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CONVERGENCE OF WEIGHTED POLYNOMIAL MULTIPLE

ERGODIC AVERAGES

QING CHU

Abstract. We study here weighted polynomial multiple ergodic averages.
A sequence of weights is called universally good if any polynomial multiple
ergodic average with this sequence of weights converges in L2. We find a
necessary condition and show that for any bounded measurable function φ on
an ergodic system, the sequence φ(T nx) is universally good for almost every
x. The linear case was understood by Host and Kra.

1. introduction

In his innovative proof of Szemerédi’s Theorem via ergodic theory, Furstenberg
introduced certain multiple ergodic averages. There have been many results on
these and other nonconventional ergodic averages, including the multiple ergodic
theorems of Host and Kra [2], [3], Ziegler [10], Leibman [5]. . . Recently Host and Kra
studied weighted ergodic theorems for multiple averages along arithmetic progres-
sions, and we give a generalization of this result for polynomial averages, showing:

Theorem 1.1. Let (Y, ν, S) be an ergodic system and φ ∈ L∞(ν). Then there
exist Y0 ⊂ Y with ν(Y0) = 1 such that, for every y0 ∈ Y0, every system (X, µ, T ),
every r ≥ 1, all integer polynomials p1, . . . , pr and all functions f1, . . . , fr ∈ L∞(µ),
the averages

1

N

N−1∑

n=0

φ(Sny0)T
p1(n)f1 · . . . · T

pr(n)fr

converge in L2(µ) .

Throughout this article, by integer polynomial we mean a polynomial all of whose
coefficients are integers.

The case of pi(n) = in was proved by Host and Kra [4].
Note that the set Y0 does not depend on X or on fi, i = 1, . . . , r. We say that

for every y0 ∈ Y0, the sequence φ(Sny0) is universally good for the convergence in
mean of polynomial multiple ergodic averages.

For r = 1 and p(n) = n, the result follows immediately from the classical Wiener-
Winter ergodic Theorem [9] and a corollary of Spectral Theorem. We follow a
similar strategy, generalizing the proof in [4] along arithmetic progressions, but
need to address some deeper technical issues.

We first recall some definitions, see [1] and [4] for details. Let G be a k-step
nilpotent Lie group and Γ ⊂ G be a discrete, cocompact subgroup of G. The
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compact manifold X = G/Γ is called a k-step nilmanifold. The Haar measure µ of
X is the unique probability measure invariant under the left translations x 7→ gx
of G on X . Letting T denote left multiplication by the fixed element α ∈ G, we
call (X, µ, T ) a k-step nilsystem. Let f : X → C be a continuous function, and
x0 ∈ X , the sequence (f(αnx0) : n ∈ Z) is called a basic k-step nilsequence. A
k-step nilsequence is a uniform limit of basic k-step nilsequences.

The proof of Theorem 1.1 is broken down into two pieces. First we give a spectral
result for higher sequences generated by polynomial orbits in nilmanifolds:

Theorem 1.2. (Generalized Corollary of Spectral Theorem) For any r, b ∈ N,
there exists an integer K ≥ 1 with the following properties: for any bounded se-
quence c = (cn : n ∈ Z), if the averages

1

N

N−1∑

n=0

cndn

converge as N → ∞ for every K-step nilsequence d = (dn : n ∈ Z), then for every
system (X, µ, T ), all f1, . . . , fr ∈ L∞(X), and all integer polynomials p1, . . . , pr of
degree ≤ b, the averages

1

N

N−1∑

n=0

cnT p1(n)f1 · T
p2(n)f2 · . . . · T

pr(n)fr(1)

converge in L2(X).

The bulk of this paper is devoted to the proof of this theorem. Then our main
result follows from the following Generalized Wiener-Wintner Theorem proved by
Host and Kra in [4]. The case of a polynomial version of Wiener-Wintner theorem
was proved by Lesigne [7] [8].

