsoun, 2006].

In order to preserve the chaotic properties of the
continuous models in numerical experiments we
have introduced as a first one mechanism the very
weak multidimensional coupling ofp one-
dimensional dynamical systems which s
noteworthy [Lozi, 2006].

Moreover each component of these numbers
belonging to R are equally distributed over a
given finite interval JOR.  Numerical

computations show that this distribution is obtdine
with a very good approximation. They have also the
property that the length of the periods of the
numerically observed orbits is very large.

However chaotic numbers are not pseudo-
random numbers because the plot of the couples of
iterated pointsx,, X.+1) in the phase plane shows up
the mapf used as one-dimensional dynamical
systems to generate them.

A second simple mechanism is then used to hide
the graph of this genuine functidnin the phase
space(x' X ) The pivotal idea of this mechanism

n?' n+l
is to sample chaotically the sequence
(xg,xl',x'z,m,x'n,x'nﬂ,”_) selecting X every time
the value ofx™ is strictly greater than a threshold
TOJ, withl #m, for 1<I, m<p.

A third mechanism can improve the
unpredictability of the chaotic sequence generated
as above, using synergistically all the
components of the vectoX, instead of
X=l*| two. This simple third mechanism is

x") based on the chaotic mixing of thel

sequences (i, %, %, ..., %, )
2

2 2 2 2
(xo,xl,xz,...,xn,xm,...),---,
-1 -1 -1 -1 -1 i
(xop DX X XP ,xnpﬂ,_,,) using the last one

(XOP, X, XP, L, xP, xnpﬂ,,,,) with respect to a given

partitionry, ry, ..., ry.10f J to distribute the iterated
points.

In this paper we explore numerically the
properties of these new families and underlinerthei
very high qualities and usefulness as CPRNG when
series are computed up to'i@erations.

Generation of random or pseudorandom
numbers, nowadays, is a key feature of industrial
mathematics. Pseudorandom or chaotic numbers are
used in many areas of contemporary technology
such as modern communication systems and
engineering applications. Everything we do to
achieve privacy and security in the computer age
depends on random numbers. More and more
European or US patents using discrete mappings for
this purpose are obtained by researchers of déscret
dynamical systems [Petersen and Sorensen, 2007;
Ruggiero, Mascolo, Pedaci and Amato, 2006].

The idea of construction of chaotic
pseudorandom number generators (CPRNG)
applying discrete chaotic dynamical systems,
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intrinsically, exploits the property of extreme
sensitivity of trajectories to small changes ofiadi
conditions, since the generated bits are associated
with trajectories in an appropriate way [Bofetta,
Cencini, Falcioni and Vulpiani, 2002].

Recently some authors proposed the use of the
Arnol'd cat maps as a PNRG [Barash and Schchur,
2006].

The process of chaotic sampling and mixing of
chaotic sequences, which is pivotal for these new
families, works perfectly in numerical simulation
when floating point (or double precision) numbers
are handled by a computer.

It is noteworthy that the new models of very
weakly coupled maps are more powerful than the
usual formulas used to generate chaotic sequences
mainly because only additions and multiplications
are used in the computation process; no division
being required. Moreover the computations are
done using floating point or double precision
numbers, allowing the use of the powerful Floating
Point Unit (FPU) of the modern microprocessors
(built by both Intel and Advanced Micro devices
(AMD)). In addition, a large part of the
computations can be parallelized taking advantage
of the multicore microprocessors.

2. Very Weakly Multi-dimensional Coupling

2.1. Two-dimensional Coupled Symmetric Tent
Map

First, we recall the basic equation of the coupled
symmetric tent maps. In sections 2, 3 and 4 of this
paper, we will consider only the symmetric tent
map defined by

f,(x) =1-al (2.1)

with the valuea = 2, later denoted simply &seven
though others map of the interval (as the logistic
map) can be used for the same purpose. The
associated dynamical system [Sprott, 2003;
Alligood, Sauer and Yorke, 1996] is defined by the
equation on the intervdl= [-1, 1]

ka=lodx| (@22

Two tent maps are coupled in the following way,
using a two dimensional coupling constant

€= (€1, &)

{xn+1:(1—sof(xn>+slf(yn) 2.3)
Yo =02 £ (6)+ A=2) ()

In this paper for the numerical studies we fix
constant the ratio between ande&,. We chose to
set it equal to 2.

