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Abstract 
 

We introduce and combine synergistically three 
simple new mechanisms: very weakly coupling of 
chaotic maps, chaotic sampling and chaotic mixing 
of iterated points in order to make new families of 
enhanced Chaotic Pseudo Random Number 
Generators (CPRNG). 

The key feature of these CPRNG is that they use 
chaotic numbers themselves in order to sample and 
to mix chaotically several subsequences of chaotic 
numbers. 

We analyze numerically the properties of these 
new families and underline their very high qualities 
and usefulness as CPRNG when series are 
computed up to 1013 iterations. 

 
1. Introduction 
When a dynamical system is realized on a 

computer using floating point or double precision 
numbers, the computation is of a discretization, 
where finite machine arithmetic replaces continuum 
state space. For chaotic dynamical systems, the 
discretization often has collapsing effects to a fixed 
point or to short cycles [1, 2]. 

In order to preserve the chaotic properties of the 
continuous models in numerical experiments we 
have introduced as a first one mechanism the very 
weak multidimensional coupling of p one-
dimensional dynamical systems which is 
noteworthy [3]. 

Moreover each component of these numbers 
belonging to p

ℝ  are equally distributed over a 
given finite interval J ⊂ ℝ . Numerical 
computations show that this distribution is obtained 
with a very good approximation. They have also the 
property that the length of the periods of the 
numerically observed orbits is very large. 

However chaotic numbers are not pseudo-
random numbers because the plot of the couples of 
iterated points (xn, xn+1) in the phase plane shows up 

the map f used as one-dimensional dynamical 
systems to generate them. 

A second simple mechanism is then used to hide 
the graph of this genuine function f in the phase 
space ( )l

n
l
n xx 1, + . The pivotal idea of this mechanism 

is to sample chaotically the sequence 
( )…… ,,,,,, 1210

l
n

l
n

lll xxxxx +  selecting l
nx  every time 

the value of m
nx  is strictly greater  than a threshold 

T ∈  J, with l ≠ m, for 1 ≤ l, m ≤ p . 
 
A third mechanism can improve the 

unpredictability of the chaotic sequence generated 
as above, using synergistically all the 
components of the vector X, instead of 
two. This simple third mechanism is 
based on the chaotic mixing of the p-1 
sequences ( )…… ,,,,,, 1

1
11

2
1
1

1
0 +nn xxxxx , 

( )…… ,,,,,, 2
1

22
2

2
1

2
0 +nn xxxxx ,…,

( )…… ,,,,,, 1
1

11
2

1
1

1
0

−
+

−−−− p
n

p
n

ppp xxxxx  using the last one 

( )…… ,,,,,, 1210
p
n

p
n

ppp xxxxx +  with respect to a given  

partition r 1, r 2, …,  r p-1 of J, to distribute the iterated 
points.  

In this paper we explore numerically the 
properties of these new families and underline their 
very high qualities and usefulness as CPRNG when 
series are computed up to 1013 iterations. 

 
Generation of random or pseudorandom 

numbers, nowadays, is a key feature of industrial 
mathematics. Pseudorandom or chaotic numbers are 
used in many areas of contemporary technology 
such as modern communication systems and 
engineering applications. Everything we do to 
achieve privacy and security in the computer age 
depends on random numbers. More and more 
European or US patents using discrete mappings for 
this purpose are obtained by researchers of discrete 
dynamical systems [4, 5]. 

The idea of construction of chaotic 
pseudorandom number generators (CPRNG) 
applying discrete chaotic dynamical systems, 
intrinsically, exploits the property of extreme 
sensitivity of trajectories to small changes of initial 
conditions, since the generated bits are associated 
with trajectories in an appropriate way [6]. 

Recently some authors proposed the use of the 
Arnol’d cat maps as a PNRG [7]. 

The process of chaotic sampling and mixing of 
chaotic sequences, which is pivotal for these new 
families, works perfectly in numerical simulation 
when floating point (or double precision) numbers 
are handled by a computer. 

It is noteworthy that the new models of very 
weakly coupled maps are more powerful than the 
usual formulas used to generate chaotic sequences 
mainly because only additions and multiplications 
are used in the computation process; no division 
being required. Moreover the computations are 
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done using floating point or double precision 
numbers, allowing the use of the powerful Floating 
Point Unit (FPU) of the modern microprocessors 
(built by both Intel and Advanced Micro devices 
(AMD)). In addition, a large part of the 
computations can be parallelized taking advantage 
of the multicore microprocessors. 
 

