

Study on the behavior of oxygen atoms in swift heavy ion irradiated CeO2 by means of synchrotron radiation X-ray photoelectron spectroscopy

A. Iwase, H. Ohno, N. Ishikawa, Y. Baba, N. Hirao, T. Sonoda, M. Kinoshita

▶ To cite this version:

A. Iwase, H. Ohno, N. Ishikawa, Y. Baba, N. Hirao, et al.. Study on the behavior of oxygen atoms in swift heavy ion irradiated CeO₂ by means of synchrotron radiation X-ray photoelectron spectroscopy. The Seventh International Symposium on Swift Heavy Ions in Matter, Jun 2008, Lyon, France. hal-00257923

HAL Id: hal-00257923

https://hal.science/hal-00257923

Submitted on 28 May 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Study on the behavior of oxygen atoms in swift heavy ion irradiated CeO₂ by means of synchrotron radiation X-ray photoelectron spectroscopy

A. Iwase^{1*}, H. Ohno¹, N. Ishikawa², Y. Baba², N. Hirao², T. Sonoda³, M. Kinoshita³

¹Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531,

Japan

²Japan Atomic Energy Agency (JAEA-Tokai), Tokai , Ibaraki, 319-1195, Japan

³Central Research Institute of Electric Power Industry, Komae, Tokyo, 201-8511, Japan

Keywords:, CeO2, Swift heavy ion irradiation, XPS measurements, Ce valence state,

oxygen atom displacements, electronic excitation effect

PACS: 61.80.Jh, 61.82.Ms

*corresponding author Akihiro Iwase

Osaka Prefecture University

Gakuen-cho, Sakai, Osaka, 599-8531, Japan

Phone/Fax 81-72-254-9810

e-mail <u>iwase@mtr.osakafu-u.ac.jp</u>

Abstract

To study the effects of swift heavy ion irradiation on cerium dioxide (CeO₂), CeO₂ sintered pellets were irradiated with 200 MeV Xe ions at room temperature. For irradiated and unirradiated samples, the spectra of X-ray photoelectron spectroscopy (XPS) were measured. XPS spectra for the irradiated samples show that the valence state of Ce atoms partly changes from +4 to +3. The amount of Ce³⁺ state was quantitatively obtained as a function of ion-fluence. The relative amount of oxygen atom displacements, which are accompanied by the decrease in Ce valence state, is 3-5%. This value is too large to be explained in terms of elastic interactions between CeO₂ and 200MeV ions. The experimental result suggests the contribution of 200 MeV Xe induced electronic excitation to the displacements of oxygen atoms.

Introduction

Recently, to study the effects of high energy fission products on light water nuclear fuels (UO₂), cerium dioxide (CeO₂) has been used as a simulation material and irradiation experiments using high energy ion accelerators have been performed[1-3]. In our previous report, we showed that swift heavy ion irradiation induced a large amount of oxygen atom displacements from their regular sites, not only at the surface but also inside the samples[4]. Through the synchrotron radiation X-ray spectroscopy measurements, this irradiation effect was observed as a decrease in Ce valence state and that in Ce-O coordination number. Displacements of oxygen atoms and the their clustering by high energy ion irradiation is an important process for understanding the interaction between CeO₂(and also UO₂ nuclear fuels) and high energy fission products. In this paper, we report the dependence of the amount of Ce³⁺ and Ce⁴⁺ states on the fluence of 200 MeV Xe ions, which has been obtained by the curve fitting of the XPS spectra for Ce-3d state. Then, we discuss the oxygen atom displacements by the

irradiation in terms of elastic interaction and electronic excitation processes.

Experimental procedure

Specimens in this study were CeO_2 bulk pellets which were prepared by sintering CeO_2 powder at 1400C. The dimension of the pellets was 8 mm in diameter and 1mm thick. Details of the sample preparation have been described elsewhere[1]. The samples were irradiated with 200 MeV Xe ions at room temperature by using a high energy ion accelerator at Japan Atomic Energy Agency (JAEA-Tokai). The irradiation fluences were $6 \times 10^{12} / cm^2$, $3 \times 10^{13} / cm^2$ and $6 \times 10^{13} / cm^2$.