Theorem 1.3. (Generalized Wiener-Wintner Theorem [4]) Let (X, µ, T ) be an
ergodic system and φ be a bounded measurable function on X. Then there exists
X0 ⊂ X with µ(X0) = 1 such that for every x ∈ X0, the averages

1

N

N−1∑

n=0

φ(T nx)bn

converge as N → ∞ for every x ∈ X0 and every nilsequence b = (bn : n ∈ Z).

While nilsequences do not appear in the statement of Theorem 1.1, they are used
as tools in its proof. Both Theorems 1.2 and 1.3 are of interest on their own, as
results on nilsequences.

2. proof of theorem 1.2

It is sufficient to prove Theorem 1.2 for ergodic systems.

2.1. The next proposition state that in nilsystem, the values along polynomials are
in fact the values along ordinary orbits in another nilsystem with different initial
value.

Proposition 2.1. Let (X = G/Γ, T ) be a nilsystem, x0 ∈ X, p be an integer
polynomial, and f ∈ C(X). Then there exists a nilsystem (Y, S), y0 ∈ Y , h ∈ C(Y ),
such that f(T p(n)x0) = h(Sny0) for every n.
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Proof. Let (X = G/Γ, T ) be a nilsystem. Suppose Tx := αx, for some α ∈ G.
Then T p(n)x = αp(n)x. Let g(n) := αp(n), then g is a polynomial sequence in G.
Let π : G → X be the factorization mapping. We will assume that x0 = π(1G);
otherwise if x0 = π(γ), γ ∈ G, we write g(n)x0 = g(n)γπ(1G), and replace g(n) by
g(n)γ.

Now we have a nilpotent lie group G, a discrete cocompact subgroup Γ and a
polynomial sequence g in G. By Proposition 3.14 in Leibman’s paper [6], there

exist a nilpotent lie group G̃, a discrete cocompact subgroup Γ̃, an epimorphism

η : G̃ → G with η(Γ̃) ⊆ Γ, a unipotent automorphism τ̃ of G̃ with τ̃ (Γ̃) = Γ̃, and

an element c̃ ∈ G̃ such that

g(n) = η(τ̃n(c̃)), n ∈ Z.

Let X̃ = G̃/Γ̃ and let π̃ : G̃ → X̃ be the factorization mapping.

The epimorphism η : G̃ → G factors to a map X̃ → X that we write also η,
which is onto, that is,

π ◦ η = η ◦ π̃ .

τ induces an homeomorphism X̃ → X̃, that we write τ̃ also:

τ̃ ◦ π̃ = π̃ ◦ τ̃ .

Let x̃0 = π̃(1G̃), then
η(τ̃n(c̃x̃0)) = g(n)x0, n ∈ Z .

Let Ĝ be the extension of G̃ by τ̃ , then Ĝ is a nilpotent Lie group. Let τ̂ be the

element in Ĝ representing τ̃ , so that τ̃ (α̃) = τ̂ α̃τ̂−1 for any α̃ ∈ G̃.

Let Γ̂ be the subgroup of Ĝ spanned by Γ and τ̂ , since τ̃ (Γ̃) = Γ̃, one has

Γ̂ ∩ G̃ = Γ̃. As Ĝ is spanned by G̃ and τ̂ , G̃ is open in Ĝ and by the definition of

the relative topology, we have that Γ̂ is a discrete subgroup of Ĝ.

Moreover, X̃ can be identified with Ĝ/Γ̂ and we write π̂ : Ĝ → X̃ for the quotient
map.

Let x̃ ∈ X̃ and g̃ ∈ X̃ with π̃(g̃) = x̃. We have

τ̃(x̃) = π̃(τ̃ (g̃)) = π̂(τ̂ g̃τ̃−1) = π̂(τ̂ g̃) = τ̂ x̃

because τ̂−1 ∈ Γ̂. So for every n,

g(n)x0 = η(τ̃n(c̃x̃0)) = η(τ̂n(c̃x̃0)) .

Let Y = (Ĝ/Γ̂, S) = (X̃, S), Sx̃ = τ̂ x̃, and let h = f ◦ η, and y0 = c̃x̃0. This
system and this function satisfy the announced properties. �

2.2. We return to prove theorem 1.2. We may assume that the polynomials
p1, . . . , pr are nonconstant and essentially distinct, that is pi − pj 6= constant for
i 6= j.

