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CONVERGENCE OF WEIGHTED POLYNOMIAL MULTIPLE
ERGODIC AVERAGES

QING CHU

ABSTRACT. We study here weighted polynomial multiple ergodic averages.
A sequence of weights is called universally good if any polynomial multiple
ergodic average with this sequence of weights converges in L2. We find a
necessary condition and show that for any bounded measurable function ¢ on
an ergodic system, the sequence ¢(T"x) is universally good for almost every
z. The linear case was understood by Host and Kra.

1. INTRODUCTION

In his innovative proof of Szemerédi’s Theorem via ergodic theory, Furstenberg
introduced certain multiple ergodic averages. There have been many results on
these and other nonconventional ergodic averages, including the multiple ergodic
theorems of Host and Kra [J], [B], Ziegler [L], Leibman [f]. .. Recently Host and Kra
studied weighted ergodic theorems for multiple averages along arithmetic progres-
sions, and we give a generalization of this result for polynomial averages, showing:

Theorem 1.1. Let (Y,v,S) be an ergodic system and ¢ € L>(v). Then there
exist Yo CY with v(Yy) = 1 such that, for every yo € Yy, every system (X, u,T),
every r > 1, all integer polynomials py, ..., p, and all functions fi,..., fr € L=(n),

the averages
N—1

Z ¢(SnyO)Tpl(n)f1 e Tpr(n)fr

n=0

1
N
converge in L?(u) .

Throughout this article, by integer polynomial we mean a polynomial all of whose
coeflicients are integers.

The case of p;(n) = in was proved by Host and Kra [[f].

Note that the set Yy does not depend on X or on f;,i =1,...,7. We say that
for every yo € Yp, the sequence ¢(S™yo) is universally good for the convergence in
mean of polynomial multiple ergodic averages.

For r = 1 and p(n) = n, the result follows immediately from the classical Wiener-
Winter ergodic Theorem [E] and a corollary of Spectral Theorem. We follow a
similar strategy, generalizing the proof in [H] along arithmetic progressions, but
need to address some deeper technical issues.

We first recall some definitions, see ] and [[f] for details. Let G be a k-step

nilpotent Lie group and I' C G be a discrete, cocompact subgroup of G. The
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compact manifold X = G/T is called a k-step nilmanifold. The Haar measure p of
X is the unique probability measure invariant under the left translations x — gz
of G on X. Letting T denote left multiplication by the fixed element o € G, we
call (X,u,T) a k-step nilsystem. Let f: X — C be a continuous function, and
xo € X, the sequence (f(a™xo) : n € Z) is called a basic k-step nilsequence. A
k-step nilsequence is a uniform limit of basic k-step nilsequences.

The proof of Theorem E is broken down into two pieces. First we give a spectral
result for higher sequences generated by polynomial orbits in nilmanifolds:

Theorem 1.2. (Generalized Corollary of Spectral Theorem) For any r,b € N,
there exists an integer K > 1 with the following properties: for any bounded se-
quence ¢ = (¢, : n € Z), if the averages

1 V-1
N 2 Codn
n=0
converge as N — oo for every K-step nilsequence d = (d,, : n € Z), then for every

system (X, u,T), all f1,...,fr € L®(X), and all integer polynomials p1,...,p, of
degree < b, the averages

N-1
1
(1) ~ E CnTpl(n)fl ) sz(n)f2 . Tpr(n)fT
n=0

converge in L*(X).

The bulk of this paper is devoted to the proof of this theorem. Then our main
result follows from the following Generalized Wiener-Wintner Theorem proved by
Host and Kra in [E] The case of a polynomial version of Wiener-Wintner theorem
was proved by Lesigne [ff] [{].

Theorem 1.3. (Generalized Wiener-Wintner Theorem []) Let (X, 11, T) be an
ergodic system and ¢ be a bounded measurable function on X. Then there exists

Xo C X with u(Xo) =1 such that for every x € Xy, the averages

| N1
~ > (T 2)by
n=0
converge as N — oo for every x € Xo and every nilsequence b = (b, : n € Z).