X-ray photoelectron spectra (XPS) for the ion-irradiated CeO₂ pellets and unirradiated one were acquired at room temperature at the end of the station of the 27A beam line in the Photon Factory at High Energy Accelerator Research Organization (KEK-PF). The monochromatized photon energy for the measurements was just 2200.0 eV. The energy resolution of the X-rays near 2200 eV was 0.1 eV. The binding energy, E_B, was normalized by Au 4f_{7/2} photoelectron peak (E_B=84.0 eV) from metallic gold. After the XPS measurements, to remove a few layers at the surface and to obtain the spectra corresponding to a bulk state, the samples were slightly sputtered with 3 keV Ar+ ions using a penning source which was installed in a high-vacuum chamber for XPS measurements. After the sputtering, XPS spectra were measured again without exposing the sputtered samples to air. Finally, the reference XPS spectra corresponding to Ce³⁺ valence state was obtained from a CeO₂ pellet, which was heavily sputtered by 3 keV Ar+ ions with a high current (10 μA) for ca. 2 hours.

Results and discussion

The XPS spectrum of (a) in Fig.1 shows the typical Ce 3d XPS spectrum for Ce ⁴⁺ valence state, which is obtained from an unirradiated CeO₂ pellet. In usual elements, we find only two XPS peaks corresponding to 3d_{3/2} and 3d_{5/2} levels. In the case of Ce element, six peaks can be observed due to multielectron interaction[5]. The spectrum (e) in Fig. 1 shows the Ce 3d XPS spectra measured for CeO₂ pellet heavily sputtered *in-situ* with 3 keV Ar ions. It is known that under such a severe irradiation with low energy ions, Ce atoms in CeO₂ are reduced and the valence state of most Ce atoms changes from 4+ to 3+[6]. We therefore adopt the spectrum (e) in Fig. 1 as the Ce-3d reference spectrum for Ce ³⁺ valence state.

Fig. 1 also shows the ion-fluence variation of Ce 3d XPS spectra for CeO₂ pellets irradiated with 200 MeV Xe ions. The spectra except for the fluence of $3x10^{13}$ /cm² have already been reported[4]. With increasing the ion-fluence, the intensity of the peaks around 917 eV, 907 eV and 889 eV, which correspond to Ce⁴⁺ state decrease and those around 904 eV and 886 eV increase gradually. This result implies that in the irradiated samples, both Ce⁴⁺ and Ce³⁺ oxidation states coexist and the amount of Ce³⁺ state increases by the irradiation.

To discuss the change in Ce valence state more quantitatively, the data reduction of measured XPS Ce-3d spectra has been performed by the symmetric Gaussian-Lorentzian function curve fitting using six peak components of Ce⁴⁺ reference spectrum (spectrum (a) in Fig. 1) and four peak components of Ce³⁺ reference spectrum (spectrum (e) in Fig.1). The details of the data analysis are as follows. Before the curve fitting, an appropriate background was subtracted from the original XPS spectra. For each peak of Ce⁴⁺ reference spectrum, we determined the peak position, the peak width, the fraction of Lorentzian, and the relative intensity by using these values as fitting parameters. The parameters for each peak of Ce³⁺ reference spectrum were also

determined by the same procedure. Then, by using these parameters and the ratio of the intensities for Ce⁴⁺ spectrum and Ce³⁺ spectrum as a new fitting parameter, we reproduced the shape of XPS spectra for the irradiated CeO₂ pellets. From the above procedure, we can decide the relative amount of Ce³⁺ state in the irradiated samples. In the present data analysis, we assume that each XPS spectrum for the irradiated samples consists of a linear combination of the Ce³⁺ spectrum and Ce⁴⁺ spectrum and that the parameters for each peak of XPS spectra remain unchanged after the irradiation. As CeO₂ is a typical ionic crystal and valence electrons are localized near the specific atoms, this assumption can be acceptable in the present case.

Fig. 2 presents the spectra for unirradiated and 200 MeV Xe irradiated CeO₂, along with their fitted six components for Ce⁴⁺ and four components for Ce³⁺. As can be seen in the figure, the CeO₂ surface gets gradually increased in the amount of Ce³⁺ state with increasing the ion-fluence. From the area under each component, the relative amount of Ce³⁺ state can be estimated. The result is shown in Fig. 3. The relative amount of Ce³⁺ state gradually increases with increasing the ion fluence.

As the XPS spectra for Xe ion irradiated CeO₂ were, however, measured after they were irradiated and were once kept in the atmosphere, the surface of the irradiated CeO₂ may possibly have been to some extent re-oxidized. To obtain XPS spectra which were not affected by the re-oxidization, we measured the XPS spectra again after sputtering the specimens slightly with 3 keV Ar ions without any exposure in atmosphere. The Ar ion sputtering, however, caused the 7% increase in relative amount of Ce³⁺ state. We therefore plotted the data in the figure after removing this effect. Fig. 3 shows that the relative amount of Ce³⁺ state for the slightly sputtered CeO₂ is larger than that for the unsputtered one. The difference in the relative amount of Ce³⁺ state is due to the effect of re-oxidization which has occurred during keeping the samples in

atmosphere. The result for the slightly sputtered CeO₂ also shows that the valence state of Ce atoms changes by the ion irradiation not only at the sample surface but also inside the sample.