The following theorem will be proved in the next section.

Theorem 2.2. For any r, b ∈ N, there is k ∈ N, such that for any nonconstant
essentially distinct polynomials p1, . . . , pr : Z → Z of degree ≤ b , for every er-
godic system (X, µ, T ) every f1, . . . , fr ∈ L∞(X) with |||f1|||k = 0, and any bounded
sequence c = (cn : n ∈ Z), one has

lim
N→∞

||
1

N

N−1∑

n=0

cnT p1(n)f1 · · · · · T
pr(n)fr||L2(X) = 0(2)
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2.3. We recall a few properties of the seminorms and the factors introduced in [2].
Let (X, µ, T ) be an ergodic system. For every k ≥ 1, ||| · |||k is a seminorm on L∞(µ).
These seminorms satisfy: for every k and every f ∈ L∞(µ), |||f |||k+1 ≥ |||f |||k and

|||f |||k+1 = lim
N→∞

(

N−1∑

n=0

|||f · T nf |||2
k

)1/2k

Moreover, for every k ≥ 2, X admits a factor Zk−1 such that, for every f ∈ L∞(µ),
|||f |||k = 0 if and only if E(f |Zk−1) = 0. One of the main results of [2] is that, for
every k, Zk is an inverse limit of k–step nilsystems.

2.4. Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 from Proposition 2.1 and Theorem 2.2. The proof
is exactly the same as the proof of Theorem 2.24 in [2]. For any r, b ∈ N, let
k ∈ N be the integer in Theorem 2.2, let Zk−1 be the k−1–th factor of (X, µ, T ) as
defined in [4]. By definition, if E(f1|Zk−1) = 0, then |||f1|||k = 0, and by Theorem
2.2, the averages (2) converge to zero in L2(X). We say that the factor Zk−1 is the
characteristic for the convergence of these averages. Therefore, it suffices to prove
the result when the functions are measurable with respect to the factor Zk−1.

Since Zk−1 is an inverse limit of k − 1–step nilsystem. By density, we can
assume that (X, µ, T ) is a k − 1–step nilsystem and that the functions f1, . . . , fr

are continuous.
But in this case, by Proposition 2.1, for every x ∈ X ,and every polynomials

p1, . . . , pr, there exist nilsystems (Y1, S1), . . . , (Yr, Sr), yi ∈ Yi, and gi ∈ C(Yi), such
that fi(T

pi(n)x) = gi(S
n
i yi), i = 1, . . . , r.

Let K be the maximal order of the nilsystems (Yi, Si), i = 1, . . . , r. Then the
system (Y = Y1 × · · · × Yr, S = S1 × · · · × Sr) is a K-step nilsystem. Let g :
Y1 × · · · × Yr → R be given by g(y) = g(y1, . . . , yr) = g1(y1) · . . . · gr(yr). So the
sequence

{f1(T
p1(n)x) · f2(T

p2(n)x) · . . . · fr(T
pr(n)x)}n∈Z

= {g1(S
n
1 y1) · g2(S

n
2 y2) · . . . · gr(S

n
r yr)}n∈Z

= {g(Sny)}n∈Z

is a K-step nilsequence and by hypothesis, the averages (1) converge for every
x ∈ X . �

3. proof of theorem 2.2

We deduce Theorem 2.2 from a more general result. In this section, we assume
that (X,X , µ, T ) is an ergodic system.

Theorem 3.1. For any r, b ∈ N, there exists k ∈ N, such that for any family
of nonconstant essentially distinct polynomials p1, . . . , pr : Z

d → Z of degree ≤ b ,
any f1, . . . , fr ∈ L∞(X) with |||f1|||k = 0, and any{cu}u∈Zd , with |cu| ≤ 1, one has

lim
N→∞

||
1

|ΦN |

∑

u∈ΦN

cuT p1(u)f1 · · · · · T
pr(u)fr||L2(X) = 0

for any Følner sequence {ΦN}∞N=1 in Z
d.
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3.1. We first prove the theorem for polynomials of degree 1 which we call affine
functions.