2. Very Weakly Multi-dimensional Coupling 
 

2.1. Two-dimensional Coupled Symmetric 
Tent Map 

First, we recall the basic equation of the coupled 
symmetric tent maps. In sections 2, 3 and 4 of this 
paper, we will consider only the symmetric tent 
map defined by 

xaxfa −=1)(  (2.1) 

with the value a = 2, later denoted simply as f, even 
though others map of the interval (as the logistic 
map) can be used for the same purpose. The 
associated dynamical system [8, 9] is defined by the 
equation on the interval J = [-1, 1] 

nn xax −=+ 11
 (2.2) 

Two tent maps are coupled in the following way, 
using   a   two   dimensional   coupling   constant 
ε = (ε1, ε2) 





−+=
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+

+

)()ε1()(ε

)(ε)()ε1(

n2n21n

n1n11n

yfxfy

yfxfx  (2.3) 

In this paper for the numerical studies we fix 
constant the ratio between ε1 and ε2. We chose to 
set it equal to 2.  

12 ε2ε =   (2.4) 
However, different ratios can also lead to good 

results and be used since a multidimensional 
variable can be instrumental in the increasing of the 
number of dimensions of the systems.  

The coupling  constant  ε varies  from (0, 0) to 
(1, 1). When ε = (0, 0) the maps are decoupled, 
when ε = (1, 1) they are fully cross coupled. 
Generally, researchers do not consider very small 
values of ε (as small as 10-7 for floating point 
numbers or 10-14 for double precision numbers), 
because it seems that the maps are quasi decoupled 
with those values. Hence no special effect of the 
coupling is expected. In fact it is not the case and 
this very very small coupling constant allows the 
construction of very long periodic orbits, leading to 
sterling chaotic generators. 

The dynamical system (2.3) can be described 
more generally by 

( ) ( ))( nn1n XfAXFX ⋅==+
 (2.5) 

with 
x

X
y

 
= 
 

 , 








=

)(

)(
)(

yf

xf
Xf   (2.6) 

and 









−
−

=
)1(

)1(

22

11

εε
εε

A  (2.7) 

where F is a map of the square [-1, 1] x [-1, 1] = J2 
into itself. 
 

2.2 p-coupled Symmetric Tent Map 
To improve the length of the period and the 

convergence of the invariant measure towards a 
given measure, we consider the dynamical system 
(2.5) in which p maps are coupled 

with 
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with 
1i εε i=   i = 2, …, p (2.10) 

As stated earlier, others choices are possible. In this 
case, F is a map of Jp into itself.  
 

2.3 Uniform distribution of chaotic numbers 
We give some numerical results about chaotic 

numbers produced by 2-, 3- and 4-coupled maps 
which show that they are equally distributed over 
the interval J. In order to compute numerically an 
approximation of the invariant measure [3] also 
called the probability distribution function PN (x) 
linked to the one dimensional map f we consider a 
regular partition of M small intervals (boxes) of 

J=
2

0

M

ir
−

∪  

ri = [si , si+1[  , i = 0, M – 2 (2.11) 

rM-1 = [sM-1 , 1]   (2.12) 

M

i
si

2
1+−=  i = 0, M  (2.13) 

Its length is 
M

ss ii

2
1 =−+

 (2.14) 

All iterates f (n)(x) belonging to these boxes are 
collected (after a transient regime of q iterations 
decided a priori, i.e. the first q iterates are 
neglected). Once the computation of N+ q iterates is 
completed, the relative number of iterates with 
respect to N/M in each box ri represents the value 
PN (si). The approximated PN (x) defined in this 
article is then a step function, with M steps. As M 
may vary, we define 

( )iiNM r
N

M
sP #

2

1
)(, =  (2.15) 

where #ri is the number of iterates belonging to the 
interval ri and the constant 1/2 allows the 
normalisation of )(, xP NM

 on the interval J. 

iiNMNM rxsPxP ∈∀= )()( ,,
 (2.16) 

In the case of coupled maps, we are interested by 
the distribution of each component x1,  …, x p of X 
rather than the distribution of the variable X itself in 
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Jp. We then consider the approximated probability 
distribution function PN (x j) associated to one 
among several components of F(X) defined by (2.5) 
which are one-dimensional maps. 

