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Abstract 
 

We introduce and combine synergistically three 
simple new mechanisms: very weakly coupling of 
chaotic maps, chaotic sampling and chaotic mixing 
of iterated points in order to make new families of 
enhanced Chaotic Pseudo Random Number 
Generators (CPRNG). 

The key feature of these CPRNG is that they use 
chaotic numbers themselves in order to sample and 
to mix chaotically several subsequences of chaotic 
numbers. 

We analyze numerically the properties of these 
new families and underline their very high qualities 
and usefulness as CPRNG when series are 
computed up to 1013 iterations. 
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1. Introduction 
When a dynamical system is realized on a 

computer using floating point or double precision 
numbers, the computation is of a discretization, 
where finite machine arithmetic replaces continuum 
state space. For chaotic dynamical systems, the 
discretization often has collapsing effects to a fixed 
point or to short cycles [Lanford III, 1998; Gora, 
Boyarsky, Islam and Bahsoun, 2006]. 

In order to preserve the chaotic properties of the 
continuous models in numerical experiments we 
have introduced as a first one mechanism the very 
weak multidimensional coupling of p one-
dimensional dynamical systems which is 
noteworthy [Lozi, 2006]. 

Moreover each component of these numbers 
belonging to p

ℝ  are equally distributed over a 
given finite interval J ⊂ ℝ . Numerical 

computations show that this distribution is obtained 
with a very good approximation. They have also the 
property that the length of the periods of the 
numerically observed orbits is very large. 

However chaotic numbers are not pseudo-
random numbers because the plot of the couples of 
iterated points (xn, xn+1) in the phase plane shows up 
the map f used as one-dimensional dynamical 
systems to generate them. 

A second simple mechanism is then used to hide 
the graph of this genuine function f in the phase 
space ( )l

n
l
n xx 1, + . The pivotal idea of this mechanism 

is to sample chaotically the sequence 
( )…… ,,,,,, 1210

l
n

l
n

lll xxxxx +  selecting l
nx  every time 

the value of m
nx  is strictly greater  than a threshold 

T ∈ J, with l ≠ m, for 1 ≤ l, m ≤ p . 
 
A third mechanism can improve the 

unpredictability of the chaotic sequence generated 
as above, using synergistically all the 
components of the vector X, instead of 
two. This simple third mechanism is 
based on the chaotic mixing of the p-1 
sequences ( )…… ,,,,,, 1

1
11

2
1
1

1
0 +nn xxxxx , 
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1

22
2

2
1
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0 +nn xxxxx ,…,
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1
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1
1

1
0

−
+

−−−− p
n

p
n

ppp xxxxx  using the last one 

( )…… ,,,,,, 1210
p
n

p
n

ppp xxxxx +  with respect to a given  

partition r 1, r 2, …,  r p-1 of J, to distribute the iterated 
points.  

In this paper we explore numerically the 
properties of these new families and underline their 
very high qualities and usefulness as CPRNG when 
series are computed up to 1013 iterations. 

 
Generation of random or pseudorandom 

numbers, nowadays, is a key feature of industrial 
mathematics. Pseudorandom or chaotic numbers are 
used in many areas of contemporary technology 
such as modern communication systems and 
engineering applications. Everything we do to 
achieve privacy and security in the computer age 
depends on random numbers. More and more 
European or US patents using discrete mappings for 
this purpose are obtained by researchers of discrete 
dynamical systems [Petersen and Sorensen, 2007; 
Ruggiero, Mascolo, Pedaci and Amato, 2006]. 

The idea of construction of chaotic 
pseudorandom number generators (CPRNG) 
applying discrete chaotic dynamical systems, 
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intrinsically, exploits the property of extreme 
sensitivity of trajectories to small changes of initial 
conditions, since the generated bits are associated 
with trajectories in an appropriate way [Bofetta, 
Cencini, Falcioni and Vulpiani, 2002]. 

Recently some authors proposed the use of the 
Arnol’d cat maps as a PNRG [Barash and Schchur, 
2006]. 

The process of chaotic sampling and mixing of 
chaotic sequences, which is pivotal for these new 
families, works perfectly in numerical simulation 
when floating point (or double precision) numbers 
are handled by a computer. 