While nilsequences do not appear in the statement of Theorem @, they are used
as tools in its proof. Both Theorems [.9 and [L.d are of interest on their own, as
results on nilsequences.

2. PROOF OF THEOREM [I.9
It is sufficient to prove Theorem for ergodic systems.

2.1.  The next proposition state that in nilsystem, the values along polynomials are
in fact the values along ordinary orbits in another nilsystem with different initial
value.

Proposition 2.1. Let (X = G/T,T) be a nilsystem, xg € X, p be an integer
polynomial, and f € C(X). Then there exists a nilsystem (Y,S), yo € Y, h € C(Y),
such that f(TP™xq) = h(S™yo) for every n.
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Proof. Let (X = G/T,T) be a nilsystem. Suppose Tz := ax, for some a € G.
Then TPz = oP(™z. Let g(n) := aP(™, then g is a polynomial sequence in G.
Let m : G — X be the factorization mapping. We will assume that zo = 7(1g);
otherwise if zg = w(7),v € G, we write g(n)xg = g(n)y7(1g), and replace g(n) by
g(n)y.

Now we have a nilpotent lie group G, a discrete cocompact subgroup I' and a
polynomial sequence g in G. By Proposition 3.14 in Leibman’s paper [E there
exist a nilpotent lie group C:‘ a discrete cocompact subgroup F an epimorphism
n: G — G with 77(1") C I', a unipotent automorphism 7 of G with T(F) = f‘ and

an element ¢ € G such that

g9(n) =n(7"(c)),n € Z.

Let X = G/l" and let 7 : G — X be the factorization mapping.
The epimorphism 7 : G — G factors to a map X — X that we write also 7,
which is onto, that is,
TonN=MnoT .
7 induces an homeomorphism XX , that we write 7 also:

TOM =TOT .

Let 29 = 7(15), then
n(7" (cxo)) = g(n)xog, n € Z .

Let G be the extension of G by 7, then G is a nilpotent Lie group. Let 7 be the
element in G representing 7, so that 7(&) = 7a7 ! for any & € G.

Let T be the subgroup of G spanned by I" and 7, since T(F) = I, one has
I'NnG=T. As G is spanned by G and T, G is open in G and by the definition of
the relative topology, we have that i is a discrete subgroup of G.

Moreover, X can be identified with G / [ and we write 7: G — X for the quotient
map. N N

Let € X and § € X with 7(¢) = Z. We have

7(7) =7(7(9) =7(7g7 ') =7(79) =77
because 7-! € I. So for every n,
g(n)ao = (7" (ex0)) = n(7"(cxo)) -

Let Y = (é/f,S) = ()?,S), ST =77, and let h = f o, and yg = ¢xg. This

system and this function satisfy the announced properties. O

2.2.  We return to prove theorem @ We may assume that the polynomials
P1,...,Dr are nonconstant and essentially distinct, that is p; — p; # constant for
i 7.

The following theorem will be proved in the next section.

Theorem 2.2. For any r,b € N, there is k € N, such that for any nonconstant
essentially distinct polynomials p1,...,pr : Z — 7Z of degree < b , for every er-
godic system (X, p, T) every fi,..., fr € L=(X) with || f1|lx = 0, and any bounded
sequence ¢ = (¢, : n € Z), one has

(2) lim ||— Z en TP fy o Tpr(n)fr”ﬂ(x) =0

N —o0
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2.3.  We recall a few properties of the seminorms and the factors introduced in [E]
Let (X, 41, T) be an ergodic system. For every k > 1, || - ||k is a seminorm on L ().
These seminorms satisfy: for every k and every f € L*(u), || flle+1 > || f]lx and

N-1

_ LT 2Fy1/2k
et = Jim (3 071771

Moreover, for every k > 2, X admits a factor Zy_; such that, for every f € L>(u),
I£llx = 0 if and only if E(f|Zx_1) = 0. One of the main results of [Jf] is that, for
every k, Zj is an inverse limit of k—step nilsystems.