The discrepancies E1 (in norm L1) between 
)(, xP

iterdisc NN  and the Lebesgue measure which is 

the invariant measure associated to the symmetric 
tent map, is defined by 

1

5.0)(),( ,1 LNNiterdisc xPNNE
iterdisc

−=  (2.17) 
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Figure 1. Error E1 for 2, 3 and 4-coupled 
Symmetric Tent Maps. Computations done using 
double precision numbers (~14-15 digits),  εi = i.ε1,  
ε1 = 10-14,  Ndisc = 104. Initial values 

1
0x  = 0.330000013113, 2

0x  = 0.338756413113, 
3
0x  = 0.331353442113, 4

0x  = 0.333213583113. 

 

Fig. 1 shows the error ),(1 iterdisc NNE  versus the 

number of iterates of the approximated distribution 
functions with respect to the first variable x1 for 2, 3 
and 4-coupled symmetric tent map. Same results 
are obtained in norm L2. 

One can observe that for 3 and 4-coupled 
equations the convergence is excellent up to 3×1012 
iterates. For 2-coupled equations the convergence 
seems lower bounded by a minimal error. 

There is no significant difference between 3 and 
4-coupled equations, the numerical experiments 
have to be pursued up to 1013 or 1014 in order to 
discriminate the results. 

No periodic solutions are observed up to 3×1012 
iterates (even up to 1013 iterates as tested in Sec. 4). 
This is a key point when producing chaotic 
numbers, because the use of a computer discretizes 
the phase space of a dynamical system, canceling 
(at least) its asymptotic properties. Every orbit is 
periodic according to the finite number of states 
(i.e., the number of double precision numbers 
belonging to Jp). However, if the period of the 
realized sequence is long enough, these properties 
reasonably survive as a chaotic transient. 

 

2.4 Independency of the chaotic 
subsequences generated by each component 

In next section, we propose the chaotic sampling 
of the chaotic sequences generated by Eq. (2.5) to 
enhance the properties of this chaotic number 
generator. The key feature of these enhanced 
chaotic number generators being their use of 
chaotic numbers themselves in order to do the 
sampling process. The main idea leading to this 
particular sampling is that the series of chaotic 
numbers produced by each component is 
independent of the others. 

We need before to verify this independency. 
Let consider now the coordinates of the iterated 

points ⋯⋯ ,,,,,, 1n210 +XXXXX n
  

of the multidimensional map F 
defined by (2.5). In order to check that 
they are uncorrelated, we plot every 
pair of coordinates of this sequence in 
the phase subspace (xl, xm) imbedded 
in the phase space Jp and we check if 

they are uniformly distributed in the square J2. 
If no particular pattern is displayed and if the 

difference between the distribution of these points 
later called the  correlation  distribution  function 
CN (x, y) converges towards the uniform distribution 
on the square when the number of iterations goes to 
the infinity, we can conclude the independency or 
the uncorrelation of the sequences of numbers 
generated by each component of the iterated points. 

In order to compute numerically an 
approximation of the correlation distribution 
function CN (x, y) we build a regular partition of M 2 
small squares (boxes) of J2 imbedded in the phase 
subspace (xl, xm) 
ri,j = [si , si+1[ × [tj , tj+1[   ,  i, j = 0, M – 2 (2.18) 
rM-1,j = [sM-1 , 1] × [tj , tj+1[   ,  j = 0, M – 2 (2.19) 
ri,M-1 = [si , si+1[× [tM-1 , 1]   ,  i = 0, M – 2 (2.20) 
rM-1,M-1  = [sM-1 , 1] × [tM-1 , 1]  (2.21) 

M

i
si

2
1+−= ,

M

j
t j

2
1+−= , i, j = 0, M (2.22) 

the measure of the area of each box is : 

( ) ( )
2

11

2







=−⋅− ++ M
ttss iiii

  (2.23) 

Once N + q iterated points( )m
n

l
n xx ,  belonging to 

these boxes are collected the relative number of 
iterates with respect to N/M2 in each box ri,j 
represents the value CN (si, tj). The approximated 
probability distribution function CN (x, y) defined in 
this article is then a 2-dimensional step function, 
with M2 steps. As M can vary in the next sections, 
we define 