For next lemma, ergodicity is not needed.

Lemma 3.2. Let p : Z
d → Z, p(u) = a1u1 + · · ·+ adud with a1, . . . , au ∈ Z. and

not all aj equal to 0. Let a = gcd(a1, . . . , ad). Then for any f ∈ L2(X) and any
Følner sequence {ΦN}∞N=1 in Z

d, we have

lim
N→∞

1

|ΦN |

∑

u∈ΦN

T p(u)f = E(f |Ja)

in L2(X), where Ja is the factor of X associated with the σ-algebra of T a-invariant
measurable subsets of X.

Proof. Let E := {f ∈ L2(µ) : f = T af}, and F := {g − T ag; g ∈ L2(µ)}, we know
that E + F is dense in L2(µ), so it suffices to establish the lemma in the two cases
that f ∈ E and that f ∈ F . When T af = f , then T p(u)f = f for every u, so the
assertion is obvious. Now suppose f = g − T ag for some g ∈ L2(X). Since there
exists h = (h1, . . . , hd) ∈ Z

d such that a = gcd(a1, . . . , ad) = h1a1 + · · ·+ hdad, and
by the property of Følner sequence, we have

1

|ΦN |

∑

u∈ΦN

T p(u)f =
1

|ΦN |

∑

u∈ΦN

(T p(u)g − T p(u)+ag) =
1

|ΦN |

∑

u∈ΦN

(T p(u)g − T p(u+h)g)

=
1

|ΦN |

∑

u∈ΦN

T p(u)g −
1

|ΦN |

∑

u∈h+ΦN

T p(u)g

and thus

1

|ΦN |

∑

u∈ΦN

T p(u)f‖L2(X) ≤
1

|ΦN |
||g||L2(X) · |ΦN△(ΦN + h)| → 0

as N → +∞. �

Lemma 3.3. Let p : Z
d → Z be a nonconstant affine function. There exists a

constant c such that for any f ∈ L∞(X) and any sequence {cu}u∈Zd,|cu| ≤ 1, one
has

lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

cuT p(u)f ||L2(X) ≤ c|||f |||2(3)

for any Følner sequence {ΦN}∞N=1 in Z
d.

Proof. Let p(u) = a0+a1u1+· · ·+adud, u = (u1, . . . , ud) ∈ Z
d, with a1, . . . , au ∈ Z.

After replacing f by T a0f we may assume that a0 = 0. Put a = gcd(a1, . . . , ad).
Let Q be the left side of (3). Then

Q2 = lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

cuT p(u)f ||2L2(X)

≤ lim sup
N→∞

1

|ΦN |2

∑

u∈ΦN

∑

v∈ΦN

|cucv

∫
T p(u−v)f · fdµ|

By the Cauchy-Schwarz Inequality,

Q4 ≤ lim sup
N→∞

1

|ΦN |2

∑

u∈ΦN

∑

v∈ΦN

|

∫
T p(u−v)f · fdµ|2
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Since {ΦN}∞N=1 is a Følner sequence in Z
d, {ΦN ×ΦN}∞N=1 is a Følner sequence in

Z
2d, and p′ : (u, v) 7−→ p(u − v) is a nonconstant non zero linear function on Z

2d.
We have

Q4 ≤ lim sup
N→∞

1

|ΦN |2

∑

(u,v)∈ΦN×ΦN

|

∫

X

T p′(u,v)f · fdµ|2

≤ lim sup
N→∞

1

|ΦN |2

∑

(u,v)∈ΦN×ΦN

∫

X×X

(T × T )p′(u,v)f ⊗ f · f ⊗ fdµ × µ

Applying Lemma 3.2 to system (X×X, µ×µ, T×T ) and linear polynomial function
p′, we get

lim
N→∞

1

|ΦN |2

∑

(u,v)∈ΦN×ΦN

(T × T )p′(u,v)f ⊗ f = E(f ⊗ f |Ia),

where Ia is the σ-algebra of T a ×T a-invariant measurable subsets of X ×X . Thus

Q4 ≤

∫

X×X

|E(f ⊗ f |Ia)|2dµ × µ = lim
N→∞

1

N

N∑

n=1

∫

X×X

(T × T )anf ⊗ f · f ⊗ fdµ × µ

= lim
N→∞

1

N

N∑

n=1

|

∫

X

T anf · fdµ|2 ≤ a lim
1

aN

aN∑

n=1

|

∫

X

T nf · fdµ|2 = a|||f |||42.