€, =2¢, (2.4)

However, different ratios can also lead to good
results and be used since a multidimensional
variable can be instrumental in the increasingef t
number of dimensions of the systems.

The coupling constant varies from (0, 0) to
(1, 1). Whene = (0, 0) the maps are decoupled,
when € = (1, 1) they are fully cross coupled.
Generally, researchers do not consider very small
values ofe (as small as 10 for floating point
numbers or 18" for double precision numbers),
because it seems that the maps are quasi decoupled
with those values. Hence no special effect of the
coupling is expected. In fact it is not the casd an
this very very small coupling constant allows the
construction of very long periodic orbits, leadiiag
sterling chaotic generators.

The dynamical system (2.3) can be described
more generally by

Xoa = F(X,)= AL(f (X)) (2.5)

x:m, f(x):(f(x)j (2.6)
/N f(y)

A:[(l—fl) flJ 2.7)

with

and
& (1_ 52)

whereF is a map of the square [-1, 1] x [-1, 1%
into itself.

2.2 p-coupled Symmetric Tent Map

To improve the length of the period and the
convergence of the invariant measure towards a
given measure, we consider the dynamical system
(2.5) in whichp maps are coupled

X! f(xY)
with | . ], F(X)= (2.8)
xP f(xP)
and
1-(p-1)g, € g €
€; 1-(p-De, - & €, (2.9)
A= : : :

gp gp 1_(p _1)8p
with g =] € i=2, P (210)
As stated earlier, others choices are possiblthisn
casefF is a map ofl’ into itself.

2.3 Uniform distribution of chaotic numbers

We give some numerical results about chaotic
numbers produced by 2-, 3- and 4-coupled maps
which show that they are equally distributed over
the intervalJ. In order to compute numerically an
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approximation of the invariant measure [3] also
called the probability distribution functioRy (X)
linked to the one dimensional mépve consider a
regular partition ofM small intervals (boxes) of

M-2
\]: U ri
0

ri=[s,Sa ,i=0,M=2 (2.11)
M= [Swa, 1] (2.12)
s= -1+42  i=0M (2.13)
M
Its length is
_e= 2 (214)
Sa7S T

All iteratesf ™(x) belonging to these boxes are
collected (after a transient regime gfiterations
decided a priori, i.e. the first q iterates are
neglected). Once the computationNsf q iterates is
completed, the relative number of iterates with
respect tdN/M in each box; represents the value
Py (s). The approximatedPy (x) defined in this
article is then a step function, witfl steps. AsM
may vary, we define

Y (3):%%(#'}) (2.15)

where #; is the number of iterates belonging to the
interval r; and the constant 1/2 allows the
normalisation ofp,  (x) on the interval.

Pun(X =R, y(s) Oxdr, (2.16)

In the case of coupled maps, we are interested by
the distribution of each componextt ...,x " of X
rather than the distribution of the variabétself in
JP. We then consider the approximated probability
distribution functionPy (x ') associated to one
among several componentsk(X) defined by (2.5)
which are one-dimensional maps.

The discrepancie&; (in norm L) and E; (in
norm L,) between PN, (x) and the Lebesgue

measure which is the invariant measure associated
to the symmetric tent map, are defined by

(2.17)
(2.18)

E(Ng: Niger) = “PNd,m, N
E,(Ngscr Niger) = HPN

(x) - 0.5HL1

iter

(x) - 0.5HL2

disc Nlts

Fig. 1 shows the errog (N,.,N,,) versus the

number of iterates of the approximated distribution
functions with respect to the first variabfefor 2, 3
and 4-coupled symmetric tent maylys. is fixed to
10%, &, to 10, Ny, varies from 18to 10" for the
2-coupled case and to 340for the 3 and 4-
coupled one.

disc?

-0,5 1
-1
-15
- -2
w
35 2,5
=2}
S 3
-3,5
-4
-4,5 — —TT 5
4 5 6 7 8 9 10 11 12 13
IOglO(N iter)
~—8— 2 coupled equations
—8— 3 coupled equations
—&— 4 coupled equations

Figure 1. Error E; for 2, 3 and 4-coupled

Symmetric Tent Maps. Computations done using
double precision numbers (~14-15 digits),= i.€1,
€, = 10™, Ngiec = 10" Initial values
X3 = 0.330000013113x? = 0.338756413113,

)(03 =0.331353442113x, = 0.333213583113.