It is noteworthy that the new models of very 
weakly coupled maps are more powerful than the 
usual formulas used to generate chaotic sequences 
mainly because only additions and multiplications 
are used in the computation process; no division 
being required. Moreover the computations are 
done using floating point or double precision 
numbers, allowing the use of the powerful Floating 
Point Unit (FPU) of the modern microprocessors 
(built by both Intel and Advanced Micro devices 
(AMD)). In addition, a large part of the 
computations can be parallelized taking advantage 
of the multicore microprocessors. 

 
 
2. Very Weakly Multi-dimensional Coupling 

 
2.1. Two-dimensional Coupled Symmetric Tent 
Map 

First, we recall the basic equation of the coupled 
symmetric tent maps. In sections 2, 3 and 4 of this 
paper, we will consider only the symmetric tent 
map defined by 

 
xaxfa −=1)(  (2.1) 

 
with the value a = 2, later denoted simply as f, even 
though others map of the interval (as the logistic 
map) can be used for the same purpose. The 
associated dynamical system [Sprott, 2003; 
Alligood, Sauer and Yorke, 1996] is defined by the 
equation on the interval J = [-1, 1] 
 

nn xax −=+ 11
 (2.2) 

 
Two tent maps are coupled in the following way, 

using   a   two   dimensional   coupling   constant 
ε = (ε1, ε2) 
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In this paper for the numerical studies we fix 

constant the ratio between ε1 and ε2. We chose to 
set it equal to 2.  

12 ε2ε =   (2.4) 

However, different ratios can also lead to good 
results and be used since a multidimensional 
variable can be instrumental in the increasing of the 
number of dimensions of the systems.  

The coupling  constant  ε varies  from (0, 0) to 
(1, 1). When ε = (0, 0) the maps are decoupled, 
when ε = (1, 1) they are fully cross coupled. 
Generally, researchers do not consider very small 
values of ε (as small as 10-7 for floating point 
numbers or 10-14 for double precision numbers), 
because it seems that the maps are quasi decoupled 
with those values. Hence no special effect of the 
coupling is expected. In fact it is not the case and 
this very very small coupling constant allows the 
construction of very long periodic orbits, leading to 
sterling chaotic generators. 

The dynamical system (2.3) can be described 
more generally by 

 
( ) ( ))( nn1n XfAXFX ⋅==+

 (2.5) 
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where F is a map of the square [-1, 1] x [-1, 1] = J2 
into itself. 
 
2.2 p-coupled Symmetric Tent Map 

To improve the length of the period and the 
convergence of the invariant measure towards a 
given measure, we consider the dynamical system 
(2.5) in which p maps are coupled 
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with 
1i εε i=   i = 2, …, p (2.10) 

As stated earlier, others choices are possible. In this 
case, F is a map of Jp into itself.  
 
 

2.3 Uniform distribution of chaotic numbers 
We give some numerical results about chaotic 

numbers produced by 2-, 3- and 4-coupled maps 
which show that they are equally distributed over 
the interval J. In order to compute numerically an 
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approximation of the invariant measure [3] also 
called the probability distribution function PN (x) 
linked to the one dimensional map f we consider a 
regular partition of M small intervals (boxes) of 

J=
2

0

M

ir
−

∪  

ri = [si , si+1[  , i = 0, M – 2 (2.11) 

rM-1 = [sM-1 , 1]   (2.12) 

M

i
si

2
1+−=  i = 0, M  (2.13) 

Its length is 

M
ss ii

2
1 =−+

 (2.14) 

 
All iterates f (n)(x) belonging to these boxes are 

collected (after a transient regime of q iterations 
decided a priori, i.e. the first q iterates are 
neglected). Once the computation of N+ q iterates is 
completed, the relative number of iterates with 
respect to N/M in each box ri represents the value 
PN (si). The approximated PN (x) defined in this 
article is then a step function, with M steps. As M 
may vary, we define 

 

( )iiNM r
N

M
sP #

2

1
)(, =  (2.15) 

 
where #ri is the number of iterates belonging to the 
interval ri and the constant 1/2 allows the 
normalisation of )(, xP NM

 on the interval J. 

 

iiNMNM rxsPxP ∈∀= )()( ,,
 (2.16) 

 
In the case of coupled maps, we are interested by 

the distribution of each component x1,  …, x p of X 
rather than the distribution of the variable X itself in 
Jp. We then consider the approximated probability 
distribution function PN (x j) associated to one 
among several components of F(X) defined by (2.5) 
which are one-dimensional maps. 

