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Abstract

We introduce and combine synergistically three
simple new mechanisms: very weakly coupling of
chaotic maps, chaotic sampling and chaotic mixing
of iterated points in order to make new families of
enhanced Chaotic Pseudo Random Number
Generators (CPRNG).

The key feature of these CPRNG is that they use
chaotic numbers themselves in order to sample and
to mix chaotically several subsequences of chaotic
numbers.

We analyze numerically the properties of these
new families and underline their very high quatitie
and usefulness as CPRNG when series are
computed up to I8iterations.

1. Introduction

When a dynamical system is realized on a
computer using floating point or double precision
numbers, the computation is of a discretization,
where finite machine arithmetic replaces continuum
state space. For chaotic dynamical systems, the
discretization often has collapsing effects toxadi
point or to short cycles [1, 2].

In order to preserve the chaotic properties of the
continuous models in numerical experiments we
have introduced as a first one mechanism the very
weak multidimensional coupling ofp one-
dimensional dynamical systems which s
noteworthy [3].

Moreover each component of these numbers
belonging to R? are equally distributed over a
given finite interval JOR.  Numerical
computations show that this distribution is obtdine
with a very good approximation. They have also the
property that the length of the periods of the
numerically observed orbits is very large.

However chaotic numbers are not pseudo-
random numbers because the plot of the couples of
iterated pointsx,, Xn+1) in the phase plane shows up

the mapf used as one-dimensional dynamical
systems to generate them.

A second simple mechanism is then used to hide
the graph of this genuine functidnin the phase
space(x' X ) The pivotal idea of this mechanism

n?' n+l
is to sample chaotically the sequence
(X, %0, X, %, ...) selecting X every time

the value ofx™ is strictly greater than a threshold

TOJ,withl#m, for 1<l,m<p.

A third mechanism can improve the
unpredictability of the chaotic sequence generated
as above, using synergistically all the
components of the vectoX, instead of
two. This simple third mechanism is
x") based on the chaotic mixing of thel

sequences  (xd,x, ..., %, )
2

(€ 52 X2 e X2 X eoos

X =

(kg xP %, xP, x22, ) using the last one
(XOP, X, XP, L, xP, an+1,---) with respect to a given
partitionry, ry, ..., ry.10f J to distribute the iterated
points.

In this paper we explore numerically the
properties of these new families and underlinerthei
very high qualities and usefulness as CPRNG when
series are computed up to'iRerations.

Generation of random or pseudorandom
numbers, nowadays, is a key feature of industrial
mathematics. Pseudorandom or chaotic numbers are
used in many areas of contemporary technology
such as modern communication systems and
engineering applications. Everything we do to
achieve privacy and security in the computer age
depends on random numbers. More and more
European or US patents using discrete mappings for
this purpose are obtained by researchers of déscret
dynamical systems [4, 5].

The idea of construction of chaotic
pseudorandom number generators (CPRNG)
applying discrete chaotic dynamical systems,
intrinsically, exploits the property of extreme

sensitivity of trajectories to small changes ofiati
conditions, since the generated bits are associated
with trajectories in an appropriate way [6].

Recently some authors proposed the use of the
Arnol’d cat maps as a PNRG [7].

The process of chaotic sampling and mixing of
chaotic sequences, which is pivotal for these new
families, works perfectly in numerical simulation
when floating point (or double precision) numbers
are handled by a computer.

It is noteworthy that the new models of very
weakly coupled maps are more powerful than the
usual formulas used to generate chaotic sequences
mainly because only additions and multiplications
are used in the computation process; no division
being required. Moreover the computations are
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done using floating point or double precision
numbers, allowing the use of the powerful Floating
Point Unit (FPU) of the modern microprocessors
(built by both Intel and Advanced Micro devices
(AMD)). In addition, a large part of the
computations can be parallelized taking advantage
of the multicore microprocessors.

2. Very Weakly Multi-dimensional Coupling

2.1. Two-dimensional Coupled Symmetric

Tent Map

First, we recall the basic equation of the coupled
symmetric tent maps. In sections 2, 3 and 4 of this
paper, we will consider only the symmetric tent
map defined by

f.(x) =1-al (2.1)

with the valuea = 2, later denoted simply &seven
though others map of the interval (as the logistic
map) can be used for the same purpose. The
associated dynamical system [8, 9] is defined by th
equation on the intervdl= [-1, 1]

ka=l-dx| (22

Two tent maps are coupled in the following way,
using a two dimensional coupling constant
€= (€1, &)

{XM =@-e)f(x) +e, F(y,)
Your =€, F (6)+L—¢e,) T (Y,)

In this paper for the numerical studies we fix
constant the ratio between and¢,. We chose to
set it equal to 2.