Same results are obtained in norm L
The corresponding numerical results are displayed
in Tab. 1 for E(N,,N,,) for and Tab. 2 for

(Eo(Ngee: N ) )

iter

Remark: in order to made easier the comparison of
the results, we display the square of the discrepan
E? instead ofE; itself, the discrepancy being

divided by 10 each time the number of iterations is

multiplied by 10.

One can observe that for 3 and 4-coupled
equations the convergence is excellent upxtb0%¥
iterates. For 2-coupled equations the convergence
seems lower bounded by a minimal error.

E:l(Ndisw Niter) El(Ndisc’ Niter) El(Ndisc’ Niler)
Niter 2-coupled 3-coupled 4-coupled
equation equation equation
10° 0.25071335 0.25035328 0.2499133
10° 0.079655103 0.079437105 0.0807391Q9
10’ 0.025794703 0.025343302 0.025266304
108 0.0081966502 0.007950550{ 0.0080771501
10° 0.003147609 0.002513533 0.002562893
10% 0.002171746 0.0007908719 0.00079702
10" 0.002055097 0.000257910 0.000252414
10" 8.4195287.18 | 7.8803383.10
3.10% 5.0625114.18 | 4.5317128.18

Table 1.ErrorE; for 2, 3 and 4-coupled Symmetric
Tent Maps.
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numbers (~14-15 digits) with respect to both
Nier and Ngiso & = i.&, & = 10* Ny = 1P to
10", Ngsc = 10 to 10. Initial values

x5 = 0.330000013113x? = 0.338756413113,

xg =0.331353442113x, = 0.333213583113.

In Fig. 2, we display the mutual influence of
both Njer and Ngisc On the errors in L. norm. The
results show a tremendous regularity. The
corresponding numerical results are displayed in
Tab. 3.

EZZ(Ndisc’ Niter) EZZ(Ndism Niter) EZZ(Ndisc’ Niter)
Niter 2-coupled 3-coupled 4-coupled
equation equation equation
10° 0.100199 0.099820996 0.09961099p
10° 0.01006199 0.009878189¢ 0.01022057
10 0.0010442081 0.0010014581 0.0010055967
10° 0.0001055816 9.8853067:10 0.00010197872|
10° 1.567597.18 | 1.0047459.18 | 1.0326474.1
10° | 7.3577797.18 | 9.7251536.10 | 9.9932242.10
10" | 6.6338453.18 | 1.0434293.10 | 1.0070523.10
10% 1.116009.18 | 9.6166733.18
3.10% 4.0443118.18 | 3.2530773.18

Table 2. Error g7 for 2, 3 and 4-coupled
Symmetric Tent Maps.

There is no significant difference between 3 and
4-coupled equations, the numerical experiments
have to be pursued up to¥@r 10 in order to
discriminate the results.

Equivalent results are obtained for the variables
X2, x%or X,

No periodic solutions are observed up td6
iterates (even up to Yiterates as tested in Sec. 4).
This is a key point when producing chaotic
numbers, because the use of a computer discretizes
the phase space of a dynamical system, canceling
(at least) its asymptotic properties. Every orbit i
periodic according to the finite number of states
(i.e., the number of double precision numbers
belonging toJP). However, if the period of the
realized sequence is long enough, these properties
reasonably survive as a chaotic transient.

@-5-3 0-3-1 B-1-1

Figure 2. Error E; for 3-coupled Symmetric Tent
Maps. Computations done using double precision

isc El(Nchsc’ Nlter) El(Nchsc’ Nlter) Ei(Ndl$7 Nlter)
Niter 102 103 104
10° 0.023590236 0.074390944 0.25035328
10 0.0077829878 0.024115034 0.079437105
10 0.0027963003 0.0078734998 0.025343302
10° | 0.00070102901  0.002439609B 0.0079505501
10° | 0.00024907298 0.000788465Q1 0.002513533
10° | 7.4041294.18 | 0.0002472693 0.0007908719
10" | 2.821469.18 8.540793.10 | 0.00025791013
10" | 1.4600127.16 | 3.2358931.18 | 8.4195287.18
isc E_l(Ndisc’ Niter) Ei(Ndisc’ Niler) Ei(Ndisc’ Niler)

Niter 1(f :|.0G 107

10° 0.73832 1.810124 1.9801114
10° 0.24974733 0.735708 1.809666
10’ 0.079959311 0.25029673 0.7353684
10° 0.02518029 0.079508971 0.25000429
10° 0.008005619 0.025207567 0.079757031
10 | 0.0025136649 0.0079736449 0.025230797
10" | 0.00080110625 0.002522144 0.0079771447
10" | 0.00025407244 0.00079907514  0.0025234708

Table 3. Error E; for 3-coupled Symmetric Tent
Maps with respect to botke; andN;sc.