 
The discrepancies E1 (in norm L1) and E2 (in 

norm L2) between )(, xP
iterdisc NN  and the Lebesgue 

measure which is the invariant measure associated 
to the symmetric tent map, are defined by 

 

1

5.0)(),( ,1 LNNiterdisc xPNNE
iterdisc

−=  (2.17) 

2

5.0)(),( ,2 LNNiterdisc xPNNE
iterdisc

−=   (2.18) 

 
Fig. 1 shows the error ),(1 iterdisc NNE  versus the 

number of iterates of the approximated distribution 
functions with respect to the first variable x1 for 2, 3 
and 4-coupled symmetric tent map. Ndisc is fixed to 
104, ε1 to 10-14, Niter varies from 105 to 1011 for the 
2-coupled case and to 3.1012 for the 3 and 4-
coupled one. 
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Figure 1. Error E1 for 2, 3 and 4-coupled 
Symmetric Tent Maps. Computations done using 
double precision numbers (~14-15 digits),  εi = i.ε1,  
ε1 = 10-14,  Ndisc = 104. Initial values 

1
0x  = 0.330000013113, 2

0x  = 0.338756413113, 
3
0x  = 0.331353442113, 4

0x  = 0.333213583113. 

 
Same results are obtained in norm L2. 

The corresponding numerical results are displayed 
in Tab. 1 for ),(1 iterdisc NNE  for and Tab. 2 for 

( )2
2 ),( iterdisc NNE . 

 
Remark: in order to made easier the comparison of 
the results, we display the square of the discrepancy 

2
2E  instead of E2 itself, the discrepancy being 

divided by 10 each time the number of iterations is 
multiplied by 10. 
 

One can observe that for 3 and 4-coupled 
equations the convergence is excellent up to 3×1012 
iterates. For 2-coupled equations the convergence 
seems lower bounded by a minimal error. 

 

Niter 
),(1 iterdisc NNE  

2-coupled 
equation 

),(1 iterdisc NNE  

3-coupled 
equation 

),(1 iterdisc NNE  

4-coupled 
equation 

105 0.25071335 0.25035328 0.2499133 

106 0.079655103 0.079437105 0.080739109 

107 0.025794703 0.025343302 0.025266304 

108 0.0081966502 0.0079505501 0.0080771501 

109 0.003147609 0.002513533 0.002562893 

1010 0.002171746 0.0007908719 0.00079702 

1011 0.002055097 0.000257910 0.000252414 

1012  8.4195287.10-5 7.8803383.10-5 

3.1012  5.0625114.10-5 4.5317128.10-5 

 
Table 1. Error E1 for 2, 3 and 4-coupled Symmetric 
Tent Maps. 
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Niter 
),(2

2 iterdisc NNE  

2-coupled 
equation 

),(2
2 iterdisc NNE  

3-coupled 
equation 

),(2
2 iterdisc NNE  

4-coupled 
equation 

105 0.100199 0.099820996 0.099610992 

106 0.01006199 0.0098781898 0.01022057 

107 0.0010442081 0.0010014581 0.0010055967 

108 0.0001055816 9.8853067.10-5 0.00010197872 

109 1.567597.10-5 1.0047459.10-5 1.0326474.10-5 

1010 7.3577797.10-6 9.7251536.10-7 9.9932242.10-7 

1011 6.6338453.10-6 1.0434293.10-7 1.0070523.10-7 

1012  1.116009.10-8 9.6166733.10-9 

3.1012  4.0443118.10-9 3.2530773.10-9 

 

Table 2. Error 2
2E  for 2, 3 and 4-coupled 

Symmetric Tent Maps. 
 
There is no significant difference between 3 and 

4-coupled equations, the numerical experiments 
have to be pursued up to 1013 or 1014 in order to 
discriminate the results. 

Equivalent results are obtained for the variables 
x2, x3or x4. 

No periodic solutions are observed up to 3×1012 
iterates (even up to 1013 iterates as tested in Sec. 4). 
This is a key point when producing chaotic 
numbers, because the use of a computer discretizes 
the phase space of a dynamical system, canceling 
(at least) its asymptotic properties. Every orbit is 
periodic according to the finite number of states 
(i.e., the number of double precision numbers 
belonging to Jp). However, if the period of the 
realized sequence is long enough, these properties 
reasonably survive as a chaotic transient. 
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Figure 2. Error E1 for 3-coupled Symmetric Tent 
Maps. Computations done using double precision  

numbers  (~14-15 digits)  with  respect  to both   
Niter  and  Ndisc,  εi = i.ε1,  ε1 = 10-14,  Niter = 105 to 
1012,  Ndisc = 102 to 107. Initial values 

1
0x  = 0.330000013113, 2

0x  = 0.338756413113, 

3
0x  = 0.331353442113, 4

0x  = 0.333213583113. 