2.4. Now we give the proof of Theorem E

Proof of Theorem from Proposition @ and Theorem . The proof
is exactly the same as the proof of Theorem 2.24 in [E] For any r,b € N, let
k € N be the integer in Theorem @, let Zy_1 be the k — 1-th factor of (X, u,T) as
defined in [{f]. By definition, if E(f1|Zk—1) = 0, then | fi]lx = 0, and by Theorem
R.2, the averages (fl) converge to zero in L?(X). We say that the factor Z;_1 is the
characteristic for the convergence of these averages. Therefore, it suffices to prove
the result when the functions are measurable with respect to the factor Z_.

Since Zi_1 is an inverse limit of k — 1-step nilsystem. By density, we can
assume that (X, pu,T) is a k — 1-step nilsystem and that the functions fi,..., fr
are continuous.

But in this case, by Proposition @, for every x € X,and every polynomials
P1,.--,Dr, there exist nilsystems (Y7, 51),..., (Y, S:), v; € Yi, and g; € C(Y;), such
that fi(TP™Mx) = g;(SPy:), i =1,...,7.

Let K be the maximal order of the nilsystems (Y;,S;),s = 1,...,7. Then the
system (Y = Y3 x -+ xY,,§ = 51 x---x85,) is a K-step nilsystem. Let g :
Y1 x -+ x Y, — R be given by ¢g(y) = 9(y1,.--,9) = g1(y1) - ... - g-(yr). So the
sequence

{fl(Tpl(n)w) . fg(Tm(")x) . fT(TpT(n)x)}neZ

={91(5Ty1) - 92(55y2) - ...~ 9 (S yr) nez

={9(5™y)}nez
is a K-step nilsequence and by hypothesis, the averages (ﬂ) converge for every
e X. (I

3. PROOF OF THEOREM [.J

We deduce Theorem @ from a more general result. In this section, we assume
that (X, X, u,T) is an ergodic system.

Theorem 3.1. For any r,b € N, there exists k € N, such that for any family
of nonconstant essentially distinct polynomials p1,...,py : Z¢ — 7 of degree < b ,
any f1,..., fr € L®(X) with || fillx =0, and any{cy}ueza, with |c,| <1, one has

lim HW > e Ty TP £ | 2(x) = 0

ued N

for any Folner sequence {®n}35_, in Z2.
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3.1. We first prove the theorem for polynomials of degree 1 which we call affine
functions.
For next lemma, ergodicity is not needed.

Lemma 3.2. Letp: Z* — Z, p(u) = ajuy + - - - + aqug with ay, ... ,a, € Z. and

not all a; equal to 0. Let a = ged(an,...,aq). Then for any f € L*(X) and any
Folner sequence {®Pn}¥_q in Zd, we have

i (u)
lim |@N| > 1 f = R(f] )

N—oo e

in L*(X), where J, is the factor of X associated with the o-algebra of T®-invariant
measurable subsets of X.

Proof. Let E :={f € L?(p): f =T°f}, and F := {g — T%g; g9 € L*(11)}, we know
that F + F is dense in L?(u), so it suffices to establish the lemma in the two cases
that f € F and that f € F. When T%f = f, then TP(") f = f for every u, so the
assertion is obvious. Now suppose f = g — T%g for some g € L?(X). Since there
exists h = (h1,...,hq) € Z? such that a = ged(ay, . .., aq) = hiay +- - -+ hqag, and
by the property of Fglner sequence, we have

1 1
TPW) £ r(u) o _ ew)tay TP(U) _ pluth)
o] 2 T = Ty 2 (T 9= a2 9)

ueEd N ucdPy

Z Tp(u Z TP(“)g
|(I)N| ued N | N| uch+on
and thus
Z TP f| L2 (x) < Ty |||g||L2(X) [ONA(PN +h)[ =0
u€<I>
as N — +oo. O

Lemma 3.3. Let p : Z¢ — Z be a nonconstant affine function. There exists a
constant ¢ such that for any f € L=°(X) and any sequence {cy}ueza,lcu| < 1, one
has

S ™ fllzaxy < el fls

1
(3) lim sup ||<I)—
N ued N

Y
for any Folner sequence {®n}S_, in Z%.