€, =2¢, (2.4)

However, different ratios can also lead to good
results and be used since a multidimensional
variable can be instrumental in the increasingef t
number of dimensions of the systems.

The coupling constang varies from (0, 0) to
(1, 1). Whene = (0, 0) the maps are decoupled,
when ¢ = (1, 1) they are fully cross coupled.
Generally, researchers do not consider very small
values ofe (as small as 10 for floating point
numbers or 18 for double precision numbers),
because it seems that the maps are quasi decoupled
with those values. Hence no special effect of the
coupling is expected. In fact it is not the casd an
this very very small coupling constant allows the
construction of very long periodic orbits, leadiiog
sterling chaotic generators.

The dynamical system (2.3) can be described
more generally by

(2.3)

Xu=F()=Allf (x)  (25)
with
x:[xj ) f(x):[f(x)j (2.6)
y) ~ f(y)
and A:((l—sl) 81] 2.7)
&, 1-¢)

whereF is a map of the square [-1, 1] x [-1, 1%
into itself.

2.2 p-coupled Symmetric Tent Map
To improve the length of the period and the
convergence of the invariant measure towards a
given measure, we consider the dynamical system
(2.5) in whichp maps are coupled

_ Xt f(xH)
with | ¢ |, £(X)= (2.8)
xP f(xP)
and
1-(p-L, € g €
€ 1-(p-1)e, T & € (2.9)
A= . . . .
Sp Sp 1_(p_1)8p
with g =] € i=2, P (210)

As stated earlier, others choices are possiblthisn
casefF is a map oflf into itself.

2.3 Uniform distribution of chaotic numbers
We give some numerical results about chaotic
numbers produced by 2-, 3- and 4-coupled maps
which show that they are equally distributed over
the intervalJ. In order to compute numerically an
approximation of the invariant measure [3] also
called the probability distribution functioRy (X)
linked to the one dimensional mépve consider a
regular partition ofM small intervals (boxes) of

M-2
J= U ri
0

ri=[s,8al,i=0,M-2 (2.11)
Mva = [Swa s 1] (2.12)
= —1+2 i=0M (2.13)
M
Its length is S-S = 2 (2.14)
i M

All iteratesf ™(x) belonging to these boxes are
collected (after a transient regime gfiterations
decided a priori, i.e. the first q iterates are
neglected). Once the computationNsf q iterates is
completed, the relative number of iterates with
respect taN/M in each box; represents the value
Py (s). The approximatedPy (X) defined in this
article is then a step function, wi steps. Asvi
may vary, we define

Pun(s) :%%(#ri)

where #; is the number of iterates belonging to the
interval r; and the constant 1/2 allows the
normalisation ofp,  (x) on the interval.

Pun(¥ =R, (s) OxOr, (2.16)

In the case of coupled maps, we are interested by
the distribution of each componext ..., x P of X
rather than the distribution of the varialétself in

(2.15)
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JP. We then consider the approximated probability
distribution functionPy (x ') associated to one
among several componentsk(X) defined by (2.5)
which are one-dimensional maps.

The discrepancie€; (in norm L) between

P,..n,, (X) and the Lebesgue measure which is

the invariant measure associated to the symmetric
tent map, is defined by

E/(NgserNir) = “PNd,m, Nigr x) - O-5HL1 (2.17)
-0,5
-1 4
-1,5
> -2
u
3 -2,5
=)
L2 3
-3,5
-4
-4,5 T T T T T T T T
4 5 6 7 8 9 10 11 12 13
109:10(N jter)
—&— 2 coupled equations
—&— 3 coupled equations
—&— 4 coupled equations

Figure 1. Error E; for 2, 3 and 4-coupled
Symmetric Tent Maps. Computations done using
double precision numbers (~14-15 digits),= i.€;,

g, = 10, Ny = 10" Initial values

X3 =0.330000013113x? = 0.338756413113,

xg =0.331353442113y = 0.333213583113.

Fig. 1 shows the errog (N,_,N,,) versus the

number of iterates of the approximated distribution
functions with respect to the first variabfefor 2, 3

and 4-coupled symmetric tent map. Same results
are obtained in norm,L

One can observe that for 3 and 4-coupled
equations the convergence is excellent up<tb0%¥
iterates. For 2-coupled equations the convergence
seems lower bounded by a minimal error.