2.4 Impact of the initial values on the results

It is well known that the choice of the seed of a
PRNG is very important. Some seed can lead to the
collapse of the period of the computed random
numbers. In order to check if the choice of the
initial condition (equivalent to the choice of the
seed of a PRNG) is dramatically for the previous
results, we have tested several series of different
initial values.

Fig. 3 shows the distribution of tlegror E; for
500,000 initial values for 4-coupled symmetric tent
maps. The computations are done using double
precision numbers (~14-15 digits),
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&=i.6, &=10" Ny =1CF, Ngs= 10
The initial values are selected following:

x'ox = -0.92712 + 10x k ,

X%k = -0.9183636 + 10x 7k,

X%k = -0.92576657 + Tk 13,

x*ox = -0.92390643 + Tk 17,
k = 1 to 500,000.

The distribution follows more or less a Gaussian
distribution, maximal and minimal results are
displayed in Tab. 4. Others series tested with
several values dflgsc give the same kind of results.

N gisc = 10* N jre, = 10°

15000 7
10000 l \
5000 / \

0 .-|-|-|-|u-|-|-|-uul-l-lll'l'l'l'l'l'

number of results out of
500,000

QO PR PO O
Yo QTN DS q,\,o,\;x,(/»,;b,\y

Error E; x 107

= A-coupled equations

Figure 3. Distribution of theerror E; for 500,000
initial values for 4-coupled symmetric tent maps.

Ndisc 102 103 :I.O4
MiN E (Nye, Ny ) | 0.0040021| 0.0207400 0.0751521
MaxE (Nyo, Niw) | 0.013872 | 0.0301160 0.0843841

min E2(N,o, N,) | 0.0000275| 0.0006769 0.0089217

max E2(N,.,N,,) | 0.0002834| 0.001435 0.0110719

Table 4.Minimal and maximal values of the, and
E? errors for 500,000 initial values for 4-coupled

symmetric tent maps.

2.5 Independency of the chaotic subsequences
generated by each component

In next section, we propose the chaotic sampling
of the chaotic sequences generated by Eq. (2.5) to
enhance the properties of this chaotic number
generator. The key feature of these enhanced
chaotic number generators being their use of
chaotic numbers themselves in order to do the
sampling process. The main idea leading to this
particular sampling is that the series of chaotic

numbers produced by each component is
independent of the others.
We need before to verify this independency.

Let consider now the coordinates of the iterated
points Koo Xpa Xgvoon Xy Xpag o
xt) of the multidimensional mapF
defined by (2.5). In order to check that
X, =| . they are uncorrelated, we plot every
: pair of coordinates of this sequence in
x? ) the phase subspace,(X™ imbedded
in the phase spac¥ and we check if
they are uniformly distributed in the squdfe

If no particular pattern is displayed and if the
difference between the distribution of these points
later called the correlation distribution furcti
Cn (X, y) converges towards the uniform distribution
on the square when the number of iterations goes to
the infinity, we can conclude the independency or
the uncorrelation of the sequences of numbers
generated by each component of the iterated points.

In  order to compute numerically an
approximation of the correlation distribution
functionCy (x,y) we build a regular partition ofl 2
small squares (boxes) df imbedded in the phase
subspacex, x™)

j=[s,Sal X[, tal ,i,j=0,M=2 (2.19)
rm-rj = [Swr, I X[, el . j=0,M=2 (2.20)
fv1 =[S, Sea[X [twa, 1] ,i=0,M=-2 (2.21)
rvoms = [Sweas 1 % [ty 1] (2.22)
g:—1+|\2/|-t— 1+M 0,i=0M (2.23)

the measure of the area of each box is :

(-8 -)=[ 2] (2.22)

OnceN + q iterated pointf, x™) belonging to
these boxes are collected the relative number of
iterates with respect td\/M® in each boxr;
represents the valu€y (s, t). The approximated
probability distribution functiorCy (x, y) defined in
this article is then a 2-dimensional step function,
with M? steps. AsMl can vary in the next sections,
we define