Proof. Let p(u) = ag+ajuy+---+aqug, u = (u1,...,uq) € Z%, with ay, ..., a, € Z.
After replacing f by T% f we may assume that ag = 0. Put a = ged(aq, ..., aq).
Let Q be the left side of (). Then

< *hivnsupnl@ | > T f|lTx

uedn

<hmsup |<I> B Z Z |CucU/TP(u V) f - Fdyl

uedny vedy
By the Cauchy-Schwarz Inequahty,

Q* <hmsup|¢ B Z Z |/Tpu ) f . Fdul?

uedn vePN
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Since {® N}, is a Fglner sequence in VAS {®n X PN }R_, is a Folner sequence in
72 and p’ : (u,v) — p(u — v) is a nonconstant non zero linear function on Z2?.
We have

Q* < limsup —— TINE |/ TP () £ fdul?
N—oo (uv)€¢N><<I>
<hmsup|q) |2 Z / TXT) uvf@f f®fdﬂxﬂ
N—o0 N (u,0) €D N X P XxX

Applying Lemma @ to system (X x X, ux pu, T'xT) and linear polynomial function
p', we get

lim — Yoo (@ xTP e =E(f @ fIT.),

2
N=eo |q)N| (u,0)EPN XD N

where Z, is the o-algebra of T x T*-invariant measurable subsets of X x X. Thus

Q< [ |BUSTIZ)Pdu s = Jim —Z/ (Tx Ty f T -Fo fdux p

XxX
~ lim —ZI /. 1 Fauf? < atim L 3 [T T = al s
n=1
O
Lemma 3.4. Let p : Z* — Z be a nonconstant affine function. There exists

a constant 1 such that for any f € L>(X), any k > 1 and any Folner sequence
{dN}F_, in Z2, one has

. k1 k41
Rl Z If- TP < Ul
u€<I>N
Proof. See Leibman [E], Lemma 8. O
Proposition 3.5. Let p1,pa, ..., pr : Z¢ — 7 be nonconstant essentially distinct

affine functions. There exists a constant C such that for any f1,..., fr € L=(X)
and any sequence {cy}yezd,|cu] < 1, one has

s 1 u u -
hjffnsupﬂm > eIy T £l L2 xy < Clfillesr - [T fill 2= x)-

e uEdD N i=2
for any Folner sequence {®n}S_, in Z%.

Proof. The proof is almost exactly the same as that of Proposition 5 in Leibman’s
paper [E], the only difference is here we are dealing with the weighted averages.
We follow Leibman’s proof [E] line by line, giving all the steps but omitting proofs
when there are the same.

We will proceed by induction on r. For r = 1, the statement is given by Lemma
E. Let 7 >2, f1,..., fr € L®(X) and let {®y}3%_, be Fglner sequence in Z?. We
can assume that |fa|,...,|fr] < 1, and that p1(0) = --- = p,(0) = 0. By Lemma



4(i) in [§], for any finite F' C Z¢, we get

1 o
h]{/vnsup|||q) | Z CUHT:D%( )f1||2L2(X)

ued N i=1

r—1
|F|2 Z SuPHIi) [ D Curolarw [ [ TPP@PO fi - TP F) |2 x)
uedn =1

For fixed v, w, write d2" = cytvCutw, SO |[d0*| < 1. We remark that p; — pr,
1 < i < r—1, are non constant essentially distinct affine functions. By the induction
hypothesis there exists a constant Cl, independent of f1,..., fr.{cu}, v,w, and
{®N}F_1, such that

r—1
h]{]n sup || —— |<I) | Z doe H (pi—pr)(w) (Tpi(v)fi . Tpi(w)fi)”LZ(X)
uEd N i=1