There is no significant difference between 3 and
4-coupled equations, the numerical experiments
have to be pursued up to*i®r 10* in order to
discriminate the results.

No periodic solutions are observed up 16
iterates (even up to Diterates as tested in Sec. 4).
This is a key point when producing chaotic
numbers, because the use of a computer discretizes
the phase space of a dynamical system, canceling
(at least) its asymptotic properties. Every orkit i
periodic according to the finite number of states
(i.e., the number of double precision numbers
belonging toJP). However, if the period of the
realized sequence is long enough, these properties
reasonably survive as a chaotic transient.

2.4 Independency of the chaotic
subsequences generated by each component
In next section, we propose the chaotic sampling
of the chaotic sequences generated by Eq. (2.5) to
enhance the properties of this chaotic number
generator. The key feature of these enhanced
chaotic number generators being their use of
chaotic numbers themselves in order to do the
sampling process. The main idea leading to this
particular sampling is that the series of chaotic
numbers produced by each component is
independent of the others.
We need before to verify this independency.
Let consider now the coordinates of the iterated
points Koo Xy Xgaeen Xy Xy o
xt) of the multidimensional mapF
defined by (2.5). In order to check that
they are uncorrelated, we plot every
: pair of coordinates of this sequence in
x? ) the phase subspacg, (X") imbedded
in the phase spacl and we check if
they are uniformly distributed in the squdfe
If no particular pattern is displayed and if the
difference between the distribution of these points
later called the correlation distribution furcti
Cn (%, y) converges towards the uniform distribution
on the square when the number of iterations goes to
the infinity, we can conclude the independency or
the uncorrelation of the sequences of numbers
generated by each component of the iterated points.
In  order to compute numerically an
approximation of the correlation distribution
functionCy (x, y) we build a regular partition ofi 2
small squares (boxes) df imbedded in the phase
subspacex, x™)

;= [S ,S”_[X [tj ,tj+1[ s I,j =0,M-2 (218)
v =[S, A X [6, Gl . j=0,M=2 (2.19)
ri!M-l = [S ’ S+l[>< [tM—l ] 1] 3 I = OyM - 2 (220)
Mv-1M1 = !:SM—l , 1] % [tM—l 1] (2.21)
§=-1+2 ¢ =-1+2L,i,j=0,M (2.22)
M M
the measure of the area of each box is :
2 2

(6u-8)hs-t)=( 2 .23

OnceN + q iterated pointf, x™) belonging to
these boxes are collected the relative number of
iterates with respect td\/M® in each boxr;
represents the valu€y (s, t). The approximated
probability distribution functiorCy (x, y) defined in
this article is then a 2-dimensional step function,
with M? steps. AsMl can vary in the next sections,
we define

1M?

CM,N (3 ' t') :ZW(#ri,j)
where #;; is the number of iterates belonging to the
square r;j and the constant 1/4 allows the
normalisation ofchN (x, y) onthe squaréz.

Cun(XY)=Cyn(s,t) Oy 0Or

(2.24)

(2.25)
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The discrepancie€c; (in norm Ly between

Cy. n. (xy) and the uniform distribution on the

square is defined by
Eci(Nug: Nier) = HCNM, N (X Y) — 025HLl (2.26)

Fig. 2 shows the erroE_ (N,,N,,

number of iterated points of the approximated
correlation function between the first and the
second componentsx'( x°) for the 4-coupled
symmetric tent map. Moreover, every couple of
components checked simultaneously gives the same
results.

) versus the

-0,5
RN
-1,5 \

g ool

5 AN

o -2,5

9 . \\
-35 -
-4 T T T T T T T

4 5 6 7 8 9 10 11 12
IOglO(N iter)

—e— Correlation value EC1

Figure 2. Error E; for the first and the second
components, x%) of the 4-coupled symmetric tent
map. N is fixed to 18 x 10, § = i.&, & = 10™,
Nieer varies from 10to 10", Computations are done
using double precision numbers (~14-15 digits).
XY = 0.330 X% = 0.3387564 X0 = 0.50492331,X% = 0.0.

3. Chaotic Sampling of Chaotic Numbers

If we plot the chaotic numbers produced by any
componentX , 1 < | < p of the p-dimensional
dynamical system Eq. (2.5) in the phase space
(x, x.,), the iterated points show the graph of the

n+1

symmetrical tent mag used to define Eq. (2.5)
(more exactly a graph with two lines havirig
thickness). These numbers are not randomly
produced. If we plot these points in the phase
spaces(x, x.,,), (X, x.5) or (x,x., ) they will
display the graph df®, f @ or f ©. Hence someone
knowing a sequence of few iterated points is able t
find the initial valueX, of the dynamical system.

