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Self Organizing Map algorithm and distortion measure

Abstract

We study the statistical meaning of the minimization of distortion measure and the relation

between the equilibrium points of the SOM algorithm and the minima of distortion measure.

If we assume that the observations and the map lie in an compact Euclidean space, we prove

the strong consistency of the map which almost minimizes the empirical distortion. Moreover,

after calculating the derivatives of the theoretical distortion measure, we show that the points

minimizing this measure and the equilibria of the Kohonen map do not match in general. We

illustrate, with a simple example, how this occurs.

keywords Distortion measure, asymptotic convergence, consistency, Self Organizing Map, empir-

ical processes, Glivenko-Cantelli class, uniform law of large numbers, general neighborhood function.
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1 Introduction

The distortion or distortion measure, is certainly the most popular criterion for assessing the quality

of the classification of a Kohonen map (see Kohonen [8]). This measure yields an assessment of

model properties with respect to the data and overcomes the absence of cost function in the SOM

algorithm. Moreover, the SOM algorithm has been proven to be an approximation for the gradient

of distortion measure (see Graepel et al.[6]).

Although the Kohonen map is proven to converge sometimes on equilibria points, when the

number of observations tends to infinity, the learning dynamic cannot be described by a gradient

descent of distortion measure for an infinite number of observations (see for example Erwin et

al. [2]). Moreover, Kohonen [9] has shown in some examples for the one dimensional grid, that

the model vector produced by the SOM algorithm does not exactly coincide with the optimum of

distortion measure. This property seems to be paradoxical, on one hand SOM seems to minimize

the distortion for a finite number of observations, but this behavior is no more true for the limit,

i.e. an infinity of observations.

In this paper we will investigate the relationship between the SOM and distortion measure.

Firstly we will prove the strong consistency of the estimator minimizing the empirical distortion.

More precisely, we will prove that the maps almost minimizing the empirical distortion measure will

converge almost surely to the set of maps minimizing the theoretical distortion measure. Secondly,

we will calculate the derivatives of the theoretical distortion, and deduce from this calculation that

the points minimizing the theoretical distortion differ generally from the equilibrium point of the

SOM, whatever the dimension of the grid. Finally we will illustrate, with a simple example, why

an apparent contradiction between the discrete and the continuous case occurs.
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2 Distortion measure

We also assume in the sequel that the observations ω are independent and identically distributed

(i.i.d.) and are of dimension d. We assume that the observations lie in an compact space, therefore,

without loss of generality, they lie in the compact space [0, 1]d. We assume also that these obser-

vations follow the probability law P having a density with respect to the Lebesgue measure of R
d,

this density is assumed to be bounded by a constant B. In the sequel we call centroid a vector of

[0, 1]d representing a class of observations ω. We adopt in the sequel the notation of Cottrell et al.

[1].

Definition 2.1 For e ∈ N
∗, e ≤ d, we consider a set of units indexed by I ⊂ Z

e with the neigh-

borhood function Λ from I − I := {i − j, i, j ∈ I} to [0, 1] satisfying Λ (k) = Λ (−k) and Λ (0) = 1,

note that such neighborhood function can be discrete or continuous.

Definition 2.2 Note ‖.‖ the Euclidean norm, let

Dδ
I :=

{

x := (xi)i∈I ∈
(

[0, 1]d
)I

, such that ‖xi − xj‖ ≥ δ if i 6= j

}

be the set of centroids xi separated by, at least, δ.

Definition 2.3 if x := (xi)i∈I is the set of units, the Voronoi tessellation (Ci (x))i∈I is defined by

Ci (x) :=
{

ω ∈ [0, 1]d |‖xi − ω‖ < ‖xk − ω‖ if k 6= i
}

In case of equality we assign ω ∈ Ci (x) thanks to the lexicographical order. Conversely, the index

of the Voronoi tessellation for an observation ω will be defined by

C−1
x (ω) = i ∈ I, if and only if ω ∈ Ci(x)
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Definition 2.4 distortion measures the quality of a quantification with respect to the neighborhood

structure. It is defined as follows:

• Distortion for the discrete case (empirical distortion): We assume that the observations are

in a finite set Ω = {ω1, · · · , ωn} and are uniformly distributed on this set. Then, distortion

measure is

Vn (x) =
1

2n

∑

i∈I

∑

ω∈Ci(x)





∑

j∈I

Λ (i − j) ‖xj − ω‖2





• Distortion for the continuous case (theoretical distortion): Let us assume that P is the distri-

bution function of the observations. The theoretical distortion measure is

V (x) =
1

2

∑

i,j∈I

Λ (i − j)

∫

Ci(x)
‖xj − ω‖2 dP

As mentioned before the distribution P has a density with respect to the Lebesgue measure

bounded by a constant B > 0.