�

Lemma 3.4. Let p : Z
d → Z be a nonconstant affine function. There exists

a constant l such that for any f ∈ L∞(X), any k ≥ 1 and any Følner sequence
{ΦN}∞N=1 in Z

d, one has

lim
N→∞

1

|ΦN |

∑

u∈ΦN

|||f · T p(n)f |||2
k+1

k ≤ l|||f |||2
k+1

k+1

Proof. See Leibman [5], Lemma 8. �

Proposition 3.5. Let p1, p2, . . . , pr : Z
d → Z be nonconstant essentially distinct

affine functions. There exists a constant C such that for any f1, . . . , fr ∈ L∞(X)
and any sequence {cu}u∈Zd,|cu| ≤ 1, one has

lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

cuT p1(u)f1 · · · · · T
pr(u)fr||L2(X) ≤ C|||f1|||r+1 ·

r∏

i=2

||fi||L∞(X).

for any Følner sequence {ΦN}∞N=1 in Z
d.

Proof. The proof is almost exactly the same as that of Proposition 5 in Leibman’s
paper [5], the only difference is here we are dealing with the weighted averages.
We follow Leibman’s proof [5] line by line, giving all the steps but omitting proofs
when there are the same.

We will proceed by induction on r. For r = 1, the statement is given by Lemma
3.3. Let r ≥ 2, f1, . . . , fr ∈ L∞(X) and let {ΦN}∞N=1 be Følner sequence in Z

d. We
can assume that |f2|, . . . , |fr| ≤ 1, and that p1(0) = · · · = pr(0) = 0. By Lemma
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4(i) in [5], for any finite F ⊂ Z
d, we get

lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

cu

r∏

i=1

T pi(u)fi||
2
L2(X)

≤
1

|F |2

∑

v,w∈F

lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

cu+vcu+w

r−1∏

i=1

T (pi−pr)(u)(T pi(v)fi · T
pi(w)fi)||L2(X).

For fixed v, w, write dv,w
u = cu+vcu+w, so |dv,w

u | ≤ 1. We remark that pi − pr,
1 ≤ i ≤ r−1, are non constant essentially distinct affine functions. By the induction
hypothesis there exists a constant C

′

, independent of f1, . . . , fr,{cu}, v, w, and
{ΦN}∞N=1, such that

lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

dv,w
u

r−1∏

i=1

T (pi−pr)(u)(T pi(v)fi · T
pi(w)fi)||L2(X)

≤ C′|||T p1(v)f1 · T
p1(w)f1|||r = C′|||T p1(v−w)f1 · f1|||r

for all v, w ∈ Z
d. Thus, for any finite setF ⊂ Z

d, by Hölder inequality,

lim sup
N→∞

‖
1

|ΦN |

∑

u∈ΦN

cu

r∏

i=1

T pi(u)fi‖L2(X) ≤ C′1/2
(

1

|F |2

∑

v,w∈F

|||f1 · T
p1(w−v)f1|||

2r

r )(1/2)r+1

.

Let{ΨM}∞M=1 be any Følner sequence in Z
d. By Lemma 3.4, we have

1

|ΨM |2

∑

v,w∈ΨM

|||f1 · T
p1(w−v)f1|||

2r

r ≤ c|||f1|||
2r+1

r+1 ,

where c is independent on f1. Substituting the sets ΨM , M ∈ N for F , we obtain

lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

cu

r∏

i=1

T pi(u)fi||L2(X) ≤ C
′1/2

c(1/2)r+1

|||f1|||r+1.