MN(Svt)_lM (#I‘ ) (2.25)

where #,; is the number of iterates belonging to the
square r;j and the constant 1/4 allows the
normalisation ofc N(X y) on the square}2

Cun(%y)=Cyn(s:t) O y)0r (2.26)
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The discrepancie€c; (in norm Ly between
N (6 Y) and the uniform distribution on the

Naise » Nj

square is defined by

Ec1(Neigs Niee) = HC Ny (x,y) - 025HL1 (2.27)

Naisc

Fig. 4 shows the erroe_ (N,.,N,,) Versus the

number of iterated points of the approximated
correlation function between the first and the
second componentsx'( x°) for the 4-coupled
symmetric tent map. Moreover, every couple of
components checked simultaneously gives the same
results.

N kN =}
W o0 N o Po;

logio(Ecy)

/

F

5 6 7 8 9 10 11 12
IOglO(N iter)

N

—e— Correlation value EC1

Figure 4. Error E; for the first and the second
componentsx, x%) of the 4-coupled symmetric tent
map. Ny is fixed to 18 x 10, § = i.&, & = 10™,
Nieer varies from 10to 10" Computations are done
using double precision numbers (~14-15 digits).
XY = 0.330 X% = 0.3387564 X0 = 0.50492331,X% = 0.0.

3. Chaotic Sampling of Chaotic Numbers

If we plot the chaotic numbers produced by any
componentX , 1 < | < p of the p-dimensional
dynamical system Eq. (2.5) in the phase space
(x, x.,), the iterated points show the graph of the

symmetrical tent mapg used to define Eq. (2.5)
(more exactly a graph with two lines havigg
thickness). These numbers are not randomly
produced. If we plot these points in the phase
spaces(x, x.,,), (X, %) or (x,x., ) they will
display the graph of @, f @ or f © (see Fig. 5).
Hence someone knowing a sequence of few iterated
points is able tofind the initial valueX, of the
dynamical system.

In order to hide the graph of the genuine function
fin the phase spac, X'n+q) for anyq, a pivotal

idea is to sample chaotically the sequence
(xg,x;,x'z,...,x'n,x'm,...) selectingx every time the

value of x"is greater than a threshadld-1 <T < 1,

withl #m, for 1<, m<p.

7Tne7 chaotically = sampled

(%, X, X1 -+ X X iS defined as

X, =%, iff x"0]T,q (3.1)
Choosing T > 0.5 implies that the selected
subsequence

subsequence

B2 K] = oy Xy X X Xy )

is such that the difference betweppnand pg.; is
always greater than a minimal valig depending
upon T. The graph of the chaotically sampled
chaotic number is a mix of the graphs of all tHé
forr > K.

1.0
0.5
S o0 -
= : '. — 17
: : e fTT
= ke 2 2 Sphg
:[‘ at \r ,f II, \‘l
g ' R
’ = =T o T = S T =R R
o r~ 'f;l ~ C o~ 'fJI f'-: C
| |
b

Figure 5. Graphs of the symmetric tent mé&pf®
andf® on the interval [-1,1].

As seen in Sect. 2.5 every pair of components
(X, xm)  of  Xg, Xy, Xy, Xy, Xy e IS
uncorrelated. Hence, the proposed chaotic sampling
is a powerful tool to generate enhanced chaotic

numbers. Lenc,, \ (x,y) the autocorrelation

distribution function which is the correlation
function C,  (x,y) (2.26) defined in the phase

space(x,, x.,,) instead of the phase spac& K").

In order to control that the enhanced chaotic

numbers (x;, x,, X, -+, %, ) are uncorrelated,

we plot them in the phase subspa(g?ne, a) and

we check if they are uniformly distributed in the
squarel®.

If no particular pattern is displayed and if the
autocorrelation distribution functiolACy (X, V)
converges towards the uniform distribution on the
square when the number of iterations goes to the
infinity, we can conclude that the knowledge of a
sequence of iterated points do not allow finding th
initial value X, of the dynamical system.

Fig. 6 shows the values of

EACl(Ndiscv leita) = HACNw, NSamplije (X’ y) B qu‘h

for a system of 4 coupled-equations for both the
threshold values 0.98 and 0.998 of . The

qr Mg
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enhanced chaotic numbers are produced by the first
componenty! of the dynamical system.