 
In Fig. 2, we display the mutual influence of 

both Niter and Ndisc on the errors in L1 norm. The 
results show a tremendous regularity. The 
corresponding numerical results are displayed in 
Tab. 3. 

 
 

Ndisc 

Niter 
),(1 iterdisc NNE  

102 

),(1 iterdisc NNE  

103 

),(1 iterdisc NNE  

104 

105 0.023590236 0.074390944 0.25035328 

106 0.0077829878 0.024115036 0.079437105 

107 0.0027963003 0.0078734998 0.025343302 

108 0.00070102901 0.0024396098 0.0079505501 

109 0.00024907298 0.00078846501 0.002513533 

1010 7.4041294.10-5 0.0002472693 0.0007908719 

1011 2.821469.10-5 8.540793.10-5 0.00025791013 

1012 1.4600127.10-5 3.2358931.10-5 8.4195287.10-5 

 

Ndisc 

Niter 
),(1 iterdisc NNE  

105 

),(1 iterdisc NNE  

106 

),(1 iterdisc NNE  

107 

105 0.73832 1.810124 1.9801114 

106 0.24974733 0.735708 1.809666 

107 0.079959311 0.25029673 0.7353684 

108 0.02518029 0.079508971 0.25000429 

109 0.008005619 0.025207567 0.079757051 

1010 0.0025136649 0.0079736449 0.025230797 

1011 0.00080110625 0.002522144 0.0079771447 

1012 0.00025407246 0.00079907514 0.0025234708 

 
Table 3. Error E1 for 3-coupled Symmetric Tent 
Maps with respect to both Niter and Ndisc. 
 
2.4 Impact of the initial values on the results 

It is well known that the choice of the seed of a 
PRNG is very important. Some seed can lead to the 
collapse of the period of the computed random 
numbers. In order to check if the choice of the 
initial condition (equivalent to the choice of the 
seed of a PRNG) is dramatically for the previous 
results, we have tested several series of different 
initial values. 

 
Fig. 3 shows the distribution of the error E1 for 

500,000 initial values for 4-coupled symmetric tent 
maps. The computations are done using double 
precision numbers (~14-15 digits), 
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εi = i.ε1,  ε1 = 10-14,  Niter = 106,  Ndisc = 102. 
The initial values are selected following: 
 

x1
0,k = -0.92712 + 10-7× k , 

x2
0,k = -0.9183636 + 10-7× 7k, 

x3
0,k = -0.92576657 + 10-7× 13k, 

x4
0,k = -0.92390643 + 10-7× 17k, 

k = 1 to 500,000. 
 

The distribution follows more or less a Gaussian 
distribution, maximal and minimal results are 
displayed in Tab. 4. Others series tested with 
several values of Ndisc give the same kind of results. 
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Figure 3. Distribution of the error E1 for 500,000 
initial values for 4-coupled symmetric tent maps. 

 

Ndisc 102 103 104 

min ),(1 iterdisc NNE  0.0040021 0.0207400 0.0751521 

max ),(1 iterdisc NNE  0.013872 0.0301160 0.0843841 

min ),(2
2 iterdisc NNE  0.0000275 0.0006769 0.0089217 

max ),(2
2 iterdisc NNE  0.0002834 0.001435 0.0110719 

 
Table 4. Minimal and maximal values of the E1 and 

2
2E  errors for 500,000 initial values for 4-coupled 

symmetric tent maps. 
 
 
2.5 Independency of the chaotic subsequences 
generated by each component 

In next section, we propose the chaotic sampling 
of the chaotic sequences generated by Eq. (2.5) to 
enhance the properties of this chaotic number 
generator. The key feature of these enhanced 
chaotic number generators being their use of 
chaotic numbers themselves in order to do the 
sampling process. The main idea leading to this 
particular sampling is that the series of chaotic 

numbers produced by each component is 
independent of the others. 

We need before to verify this independency. 
 