�

3.2. In this section we prove the theorem 2.2 for nonlinear polynomials but in a
less general condition.

We call system any finite set of integer polynomials P = {p1, . . . , pr : Z
d → Z}.

The degree deg P of the system P is the maximum degree of its elements.
We say two integer polynomials p, q are equivalent if deg p = deg q and deg(p −

q) < deg p. Let P be a system. We can partition P into equivalence classes for
this relation. Let ωl be the number of classes of degree 0 < l ≤ deg P . Define
the weight ω(P ) of system P to be the vector (ω1, . . . , ωdeg P ). For two vectors

ω = (ω1, . . . , ωm) and ω
′

= (ω
′

1, . . . , ω
′

m′ ), we write ω < ω
′

, if either m < m
′

or

m = m
′

and there exists n ≤ m such that ωn < ω
′

n and ωl = ω
′

l for l = n+1, . . . , m.
Under this relation, the set of weights of systems becomes well ordered. The PET-
induction is an induction on the weights of systems.

We call the system P = {p1, . . . , pr} standard if pi are nonconstant and essen-
tially distinct and deg p1 = deg P . And we say that a certain property holds for
almost all ν ∈ Z

d if the set of elements of Z
d for which it does not hold is contained

in the set of zeroes of a nontrivial polynomial on Z
d.
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Proposition 3.6. For any r ∈ N and any integer vector w = (w1, . . . , wl), there
exists k ∈ N such that for any standard system {p1, . . . , pr : Z

d → Z} of weight ω,
any f1, . . . , fr ∈ L∞(X) with |||f1|||k = 0, and any sequence {cu}u∈Zd, |cu| ≤ 1, one
has

lim
N→∞

||
∑

u∈ΦN

cuT p1(u)f1 · · · · · T
pr(n)fr||L2(X) = 0(4)

for any Følner sequence {ΦN}∞N=1 in Z
d.

Proof. The proof of this proposition is almost exactly the same as that of Propo-
sition 9 in Leibman’s paper [5],As in the proof of Proposition 3.5, we give all the
steps but omit proofs when there are the same as in [5].

We will proceed by PET-induction. For system of degree 1 the proposition is
given by Proposition 3.5. Let P = {p1, . . . , pr : Z

d → Z} be a standard system of
degree ≥ 2 and of weight ω.

Note that for each s < 2r, there are only finite many integer vectors ω
′

< ω
which are the weights of systems with s elements. We denote the number of vectors
here by ρ(s) and these vectors by ωs

j , j = 1, . . . , ρ(s).

By inductive hypothesis, for s < 2r, and 1 ≤ j ≤ ρ(s), there exists k(s, ωs
j ), such

that for any standard system {p1, . . . , ps : Z
d → Z} of weight ωs

j , any f1, . . . , fr ∈

L∞(X) with |||f1|||k(s,ωs
j
) = 0, and any {cu}u∈Zd , |cu| ≤ 1, property(4) holds for

any Følner sequence {ΦN}∞N=1 in Z
d. Set k = max1≤s<2r max1≤j≤ρ(s) k(s, ωs

j ). We

have for any standard system {p1, . . . , ps : Z
d → Z} with s < 2r of weight ω

′

< ω,
any f1, . . . , fr ∈ L∞(X) with |||f1|||k = 0, and {cu}u∈Zd , |cu| ≤ 1, property (4) holds
for any Følner sequence {ΦN}∞N=1 in Z

d.
Choose io ∈ {2, . . . , r} such that Pi0 has the minimal degree in P ; if all polyno-

mials in P have the same degree, choose i0 such that pi0 is not equivalent to p1; if
all polynomials in P are equivalent, choose i0 arbitrarily.

Let I1 = {i ∈ {1, . . . , r} : deg pi = 1} and I2 = {i ∈ {1, . . . , r} : deg pi ≥ 2}. For
each v, w ∈ Z

d, define

Pv,w = {pi(u + v), pi(u + w) : i ∈ I2}
⋃

{pi(u + w) : i ∈ I1},

and order the set as Pv,w = {qv,w,1, . . . , qv,w,s}, where qv,w,1(u) = p1(u + v), and
qv,w,s(u) = pi0(u + w).