_0-’]5. \
-1,5 \

-2,5

10910(Eac1)

-3,5
p AN

-4,5
2345678 91011
IOglO(Nsampkter)

—a&— Threshold 0,98
—o— Threshold 0,998

Figure 6. Error Exc; for the first componenk’,
sampled byx* for the threshold values 0.98 and
0.998 of the 4-coupled symmetric tent map.
Nais=10x10, & = i.&, & = 10™, NSampli,, varies
from 1C to 10°. Computations done using double
precision numbers (~14-15 digits).

XY = 0.330 X% = 0.3387564 X0 = 0.50492331,X% = 0.0.

As the chaotic numbers are regularly distributed
on the intervald, when T > 0.98 one chaotic
number over approximately 100 is sampled, when
T > 0.998 one chaotic number over approximately
1,000 is sampled. We caillSampl;,, the number of
sampled points.

1.003
1.002
1.001

1.000 P LA (e .

Error (E,0)

0.999

Iﬁ.|lll. . '

|

0.998
0.997

0.996

Figure 7. Difference between the autocorrelation
distribution functionACswewose (X, x.,,) and the
uniform distribution of the 4-coupled symmetric
tent map sampled by for the threshold value
0.998. Ngisc = 10Px10%, NSamplie= 10°, & = i.g,

& = 10 Initial values:

XY = 0.330 X% = 0.3387564 X5 = 0.50492331x" = 0.0.

100
§ 90
80
70

60 _%

50 =

=

§ 10 S

s 4 HET - [ LR ) i 0
0 10 20 30 40 50 60 70 80 90 100
Variable x}

Figure 8. Projection of the Fig. 7 on the plane
(Xiy Xi+1)'

Nevertheless the computing process is very fast.
A desktop computer can produce more than
50,000,000 chaotic numbers per second, thus
50,000 iterated sampled points per secood f
T > 0.998. The sampling threshold 0.998 gives very
good results.

The difference between the autocorrelation
distribution functionACysaeioisc (f T) and the

n?’ n+l
uniform distribution is shown on Fig. 7 and its
projection on the phase subspz@q ﬂ) is shown

on Fig. 8.
Fig. 9 and Tab. 5 showg,_ (N,.,NSampl,,)

with respect tdNgisc

Nsampli,, = 10%°

0,0009
0,0008

0,0007 pal
0,0006
0,0005
0,0004

0,0003 p
0,0002
0,0001 +—v

l0g(Eac1)

0 20 40 60 80 100

Ndisc

—e—4-coupled equations Threshold = 0.998

Figure 9. E, (N, ,NSampl,) for the first
componenk’, sampled by* for the threshold value
0.998 of the 4-coupled symmetric tent map versus
Ngise NSamplier = 10, & = i.&, & = 10™.

Initial values x', = 0.330, x% = 0.3387564,

x% = 0.50492331x% = 0.0.
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Naisc NSamplicer Enci(Nge, NSampl,, )

10x 10 | 10,000,042,552 0.0000884451

40 x40 | 10,000,042,55p 0.000322549

0.000798014

100x 100| 10,000,042,55Z

Table 5. E,, (N, NSampl,, ) -

disc?

4 Chaotic Mixing and Chaotic Sampling of
Chaotic Numbers

One can improve again the unpredictability of
the chaotic numbers generated as above, using all
the components of the vect&rinstead of one. For
example for 4-coupled equations, the valuexbf

command the sampling process as follows
Let us set three threshold valugsT, andT;
AA<T,<T,<T3<1 (4.2)

we sample and mix together chaotically the
sequence$, X, X, ..., X, Xy, o)
2 2

(2,32, %2, ..., %2, %2, ) and(xg, XX X, X3 )
defining (x;, ., %, X X ) by

X it xt0]T T

X, =12 iff X O[T,.T[
X iff x*0[T,.a

-0,5 -
-1,5

-2

(4.2)

-2,5

100:0(Eac1)

-3

-3,5

4 v
_415 L L L L L L L L
2 3 4 5 6 7 8 9 10 11

LOglO(Nsammter)

—a&— Threshold 0,98

—8— Threshold 0,998

—e— Thresholds 0,98 ; 0,987; 0,994
—— Thresholds 0,998 ; 0,9987; 0,9994

Figure 10. Error of E, (N,.,NSampl)
Ngis=10Px10%, NSamplie= 10° to 10°% g = i.&,
&£=10",

Fig. 10 and Tab. 6 show the values of
Exci(Nge, NSampl, ) for a system of 4 coupled-

equations when the first componetitis sampled
by x* for both the threshold values 0.98 and 0.998
and when the three components, x* , X are
mixed and sampled by for the threshold values
T, =0.98, T,=0.987,T; = 0.994 ofT, = 0.998,T,
=0.9987,T; = 0.9994.