( )jijiNM r
N

M
tsC ,

2

, #
4
1

),( =   (2.24) 

where #ri,j is the number of iterates belonging to the 
square ri,j and the constant 1/4 allows the 
normalisation of ),(, yxC NM

 on the square J2. 

jijiNMNM ryxtsCyxC ,,, ),(),(),( ∈∀=  (2.25) 
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The discrepancies EC1 (in norm L1 between 
),(, yxC

iterdisc NN
 and the uniform distribution on the 

square is defined by 

1

25.0),(),( ,1 LNNiterdiscC yxCNNE
iterdisc

−=  (2.26) 

Fig. 2 shows the error ),(1 iterdiscC NNE  versus the 

number of iterated points of the approximated 
correlation function between the first and the 
second components (x1, x2) for the 4-coupled 
symmetric tent map. Moreover, every couple of 
components checked simultaneously gives the same 
results. 
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log10(N iter)

lo
g 1

0(
E

c 1
)

Correlation value EC1 

 
 

Figure 2. Error EC1 for the first and the second 
components (x1, x2) of the 4-coupled symmetric tent 
map. Ndisc is fixed to 102 x 102, εi = i.ε1, ε1 = 10-14,   
Niter varies from 105 to 1011. Computations are done 
using double precision numbers (~14-15 digits). 
x1

0 = 0.330, x2
0 = 0.3387564, x3

0 = 0.50492331,  x4
0 = 0.0. 

 

3. Chaotic Sampling of Chaotic Numbers 
If we plot the chaotic numbers produced by any 

component xl , 1 ≤ l ≤ p of the p-dimensional 
dynamical system Eq. (2.5) in the phase space 
( )l

n
l
n xx 1, + , the iterated points show the graph of the 

symmetrical tent map f used to define Eq. (2.5) 
(more exactly a graph with two lines having ε 
thickness). These numbers are not randomly 
produced. If we plot these points in the phase 
spaces ( )l

n
l
n xx 2, + , ( )l

n
l
n xx 3, +  or ( )l

rn
l
n xx +,  they will 

display the graph of f (2), f (3) or f (r). Hence someone 
knowing a sequence of few iterated points is able to 
find the initial value X0 of the dynamical system.  

In order to hide the graph of the genuine function 
f in the phase space ( )l

qn
l
n xx +,  for any q, a pivotal 

idea is to sample chaotically the sequence 
( )…… ,,,,,, 1210

l
n

l
n

lll xxxxx +
 selecting l

nx  every time the 

value of m
nx is greater than a threshold T, -1 < T < 1, 

with l ≠ m, for 1 ≤ l, m ≤ p . 
The chaotically sampled subsequence 

( )⋯⋯ ,,,,,, 1210 +qq xxxxx  is defined as 

] [1,Txiffxx m
n

l
nq ∈=  (3.1) 

Choosing T > 0.5 implies that the selected 
subsequence 

( )⋯⋯ ,,,,,, 1210 +qq xxxxx  = ( )…… ,,,,,,
1210

l
p

l
p

l
p

l
p

l
p qq

xxxxx
+

 

is such that the difference between pq and pq+1 is 
always greater than a minimal value Km depending 
upon T. The graph of the chaotically sampled 
chaotic number is a mix of the graphs of all the f (r) 
for r > Km. 

As seen in Sect. 2.4 every pair of components 
( )m

n
l
n xx ,  of ⋯⋯ ,,,,,, 1n210 +XXXXX n

 is 

uncorrelated. Hence, the proposed chaotic sampling 
is a powerful tool to generate enhanced chaotic 
numbers. Let ),(, yxAC NM

 the autocorrelation 

distribution function which is the correlation 
function ),(, yxC NM

 (2.25) defined in the phase 

space ( )l
n

l
n xx 1, +  instead of the phase space (xl, xm). 

In order to control that the enhanced chaotic 
numbers ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  are uncorrelated, 

we plot them in the phase subspace ( )1, +nn xx  and 

we check if they are uniformly distributed in the 
square J2. 

If no particular pattern is displayed and if the 
autocorrelation distribution function ACN (x, y) 
converges towards the uniform distribution on the 
square when the number of iterations goes to the 
infinity, we can conclude that the knowledge of a 
sequence of iterated points do not allow finding the 
initial value X0 of the dynamical system. 
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Figure 3. Error EAC1 for the first component x1, 
sampled by x4 for the threshold values 0.98 and 
0.998 of the 4-coupled symmetric tent map. 
Ndisc=10×10, εi = i.ε1, ε1 = 10-14,  NSampliter varies 
from 103 to 1010. Computations done using double 
precision numbers (~14-15 digits).  
x1

0 = 0.330, x2
0 = 0.3387564, x3

0 = 0.50492331,  x4
0 = 0.0. 