Let consider now the coordinates of the iterated 

points ⋯⋯ ,,,,,, 1n210 +XXXXX n
  

of the multidimensional map F 
defined by (2.5). In order to check that 
they are uncorrelated, we plot every 
pair of coordinates of this sequence in 
the phase subspace (xl, xm) imbedded 
in the phase space Jp and we check if 

they are uniformly distributed in the square J2. 
 

If no particular pattern is displayed and if the 
difference between the distribution of these points 
later called the  correlation  distribution  function 
CN (x, y) converges towards the uniform distribution 
on the square when the number of iterations goes to 
the infinity, we can conclude the independency or 
the uncorrelation of the sequences of numbers 
generated by each component of the iterated points. 

 
In order to compute numerically an 

approximation of the correlation distribution 
function CN (x, y) we build a regular partition of M 2 
small squares (boxes) of J2 imbedded in the phase 
subspace (xl, xm) 

 
ri,j = [si , si+1[ × [tj , tj+1[   ,  i, j = 0, M – 2 (2.19) 

 
rM-1,j = [sM-1 , 1] × [tj , tj+1[   ,  j = 0, M – 2 (2.20) 

 
ri,M-1 = [si , si+1[× [tM-1 , 1]   ,  i = 0, M – 2 (2.21) 

 
rM-1,M-1  = [sM-1 , 1] × [tM-1 , 1]  (2.22) 

 

M

i
si

2
1+−= ,

M

j
t j

2
1+−= , i, j = 0, M (2.23) 

the measure of the area of each box is : 
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Once N + q iterated points( )m

n
l
n xx ,  belonging to 

these boxes are collected the relative number of 
iterates with respect to N/M2 in each box ri,j 
represents the value CN (si, tj). The approximated 
probability distribution function CN (x, y) defined in 
this article is then a 2-dimensional step function, 
with M2 steps. As M can vary in the next sections, 
we define 

( )jijiNM r
N

M
tsC ,

2

, #
4
1

),( =   (2.25) 

where #ri,j is the number of iterates belonging to the 
square ri,j and the constant 1/4 allows the 
normalisation of ),(, yxC NM

 on the square J2. 

jijiNMNM ryxtsCyxC ,,, ),(),(),( ∈∀=  (2.26) 
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The discrepancies EC1 (in norm L1 between 
),(, yxC

iterdisc NN
 and the uniform distribution on the 

square is defined by 
 

1

25.0),(),( ,1 LNNiterdiscC yxCNNE
iterdisc

−=  (2.27) 

 
Fig. 4 shows the error ),(1 iterdiscC NNE  versus the 

number of iterated points of the approximated 
correlation function between the first and the 
second components (x1, x2) for the 4-coupled 
symmetric tent map. Moreover, every couple of 
components checked simultaneously gives the same 
results. 
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Figure 4. Error EC1 for the first and the second 
components (x1, x2) of the 4-coupled symmetric tent 
map. Ndisc is fixed to 102 x 102, εi = i.ε1, ε1 = 10-14,   
Niter varies from 105 to 1011. Computations are done 
using double precision numbers (~14-15 digits). 
x1

0 = 0.330, x2
0 = 0.3387564, x3

0 = 0.50492331,  x4
0 = 0.0. 

 
 

3. Chaotic Sampling of Chaotic Numbers 
If we plot the chaotic numbers produced by any 

component xl , 1 ≤ l ≤ p of the p-dimensional 
dynamical system Eq. (2.5) in the phase space 
( )l

n
l
n xx 1, + , the iterated points show the graph of the 

symmetrical tent map f used to define Eq. (2.5) 
(more exactly a graph with two lines having ε 
thickness). These numbers are not randomly 
produced. If we plot these points in the phase 
spaces ( )l

n
l
n xx 2, + , ( )l

n
l
n xx 3, +  or ( )l

rn
l
n xx +,  they will 

display the graph of f (2), f (3) or f (r) (see Fig. 5). 
Hence someone knowing a sequence of few iterated 
points is able to find the initial value X0 of the 
dynamical system.  