In order to hide the graph of the genuine function
fin the phase spac, X'n+q) for anyq, a pivotal

idea is to sample chaotically the sequence
(X'O,X'px'zw--.x'nvX'n+1.--~) selectingx every time the

value of x™is greater than a threshald-1 <T < 1,
withl#m, for 1<, m<p.

The chaotically — sampled  subsequence
(ko X, X .+ X Xy, - iS defined as
X, =% iff xrO]T.q (3.1)

Choosing T > 0.5 implies that the selected
subsequence

(x0,><1,x2,---,xq,xq+l,~~~) = (Xpo‘Xpﬂsz""‘qu'xlrlq+1"")

is such that the difference betwepyand pq.1 is
always greater than a minimal valig depending
upon T. The graph of the chaotically sampled
chaotic number is a mix of the graphs of all tHé&

forr > K.
As seen in Sect. 2.4 every pair of components
booxm)  Of  Xo Xy Xp e Xy Ky oS

uncorrelated. Hence, the proposed chaotic sampling
is a powerful tool to generate enhanced chaotic
numbers. LenC,, ,(x,y) the autocorrelation

distribution function which is the correlation
function C,, (x,y) (2.25) defined in the phase

space(x,, x.,,) instead of the phase spac& ™).

In order to control that the enhanced chaotic
nUMbers(x,,x,, X, ++, X, Xpu, ) @r€ uncorrelated,

n+l
we check if they are uniformly distributed in the
squarel?.

If no particular pattern is displayed and if the
autocorrelation distribution functiolACy (X, V)
converges towards the uniform distribution on the
square when the number of iterations goes to the
infinity, we can conclude that the knowledge of a
sequence of iterated points do not allow finding th
initial value X, of the dynamical system.

we plot them in the phase subspa(g@ T) and

-0,5

NN
-1,5 \

-2
-2,5
-3

-3,5
p N
'4,5 T T T T T T T T

2 3456 7 8 91011
log1o(NSamphe)

—aA— Threshold 0,98
—— Threshold 0,998

10g10(Eac1)

Figure 3. Error Eyc; for the first component(l,
sampled byx* for the threshold values 0.98 and
0.998 of the 4-coupled symmetric tent map.
Ngis=10%10, § = i.&, & = 10", NSampli,, varies
from 10° to 13°. Computations done using double
precision numbers (~14-15 digits).

XY = 0.330 X% = 0.3387564 X = 0.50492331,X* = 0.0.

Fig. 3 shows the values of
Eaci(Ngiee, NSampl,, ) = HACN“C, Nsampl, (X0 Y) ~ qu‘h
for a system of 4 coupled-equations for both the
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threshold values 0.98 and 0.998 o{j The

enhanced chaotic numbers are produced by the first
component x! of the dynamical system. As the

chaotic numbers are regularly distributed on the
intervalJ, whenT > 0.98 one chaotic number over
approximately 100 is sampled, wh&r> 0.998 one
chaotic number over approximately 1,000 is
sampled. We calNSampl;e, the number of sampled
points.

1.003
1.002
1.001
1.000

0.999

Error {J'-.“ )

0.998

0.997

0.996

Figure 4. Difference between the autocorrelation
distribution functionACswewse (X, x.,,) and the

uniform distribution of the 4-coupled symmetric
tent map sampled by for the threshold value
0.998. Ngisc = 10x10%, NSamplie= 10°, 5 = i.g,

& = 10 Initial values X%, = 033q x5 =
0.3387564 X0 = 0.50492331X% = 0.0.

fixa |

Variable x! |

80 90 10

30 40 50 60 0
Variable x}

Figure 5. Projection of the Fig. 4 on the plane

(6 d,,)-

Nevertheless the computing process is very fast.
A desktop computer can produce more than
50,000,000 chaotic numbers per second, thus
50,000 iterated sampled points per secood f

0 10 20 70

T > 0.998. The sampling threshold 0.998 gives very
good results.

The difference between the autocorrelation
distribution functionACysaeioisc (f T) and the

n? n+l
uniform distribution is shown on Figure 4 and its
projection on the phase subspz@e, K) is shown

on Fig. 5.