<N TR = CTP O - fll

for all v,w € Z?. Thus, for any finite setF' C Z¢, by Holder inequality,

u 1/2 1 H(w—v)F 2" r+1
Xi%ﬂiM%mmm<C”<|p§Zwﬁfﬂ Tz

ued N =1 v,weF

hmsupH |<1>

Let{®;}55_, be any Folner sequence in Z%. By Lemma B.4, we have

1 w—v) 2" r41
ST IR < Al

2
|\IJM| v, WEW s

where c is independent on f1. Substituting the sets Wy;, M € N for F', we obtain

1 r A 11/2 "
timsup | 3= e [[T7 fillzago < € il
uedyn i=1

O

3.2. In this section we prove the theorem E for nonlinear polynomials but in a
less general condition.

We call system any finite set of integer polynomials P = {ps,...,p,: Z¢ — Z}.

The degree deg P of the system P is the maximum degree of its elements.

We say two integer polynomials p, ¢ are equivalent if degp = degq and deg(p —
q) < degp. Let P be a system. We can partition P into equivalence classes for
this relation. Let w; be the number of classes of degree 0 < [ < deg P. Define

the weight w(P) of system P to be the vector (w1,...,wdegp). For two vectors
w = (w1,...,wm) and W o= (w/l,...,w;n,), we write w < w, if either m < m’ or
m =m’ and there exists n < m such that w, < w; and w; = wz forl=n+1,...,m.

Under this relation, the set of weights of systems becomes well ordered. The PET-
induction is an induction on the weights of systems.

We call the system P = {p1,...,p.} standard if p; are nonconstant and essen-
tially distinct and degp; = deg P. And we say that a certain property holds for
almost all v € Z% if the set of elements of Z? for which it does not hold is contained
in the set of zeroes of a nontrivial polynomial on Z<.
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Proposition 3.6. For any r € N and any integer vector w = (w1, ..., w;), there
exists k € N such that for any standard system {p1,...,p, : Z% — Z} of weight w,
any f1,..., fr € L®(X) with || fi|lx =0, and any sequence {cytyeza, |cu| < 1, one
has

(4) i [0 TP fre T | = 0

ued N

for any Folner sequence {®n}35_, in Z2.

Proof. The proof of this proposition is almost exactly the same as that of Propo-
sition 9 in Leibman’s paper [E],AS in the proof of Proposition @, we give all the
steps but omit proofs when there are the same as in [f].

We will proceed by PET-induction. For system of degree 1 the proposition is
given by Proposition @ Let P = {p1,...,pr : Z% — Z} be a standard system of
degree > 2 and of weight w.

Note that for each s < 2r, there are only finite many integer vectors w < w
which are the weights of systems with s elements. We denote the number of vectors
here by p(s) and these vectors by w3, j =1,...,p(s).

By inductive hypothesis, for s < 2r, and 1 < j < p(s), there exists k(s,w}), such
that for any standard system {pi,...,p, : Z¢ — Z} of weight wi,any fi,..., fr €
L>(X) with |||f1|||k(51sz) = 0, and any {cytuezd, |cu| < 1, property(Hl) holds for
any Fglner sequence {®y}_, in Z%. Set k = maxj<s<ar max; < j<,(s) k(s,w;). We
have for any standard system {p,...,ps : Z? — Z} with s < 2r of weight w < w,
any fi,..., fr € L®(X) with || f1]ls = 0, and {cu }ueze, |cu| < 1, property ([]) holds
for any Fglner sequence {®x}%_, in Z9.

Choose i, € {2,...,r} such that P;, has the minimal degree in P; if all polyno-
mials in P have the same degree, choose ¢ such that p;, is not equivalent to pi; if
all polynomials in P are equivalent, choose iy arbitrarily.