It is easy to check that Pv,w is a standard system for almost all (v, w) ∈ Z
2d and

ω(Pv,w) = ω(P ) = ω for all v, w ∈ Z
d.

For v, w ∈ Z
d, define P

′

v,w = {qv,w,1 − qv,w,s, . . . , qv,w,s−1 − qv,w,s}.

For almost all (v, w) ∈ Z
2d the polynomials qv,w,j − qv,w,s, j = 1, . . . , s − 1 are

nonconstant and essentially distinct, P ′
v,w is a standard system and ω(P

′

v,w) <
ω(Pv,w) = ω.

Now let f1, . . . , fr ∈ L∞(X) with |||f1|||k = 0, and let {ΦN}∞N=1 be a Følner
sequence in Z

d. We assume that |f2|, . . . , |fr| ≤ 1. By Lemma 4(i) in [5], for any
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finite set F ⊂ Z
d we get

lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

cu

r∏

i=1

T pi(u)fi||
2
L2(X)

≤
1

|F |2

∑

v,w∈F

lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

cu+vcu+w

s−1∏

j=1

T (qv,w,j−qv,w,s)(u)hv,w,j ||L2(X),(5)

where qv,w,1, . . . , qv,w,s are the elements of the system Pv,w and

hv,w,j =

{
fi i ∈ I2

fi · T
pi(v)−pi(w)fi i ∈ I1.

Notice that deg p1 = deg P ≥ 2, thus 1 ∈ I2, so hv,w,1 = f1. For fixed v, w, write

dv,w
u = cu+vcu+w, |du| ≤ 1. By the induction hypothesis applied to system P

′

v,w,

lim
N→∞

||
1

|ΦN |

∑

u∈ΦN

dv,w
u

s−1∏

j=1

T (qv,w,j−qv,w,s)(u)hv,w,j||L2(X) = 0.

for almost all (v, w) ∈ Z
2d such that P

′

v,w is standard and ω(P
′

v,w) < ω(Pv,w) = ω.
Since for all other (v, w) this norm is bounded by 1, we have

inf
F

1

|F |2

∑

v,w∈F

lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

du

s−1∏

j=1

T (qv,w,j−qv,w,s)(u)hv,w,j||L2(X) = 0.

Collecting this formula with the formula (5), we get the announced result. �

3.3. We now turn to the general case.

Proof of Theorem 2.2. The proof of this theorem is almost exactly the same as
that of theorem 10 in Leibman’s paper [5]. Proposition 3.6 implies the result for
standard systems. Let P = {p1, . . . , pr} be a (nonstandard) system of nonconstant
essentially distinct polynomials Z

d → Z of degree ≤ b, let f1, . . . , fr ∈ L∞(X) and
{ΦN}∞N=1 be a Følner sequence in Z

d. By Lemma 4 (ii) in Leibman’s paper [5],
there exists a Følner sequence {ΘM}∞M=1 in Z

3d, such that

lim sup
N→∞

||
1

|ΦN |

∑

u∈ΦN

cu

r∏

i=1

T pi(u)fi||
2
L2(X)

≤ lim sup
N→∞

||
1

|ΘM |

∑

(u,v,w)∈ΘM

du,v,w

r∏

i=1

T pi(u+v)+q(u)fi ·
r∏

i=1

T pi(u+w)+q(u)fi||L2(X),

where du,v,w = cu+vcu+w,|du| ≤ 1, and q is any polynomial Z
d → Z of degree b.

The set

{p1(u + v) + q(u), . . . , pr(u + v) + q(u), p1(u + w) + q(u), . . . , pr(u + w) + q(u)}

of polynomials Z
3d → Z is a standard system of degree b with 2r elements, thus

there exists k ∈ N (depending on r and b only), such that

lim sup
N→∞

||
1

|ΘM |

∑

(u,v,w)∈ΘM

du

r∏

i=1

T pi(u+v)+q(u)fi ·
r∏

i=1

T pi(u+w)+q(u)fi||L2(X) = 0.

�
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