4 Chaotic Mixing and Chaotic Sampling of
Chaotic Numbers

One can improve again the unpredictability of
the chaotic numbers generated as above, using all
the components of the vectirinstead of one. For
example for 4-coupled equations, the valuexbf

command the sampling process as follows
Let us set three threshold valugsT, andT;
Al<T<Tr<T3<1 (4.2)
we sample and mix together chaotically the
sequencedt, X, %, ..., %, X, ),

(&%, )and(e, ¢, ¢ )
defining (x;,x;, %, -+, X, X ++-) DY

X2, x2

1o Pl o

X iff x0]T, T
X, =% iff O[T, T
X it 0[]

(4.2)

Fig. 6 shows the values &, (N, NSampl, )

for a system of 4 coupled-equations when the first
componentx' is sampled byx* for both the
threshold values 0.98 and 0.998 and when the three
componentst , X* , X are mixed and sampled &Y

for the threshold valuesT; = 0.98, T, = 0.987,

T3 =0.994 ofT; = 0.998,T, = 0.9987,T; = 0.9994.

-0,5-

-1

-1,5-
-2

-2,5

100:0(Eac1)

-3

-3,5

4 vV
_415 L) L) L) L) L) L) L) T
2 3 4 5 6 7 8 9 10 11

Loglo(Nsampkter)

—a&— Threshold 0,98

—8— Threshold 0,998

—e— Thresholds 0,98 ; 0,987; 0,994
—— Thresholds 0,998 ; 0,9987; 0,9994

Figure 6. Ermor of E, (N,.,NSampl)

Ngise10°%x10%, NSamplie= 10° to 10°% g = i.g,
51=1014.
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5. Further improvements

As said in Sec. 2.1, we have only considered the
symmetric tent map (2.1). We have now to consider
others maps of the interval: non symmetric tent
map, baker map. We have also to consider the

coupling (2.5) with maps having different
parameters values
1
fo, (X7)
f(X)= (5.1)
P
f, (x)

(a OR™ being for example a general parameter
value characterizing the general baker map)

6. Conclusion

We have introduced and combined
synergistically three simple new mechanisms: very
weakly coupling of chaotic maps, chaotic sampling
and chaotic mixing of iterated points in order to
make new families of enhanced Chaotic Pseudo
Random Number Generators (CPRNG). The
properties of these new families are explored
numerically up to 18 iterations. The numerical
experiments give good results. Now other tests have
to be performed in order to check their usefulness
as Chaotic PRNG. Others functions and
combination of functions have also to be explored
in order to obtain

References

[1] Lanford Ill, O. E., Some informal remarks on
the orbit structure of discrete approximations to
chaotic maps. Experimental Mathematics, Vol. 7, 4,
317-324, 1998.

[2] Gora, P., Boyarsky, A., Islam, MD. S,
Bahsoun, W., Absolutely continuous invariant

measures that cannot be observed experimentally.

SIAM J. Appl. Dyn. Syst., 5:1, 84-90 (electronic),
2006.

[3] Lozi, R., Giga-Periodic Orbits for Weakly
Coupled Tent and Logistic Discretized Maps.
International Conference on Industrial and Applied
Mathematics, New Delhi, december 2004, Modern
Mathematical Models, Methods and Algorithms for
Real World Systems, A.H. Siddiqi, I.S. Duff and O.
Christensen (Editors), Anamaya Publishers, New
Delhi, India pp 80-124, 2006.

[4] Petersen, M. V., Sorensen, H. M., Method of

generating pseudo-random numbers in an electronic

device, and a method of encrypting and decrypting
electronic data. United States Patent 7170997,
2007.

[5] Ruggiero, D., Mascolo, D., Pedaci, I., Amato,
P., Method of generating successions of pseudo-

random bits or numbers. United States Patent
Application 20060251250, 2006.

[6] Boffetta, G., Cencini, M., Falcioni, M.,
Vulpiani, A., Predictability : a way to characteiz
complexity. Physics Reports, 356, 367-474, 2002.

[7] Barash, L., Schchur, L. N., Periodic orbitstioé
ensemble of Sinai-Arnold cat maps and
pseudorandom number generation. Physical Review
E, 73, Issue 3, 036701, 2006.

[8] Sprott, J. C., Chaos and Time-Series Analysis.
Oxford University Press, Oxford, UK, 2003.

[9] Alligood, K. T., Sauer, T. D., and Yorke, J.,A.
Chaos. An introduction to dynamical systems.
Springer, Textbooks in mathematical sciences,
New-York, 1996.