Effects of ion irradiation on the lattice structure of CeO₂ bulk pellets irradiated with 200 MeV Xe and CeO₂ thin films irradiated with 200MeV Au have been already studied by using X-ray diffraction method (XRD)[7,8]. Although the position and the height of XRD peaks assigned to the fluorite structure of CeO₂ are changed by the irradiations, no peaks originating from other crystallographic structure appear. This result means that, although the structure is disordered, the CeO₂ samples keep their fluorite structure even after 200MeV Xe or Au ion irradiation. Therefore, the appearance of Ce³⁺ valence state in the fluorite structure has to be accompanied by oxygen vacancies as a result of oxygen displacements from the regular sites. The present study and the result of the EXAFS spectra for 200 MeV Xe irradiated CeO₂ [4] show that the oxygen displacements are induced by the irradiation not only at the surface but also inside CeO₂.

As Fig. 3 shows, the relative amount of Ce³⁺ which appears by the irradiation is 13-21 %, meaning that 3-5 % of the oxygen atoms are displaced from the regular sites. The estimated amount of oxygen vacancies nearly agrees with the amount of oxygen vacancies (5%) which has been deduced from the change in lattice parameter of the 200 MeV Au ion irradiated CeO₂ thin films[8]. This amount of oxygen atom displacements cannot be explained if we only consider the effect of the elastic interaction between CeO₂ and 200 MeV Xe ions, because the value of dpa (displacement per atom) near the sample surface is below 0.01 even for the Xe ion fluence of 10¹⁴/cm². To understand the change in Ce valence state and accompanying oxygen atom displacements by the irradiation, the effect of high density electronic excitation on atomic movements has to

be considered.

Summary

The relative amount of Ce ³⁺ state in CeO₂, which is induced by 200 MeV Xe ion irradiation, is estimated by the analysis of XPS spectra. The amount of Ce³⁺ state increases with an increase in ion-fluence. The oxygen atom displacements which are accompanied by the reduction of Ce valence state are possibly induced by the high density electronic excitation due to 200 MeV Xe ions.

Acknowledgments

This work was financially supported by the Budget for Nuclear Research of MEXT (Ministry of Education, Culture, Sports, Science and Technology - Japan) based on the screening and counseling by the Atomic Energy Commission. The XPS measurements at KEK-PF were performed with the approval of KEK (Proposal No. 2007G058). The authors are grateful to thank Prof. K. Kobayashi for the use of the 27A beamline of KEK-PF.

References

- [1] T. Sonoda, M. Kinoshita, Y. Chimi, N. Ishikawa, M. Sataka, A. Iwase, Nucl. Instr. Meth. B 250(2006) 254-258.
- [2] T. Sonoda, M. Kinoshita, N. Ishikawa, M. Sataka, Y. Chimi, N. Okubo, A. Iwase, K. Yasunaga, Nucl. Instr. Meth. B266(2008) 2882-2887.
- [3] M. Kinoshita, Y. Chen, Y. Kaneta, Hua Yun Geng, M. Iwasawa, T. Ohnuma, T. Ichinomiya, Y. Nishiura, M. Itakura, J. Nakamura, K. Misoo, S. Suzuki, H. J. Matzke, Mat. Res. Soc. Symp. Proc. 1043-T12-04(2008).

- [4] H. Ohno, A. Iwase, D. Matsumura, Y. Nishihata, J. Mizuki, N. Ishikawa, Y. Baba, N. Hirao, T. Sonoda, M. Kinoshita, Nucl. Instr. Meth. B, available online 1 April 2008.
- [5] Atsushi Fujimori, Phys. Rev. B28(1983) 2281.
- [6] Juan P. Holgado, Rafael Alvarez, Guillermo Munuera, Appl. Sur. Sci. 161(2000) 301-315.
- [7] H. Ohno, D. matsumura, Y. Nishihata, J. Mizuki, N. Ishikawa, T. Sonoda, M. Kinoshita, A. Iwase, Mat. Res. Soc. Symp. Proc. 1043-T09-02 (2008)
- [8] N. Ishikawa, Y. Chimi, O. Michikami, Y. Ohta, K. Ohhara, M. Lang, R. Neumann, Nucl. Instr. Meth. B, Available online 23 March 2008.