In order to hide the graph of the genuine function 
f in the phase space ( )l

qn
l
n xx +,  for any q, a pivotal 

idea is to sample chaotically the sequence 
( )…… ,,,,,, 1210

l
n

l
n

lll xxxxx +
 selecting l

nx  every time the 

value of m
nx is greater than a threshold T, -1 < T < 1, 

with l ≠ m, for 1 ≤ l, m ≤ p . 
The chaotically sampled subsequence 

( )⋯⋯ ,,,,,, 1210 +qq xxxxx  is defined as 

] [1,Txiffxx m
n

l
nq ∈=  (3.1) 

Choosing T > 0.5 implies that the selected 
subsequence 

( )⋯⋯ ,,,,,, 1210 +qq xxxxx  = ( )…… ,,,,,,
1210

l
p

l
p

l
p

l
p

l
p qq

xxxxx
+

 

is such that the difference between pq and pq+1 is 
always greater than a minimal value Km depending 
upon T. The graph of the chaotically sampled 
chaotic number is a mix of the graphs of all the f (r) 
for r > Km. 

 

 
 

Figure 5. Graphs of the symmetric tent map f, f(2) 
and f(3) on the interval [-1,1]. 
 

As seen in Sect. 2.5 every pair of components 
( )m

n
l
n xx ,  of ⋯⋯ ,,,,,, 1n210 +XXXXX n

 is 

uncorrelated. Hence, the proposed chaotic sampling 
is a powerful tool to generate enhanced chaotic 
numbers. Let ),(, yxAC NM

 the autocorrelation 

distribution function which is the correlation 
function ),(, yxC NM

 (2.26) defined in the phase 

space ( )l
n

l
n xx 1, +  instead of the phase space (xl, xm). 

In order to control that the enhanced chaotic 
numbers ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  are uncorrelated, 

we plot them in the phase subspace ( )1, +nn xx  and 

we check if they are uniformly distributed in the 
square J2. 

If no particular pattern is displayed and if the 
autocorrelation distribution function ACN (x, y) 
converges towards the uniform distribution on the 
square when the number of iterations goes to the 
infinity, we can conclude that the knowledge of a 
sequence of iterated points do not allow finding the 
initial value X0 of the dynamical system. 

Fig. 6 shows the values of 

1

25.0),(),( ,1 LNSamplNiterdiscAC yxACNSamplNE
iterdisc

−=

for a system of 4 coupled-equations for both the 
threshold values 0.98 and 0.998 of 4

nx . The 
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enhanced chaotic numbers are produced by the first 
component 1

nx  of the dynamical system. 
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Figure 6. Error EAC1 for the first component x1, 
sampled by x4 for the threshold values 0.98 and 
0.998 of the 4-coupled symmetric tent map. 
Ndisc=10×10, εi = i.ε1, ε1 = 10-14,  NSampliter varies 
from 103 to 1010. Computations done using double 
precision numbers (~14-15 digits).  
x1

0 = 0.330, x2
0 = 0.3387564, x3

0 = 0.50492331,  x4
0 = 0.0. 

 
As the chaotic numbers are regularly distributed 

on the interval J, when T > 0.98 one chaotic 
number over approximately 100 is sampled,  when 
T > 0.998 one chaotic number over approximately 
1,000 is sampled. We call NSampliter the number of 
sampled points. 

 

 
 

Figure 7. Difference between the autocorrelation 
distribution function ACNSAMPLDISC ( )1

1
1, +nn xx  and the 

uniform distribution of the 4-coupled symmetric 
tent map sampled by x4 for the threshold value 
0.998. Ndisc = 102×102, NSampliter= 1010,  εi = i.ε1,   
ε1 = 10-14. Initial values: 
x1

0 = 0.330, x2
0 = 0.3387564, x3

0 = 0.50492331, x4
0 = 0.0. 

 
 

Figure 8. Projection of the Fig. 7 on the plane 
( )1

1
1, +nn xx . 
 
Nevertheless the computing process is very fast. 

A desktop computer can produce more than 
50,000,000 chaotic numbers per second, thus 
50,000  iterated  sampled  points  per   second   for 
T > 0.998. The sampling threshold 0.998 gives very 
good results. 

 
The difference between the autocorrelation 

distribution function ACNSAMPLDISC ( )1, +nn xx  and the 

uniform distribution is shown on Fig. 7 and its 
projection on the phase subspace ( )1, +nn xx  is shown 

on Fig. 8.  
Fig. 9 and Tab. 5 show ),(1 iterdiscAC NSamplNE  

with respect to Ndisc 
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Figure 9. ),(1 iterdiscAC NSamplNE  for the first 

component x1, sampled by x4 for the threshold value 
0.998 of the 4-coupled symmetric tent map versus 
Ndisc, NSampliter = 1010,  εi = i.ε1, ε1 = 10-14.  
Initial values  x1

0 = 0.330,  x2
0 = 0.3387564,  

x3
0 = 0.50492331,  x4

0 = 0.0. 
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Ndisc NSampliter ),(1 iterdiscAC NSamplNE  

10 x 10 10,000,042,552 0.0000884451 

40 x 40 10,000,042,552 0.000322549 

100 x 100 10,000,042,552 0.000798014 
 

Table 5. ),(1 iterdiscAC NSamplNE . 