Eaci(Ngs, NSampli )

Niter NSamplier 48-(;:8 ;5 cl)?.'d
T=0.998

10° 95 0.70947368

10° 971 0.26570546

10 10,095 0.079871223

108 100,622 0.023190157

10° 1,001,408 0.0071386288

10'° 9,998,496 0.002493667

10t 100,013,867 0.00071561417

10* 999,994,003 0.00025442753

10" | 10,000,042,552 0.000088445108

Eaci(Ngs, NSampli )

4-coupled

Niter NSamplier Teltlugt[g)gr]&

T,=0.9987,T; =

0.9994

10° 93 0.68924731
10° 1015 0.25881773
10 10,139 0.086706776
10° 100,465 0.026815309
10° 1,000,549 0.0089111078

0.0027932033
0.00085967214
0.0002346851
0.000073234736

10" 9,998,814
10t 100,001,892
10" 999,945,728
10" | 10,000,046,137

Table 6. Error of E, (N, NSampl,,) for a

system of 4 coupled-equations when the first
componentx* is sampled by* for the threshold
value 0.998 and when the three componghtsé ,

x3 are mixed and sampled by for the threshold
valuesT, = 0.998.T, = 0.9987 T, = 0.9994.

iter
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5. Further improvements

As said in Sec. 2.1, we have only considered the
symmetric tent map (2.1). We have now to consider
others maps of the interval: non symmetric tent
map, baker map. We have also to consider the
coupling (2.5) with maps having different
parameters values

1
fo, (X)
f(X)= : (5.1)
f (x)
(a OR™ being for example a general parameter
value characterizing the general baker map)

6. Conclusion

We  have introduced and combined
synergistically three simple new mechanisms: very
weakly coupling of chaotic maps, chaotic sampling
and chaotic mixing of iterated points in order to
make new families of enhanced Chaotic Pseudo
Random Number Generators (CPRNG). The
properties of these new families are explored
numerically up to 18 iterations. The numerical
experiments give good results. Now other tests have
to be performed in order to check their usefulness
as Chaotic PRNG. Others functions and
combination of functions have also to be explored
in order to obtain

References

Alligood, K. T., Sauer, T. D., and Yorke, J. A.
(1996). Chaos. An introduction to dynamical
systems. Springer, Textbooks in mathematical
sciences. New-York.

Barash, L., Shchur, L. N. (2006). Periodic orbits o
the ensemble of Sinai-Arnold cat maps and
pseudorandom number generatiBhysical Review

E. 73, Issue 3, pp.036701.

Boffetta, G., Cencini, M., Falcioni, M., Vulpiar,.
(2002). Predictability: a way to characterize
complexity.Physics Reports. 356, pp. 367-474.

Gora, P., Boyarsky, A., Islam, MD. S., Bahsoun,
W. (2006). Absolutely continuous invariant

measures that cannot be observed experimentally.

SIAM J. Appl. Dyn. Syst. 5:1, pp. 84-90 (electronic).

Lanford Ill, O. E. (1998). Some informal remarks
on the orbit structure of discrete approximatioms t
chaotic mapskExperimental Mathematics. Vol. 7, 4,
pp. 317-324.

Lozi, R. (2006). Giga-Periodic Orbits for Weakly
Coupled Tent and Logistic Discretized Maps.

(International Conference on Industrial and
Applied Mathematics, New Delhi, december 20D4
Modern Mathematical Models, Methods and
Algorithms for Real World Systems. A.H. Siddiqi,
I.S. Duff and O. Christensen (Editors). Anamaya
Publishers. New Delhi, India. pp 80-124.

Petersen, M. V., Sorensen, H. M. (2007). Method of
generating pseudo-random numbers in an electronic
device, and a method of encrypting and decrypting
electronic datalJnited States Patent. 7170997.

Ruggiero, D., Mascolo, D., Pedaci, I., Amato, P.
(2006). Method of generating successions of
pseudo-random bits or numberklnited States
Patent Application. 20060251250.

Sprott, J. C. (2003).Chaos and Time-Series
Analysis. Oxford University Press. Oxford, UK.