Let I ={ie{1,...,r} :degp; =1} and I = {i € {1,...,r} : degp; > 2}. For
each v, w € Z¢, define

P,y ={pi(u+v),pi(utw):ic IQ}U{pi(u +w):i€ L},

and order the set as Py, = {qu,w,1,-- - Qu,w,s}» Where gy .1(u) = p1(u + v), and
QU,w,s(u) = DPio (u + ’LU)

It is easy to check that P, ,, is a standard system for almost all (v, w) € 72 and
W(P, ) = w(P) = w for all v,w € Z<.

For v, w € Z4, define P137w ={quw1— Qaws> - Qows—1— Quw.s}-

For almost all (v, w) € 72 the polynomials Gv,w,j — Quw,s:J = 1,...,8 — 1 are
nonconstant and essentially distinct, P, is a standard system and w(P;7w) <
W(Pyw) = w.

Now let fi1,...,fr € L®(X) with ||fillx = 0, and let {®Pn}3¥_; be a Fglner
sequence in Z?. We assume that |fal,...,|f.| < 1. By Lemma 4(i) in [ff}, for any



finite set F' C Z? we get

1 T
limsup || —— co VT TP £112.
Naoop|||q)N| Z H f||L (X)

ued N i=1

s—1
FE O lmsup |l |<1> 12 cwnar [[ T om0 2 b2,
v,weF uedn j=1
where gy ,1; .-+, Quw,s are the elements of the system P, ,, and
b o fi 1€ I
v,W,J E . Tpi(v)fpi(’w)fi 7 c Il'

Notice that degp; = deg P > 2, thus 1 € I3, s0 hy 1 = fi1. For fixed v, w, write
dP" = CyivCutw, |du| < 1. By the induction hypothesis applied to system P1/}7w,

s—1
1
lim || — E : o I I T(@wwi=dvw ) Wp, ]y = 0.
N=eo |(I)N|u€q> j=1 ’ )

for almost all (v,w) € Z? such that PU .« 18 standard and w(P;7w) <w(Pyw) =w.

Since for all other (v, w) this norm is bounded by 1, we have

1 o
%f|F|2 Z limsup |5 Z dy HT(Q“” @ W Ry gl 12 x) = 0.

uE‘I’N j=1

Collecting this formula with the formula (), we get the announced result. O
3.3. We now turn to the general case.

Proof of Theorem @ The proof of this theorem is almost exactly the same as
that of theorem 10 in Leibman’s paper [E] Proposition @ implies the result for
standard systems. Let P = {p1,...,p,} be a (nonstandard) system of nonconstant
essentially distinct polynomials Z? — Z of degree < b, let fi,..., f, € L>=(X) and
{®n}%_, be a Fglner sequence in Z%. By Lemma 4 (ii) in Leibman’s paper [ﬂ],
there exists a Folner sequence {©,,}55_, in Z3?, such that

hjr\;lsupH Z CuHT Pi(w) fz||L2(X)

u€<I>N =1

Z Do H pi(utv)+q(u) fi - H Tzﬂi(7Hrw)4r!1(u)ﬁ||L2(X)7

(u,v,w)EO i=1 i=1

< limsup ||-——
N—o0 | ]\/Il

where dy y.w = CutvCutuws|du| < 1, and ¢ is any polynomial Z¢ — Z of degree b.
The set

{pr(u+0) +qw),....pr(u+v) + q(u),pr(u+w) +q(u), ..., pr(u+w) + q(u)}

of polynomials Z3? — 7 is a standard system of degree b with 27 elements, thus
there exists k € N (depending on r and b only), such that

Z dy H Tpi(quv)Jrq(u)fi . H Tpi(quw)JrQ(u)ﬁ”LZ(X) —0.

(u,v,w)EO M i=1 i=1

limsup ||——
msup [l

O
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