 
 

4 Chaotic Mixing and Chaotic Sampling of 
Chaotic Numbers 

One can improve again the unpredictability of 
the chaotic numbers generated as above, using all 
the components of the vector X instead of one. For 
example for 4-coupled equations, the value of 4

nx  

command the sampling process as follows 
 
Let us set three threshold values T1, T2 and T3 

 

-1 < T1 < T2 < T3 < 1  (4.1) 
 

we sample and mix together chaotically the 
sequences ( )…… ,,,,,, 1

1
11

2
1
1

1
0 +nn xxxxx , 

( )…… ,,,,,, 2
1

22
2

2
1

2
0 +nn xxxxx  and ( )…… ,,,,,, 3

1
33

2
3
1

3
0 +nn xxxxx  

defining ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  by 

 

] [
[ [
[ [








∈
∈
∈

=
1,

,

,

3
43

32
42

21
41

Txiffx

TTxiffx

TTxiffx

x

nn

nn

nn

q

 (4.2) 
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Figure 10. Error of ),(1 iterdiscAC NSamplNE  

Ndisc=102×102, NSampliter= 103 to 1010,  εi = i.ε1, 
ε1=10-14. 

Fig. 10 and Tab. 6 show the values of 
),(1 iterdiscAC NSamplNE  for a system of 4 coupled-

equations when the first component x1 is sampled 
by x4 for both the threshold values 0.98 and 0.998 
and when the three components x1 , x2 , x3 are 
mixed and sampled by x4 for  the  threshold  values   
T1 = 0.98,   T2 = 0.987, T3 = 0.994 or T1 = 0.998, T2 
= 0.9987, T3 = 0.9994.  
 

 

Niter NSampliter 

),(1 iterdiscAC NSamplNE  

4-coupled  
equation 

T = 0.998 

105 95 0.70947368 

106 971 0.26570546 

107 10,095 0.079871223 

108 100,622 0.023190157 

109 1,001,408 0.0071386288 

1010 9,998,496 0.002493667 

1011 100,013,867 0.00071561417 

1012 999,994,003 0.00025442753 

1013 10,000,042,552 0.000088445108 

 
 

Niter NSampliter 

),(1 iterdiscAC NSamplNE  

4-coupled  
equation 

T1 = 0.998, 
 T2 = 0.9987,  T3 = 

0.9994 

105 93 0.68924731 

106 1015 0.25881773 

107 10,139 0.086706776 

108 100,465 0.026815309 

109 1,000,549 0.0089111078 

1010 9,998,814 0.0027932033 

1011 100,001,892 0.00085967214 

1012 999,945,728 0.0002346851 

1013 10,000,046,137 0.000073234736 

 
Table 6. Error of ),(1 iterdiscAC NSamplNE  for a 

system of 4 coupled-equations when the first 
component x1 is sampled by x4 for the threshold 
value 0.998 and when the three components x1 , x2 , 
x3 are mixed and sampled by x4 for the threshold 
values T1 = 0.998, T2 = 0.9987, T3 = 0.9994.  
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5. Further improvements 
As said in Sec. 2.1, we have only considered the 

symmetric tent map (2.1). We have now to consider 
others maps of the interval: non symmetric tent 
map, baker map. We have also to consider the 
coupling (2.5) with maps having different 
parameters values 

















=
)(

)(

)(

1

1

p
a

a

xf

xf

Xf

p

⋮   (5.1) 

( m
ia ∈ℝ  being for example a general parameter 

value characterizing the general baker map)  
 
 
6. Conclusion 
We have introduced and combined 

synergistically three simple new mechanisms: very 
weakly coupling of chaotic maps, chaotic sampling 
and chaotic mixing of iterated points in order to 
make new families of enhanced Chaotic Pseudo 
Random Number Generators (CPRNG). The 
properties of these new families are explored 
numerically up to 1013 iterations. The numerical 
experiments give good results. Now other tests have 
to be performed in order to check their usefulness 
as Chaotic PRNG. Others functions and 
combination of functions have also to be explored 
in order to obtain  
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