 
Fig. 3 shows the values of 

1

25.0),(),( ,1 LNSamplNiterdiscAC yxACNSamplNE
iterdisc

−=

for a system of 4 coupled-equations for both the 
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threshold values 0.98 and 0.998 of 4
nx . The 

enhanced chaotic numbers are produced by the first 
component 1

nx  of the dynamical system. As the 

chaotic numbers are regularly distributed on the 
interval J, when T > 0.98 one chaotic number over 
approximately 100 is sampled, when T > 0.998 one 
chaotic number over approximately 1,000 is 
sampled. We call NSampliter the number of sampled 
points. 

 
Figure 4. Difference between the autocorrelation 
distribution function ACNSAMPLDISC ( )1

1
1, +nn xx  and the 

uniform distribution of the 4-coupled symmetric 
tent map sampled by x4 for the threshold value 
0.998. Ndisc = 102×102, NSampliter= 1010,  εi = i.ε1,   
ε1 = 10-14.   Initial values    x1

0 = 0.330,   x2
0 = 

0.3387564, x3
0 = 0.50492331, x4

0 = 0.0. 
 

 
Figure 5. Projection of the Fig. 4 on the plane 

( )1
1

1, +nn xx . 
 
Nevertheless the computing process is very fast. 

A desktop computer can produce more than 
50,000,000 chaotic numbers per second, thus 
50,000  iterated  sampled  points  per   second   for 

T > 0.998. The sampling threshold 0.998 gives very 
good results. 

The difference between the autocorrelation 
distribution function ACNSAMPLDISC ( )1, +nn xx  and the 

uniform distribution is shown on Figure 4 and its 
projection on the phase subspace ( )1, +nn xx  is shown 

on Fig. 5.  
 

4 Chaotic Mixing and Chaotic Sampling of 
Chaotic Numbers 

One can improve again the unpredictability of 
the chaotic numbers generated as above, using all 
the components of the vector X instead of one. For 
example for 4-coupled equations, the value of 4

nx  

command the sampling process as follows 
Let us set three threshold values T1, T2 and T3 

-1 < T1 < T2 < T3 < 1  (4.1) 
we sample and mix together chaotically the 
sequences ( )…… ,,,,,, 1

1
11

2
1
1

1
0 +nn xxxxx , 

( )…… ,,,,,, 2
1

22
2

2
1

2
0 +nn xxxxx  and ( )…… ,,,,,, 3

1
33

2
3
1

3
0 +nn xxxxx  

defining ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  by 
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Fig. 6 shows the values of ),(1 iterdiscAC NSamplNE  

for a system of 4 coupled-equations when the first 
component x1 is sampled by x4 for both the 
threshold values 0.98 and 0.998 and when the three 
components x1 , x2 , x3 are mixed and sampled by x4 
for  the  threshold  values   T1 = 0.98,   T2 = 0.987, 
T3 = 0.994 or T1 = 0.998, T2 = 0.9987, T3 = 0.9994.  
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Figure 6. Error of ),(1 iterdiscAC NSamplNE  

Ndisc=102×102, NSampliter= 103 to 1010,  εi = i.ε1, 
ε1=10-14. 
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5. Further improvements 
As said in Sec. 2.1, we have only considered the 

symmetric tent map (2.1). We have now to consider 
others maps of the interval: non symmetric tent 
map, baker map. We have also to consider the 
coupling (2.5) with maps having different 
parameters values 
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( m
ia ∈ ℝ  being for example a general parameter 

value characterizing the general baker map)  
 
6. Conclusion 
We have introduced and combined 

synergistically three simple new mechanisms: very 
weakly coupling of chaotic maps, chaotic sampling 
and chaotic mixing of iterated points in order to 
make new families of enhanced Chaotic Pseudo 
Random Number Generators (CPRNG). The 
properties of these new families are explored 
numerically up to 1013 iterations. The numerical 
experiments give good results. Now other tests have 
to be performed in order to check their usefulness 
as Chaotic PRNG. Others functions and 
combination of functions have also to be explored 
in order to obtain  
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