Figure captions

Fig. 1

Ion-fluence variation of Ce 3d XPS spectra for CeO_2 pellets irradiated with 200 MeV Xe ions; (b) $6x10^{12}/cm^2$, (c) $3x10^{13}/cm^2$, (d) $6x10^{13}/cm^2$. The spectrum for unirradiated CeO_2 (a) (reference spectrum for Ce^{4+}) and that for heavily sputtered CeO_2 (e) (reference spectrum for Ce^{3+}) are also plotted.

Fig. 2

Ce 3d XPS for four CeO_2 samples, unirradiated, irradiated with 200 MeV Xe ions to the fluence of $6x10^{12}/cm^2$, $3x10^{13}/cm^2$, and $6x10^{13}/cm^2$. Plotted on the figures are from bottom to top; the individual peak contributions corresponding to Ce^{3+} , corresponding to Ce^{4+} , measured spectrum (dotted symbols), and the solid line envelope which is the result of the actual fit using the sum of all the contributions.

Fig. 3

Relative amount of Ce³⁺ state as a function of ion fluence, open circles: for CeO₂ irradiated with 200 MeV Xe ions, solid circles: CeO₂ irradiated with 200 MeV Xe ions and then slightly sputtered with 3 keV Ar ions.

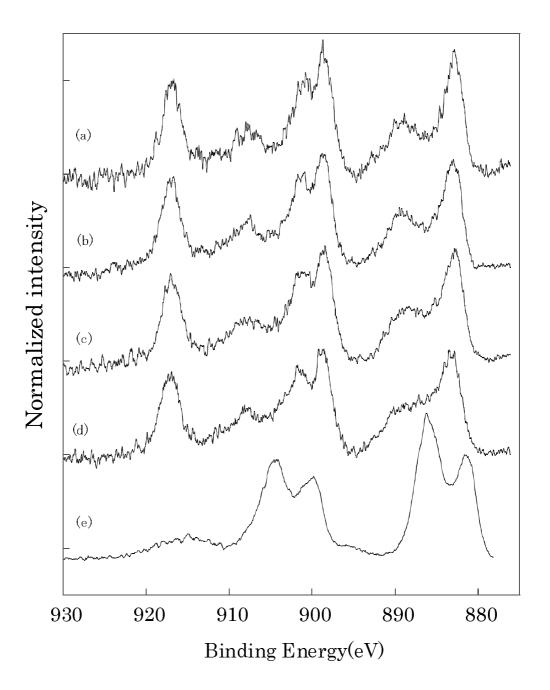


Fig.1

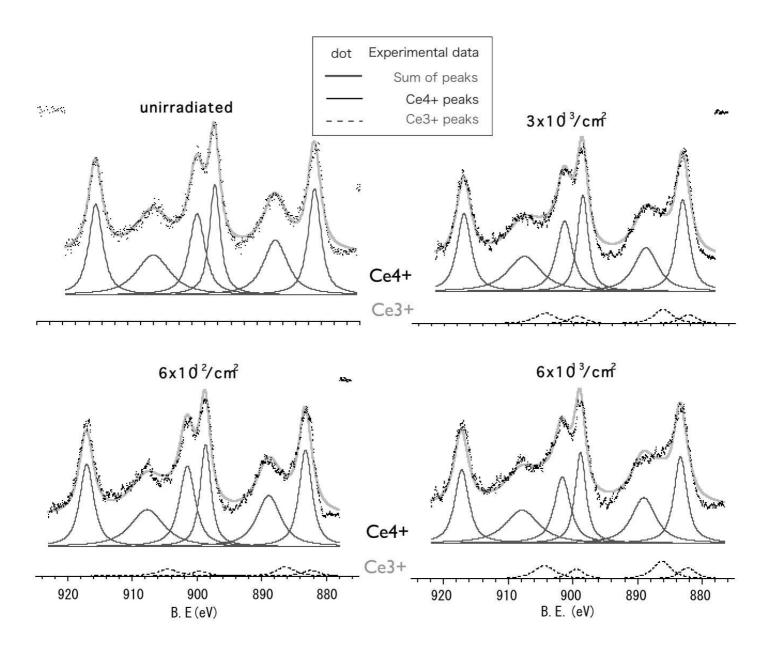


Fig. 2

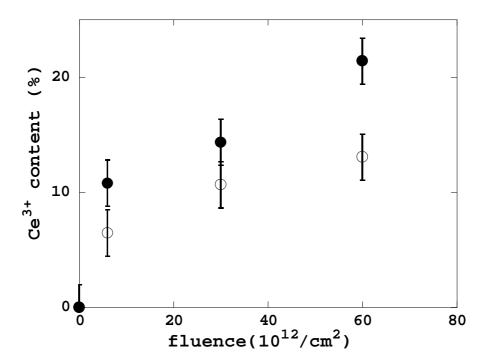


Fig. 3