The distortion measure is well known to be not continuous with respect to the centroids (xi)i∈I

for the discrete case. Indeed, if an observation is exactly on an hyperplan separating two centroids,

shifting one of the centroids will imply a jump for the distortion. So, the distortion is not continuous

and, in general, a map which realizes the minimum of the empirical distortion, does not exist.

However, if we consider the sequences of maps xn such that the distortion Vn(xn) will be sufficiently

close to its minimum, then we will show that such sequences of maps xn will converge almost surely

to the set of maps which reaches the minimum of the theoretical distortion measure V (x).
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3 Consistency of the almost minimum of distortion

This demonstration is an extended version of Rynkiewicz [11]. It follows the same line as Pollard

[10], so we will first show a uniform law of large numbers and then deduce the strong consistency

property.

3.1 Uniform law of large number

Let the family of functions be

G :=







gx(ω) :=
∑

j∈I

Λ
(

C−1
x (ω) − j

)

‖xj − ω‖2 for x ∈ Dδ
I







(1)

In order to show the uniform law of large numbers, we have to prove that:

sup
x∈Dδ

I

∣

∣

∣

∣

∫

gx(ω)dPn(ω) −
∫

gx(ω)dP (ω)

∣

∣

∣

∣

a.s.
n→∞−→ 0 (2)

since, for all probability measure Q on [0, 1]d:

∫

gx(ω)dQ(ω) =

∫

∑

j∈I

Λ
(

C−1
x (ω) − j

)

‖xj − ω‖2dQ(ω) =
1

2

∑

i,j∈I

Λ(i − j)

∫

Ci(x)
‖xj − ω‖2dQ(ω)

(3)

Now, a sufficient condition to verify the equation (2) is the following (see Gaenssler and Stute [5]):

∀ε > 0,∀x0 ∈ Dδ
I a neighborhood S(x0) of x0 exists such that

∫

gx0(ω)dP (ω)− ε <

∫ (

inf
x∈S(x0)

gx(ω)

)

dP (ω) ≤
∫

(

sup
x∈S(x0)

gx(ω)

)

dP (ω) <

∫

gx0(ω)dP (ω) + ε

(4)

First we prove the following result, using a similar technique as the proof of lemma 11 of Fort and

Pagès [3]
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Lemma 3.1 Let x ∈ Dδ
I and λ be the Lebesgue measure on [0, 1]d. Note Ec the complementary set

of set E in [0, 1]d and |I| the cardinal of set I. For 0 < α < δ
2 , let

Uα
i (x) =

{

ω ∈ [0, 1]d/∃y ∈ Dδ
I , xj = yj if j 6= i and ‖xi − yi‖ < α and ω ∈ Cc

i (y) ∩ Ci(x)
}

be the set of ω changing of Voronoi cells when the centroid xi are moving a distance of at most α.

Then

supx∈Dδ
I
λ (Uα

i (x)) < (|I| − 1)

(

2α

δ
+ α

)

(√
2
)d−1

(5)

proof Let x and y ∈ Dδ
I checking the assumption of lemma 3.1 and j 6= i ∈ I. In order to

prove the inequality, we have to bound the measure of ω belonging to the cells Ci(x) and Cj(y)

simultaneously, since (Ci(y))c =
⋃

j∈I,j 6=i Cj(y).

Note (z |t), the inner product between z and t, and −→n ij
x :=

xj−xi

‖xj−xi‖ . The parameter vector

x + γ1
−→n ij

x will be the vector with all components equal to x except the component i equal to

xi + γ1
−→n ij

x .

Since ‖yi − xi‖ < α, we have
(

yi − xi

∣

∣
−→n ij

x

)

= γ1 with |γ1| ≤ α < δ
2 . As the Lebesgue measure

(of R
d−1) of all plane sections of [0, 1]d is bounded by

(√
2
)d−1

, when there is a movement of the

centroid xi, of γ1
−→n ij

x , the Lebesgue measure of ω changing of Voronoi cells is then bounded by

|γ1|
2

(√
2
)d−1

, so

λ
(

Cj

(

x + γ1
−→n ij

x

)

∩ Ci(x)
)

< α
(√

2
)d−1

(6)

Moreover, we note that x + γ1
−→n ij

x belongs to D
δ
2
I .

On the other hand, let yi −xi −γ1
−→n ij

x := γ2
−→τ ij

x , with ‖−→τ ij
x ‖ = 1, be the orthogonal component

to −→n ij
x of the movement of xi to yi, i.e. such that

(−→n ij
x

∣

∣
−→τ ij

x

)

= 0.

As it is shown in figure (1), in dimension 2, for all x′ = x + γ1
−→n ij

x ∈ D
δ
2
I , the Lebesgue measure

of ω changing of Voronoi cells for a movement of centroid x′
i, of γ2

−→τ ij
x is bounded by 2α

δ

(√
2
)d−1

.
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Therefore, we have

λ
(

Cj

(

x + γ1
−→n ij

x + γ2
−→τ ij

x

)

∩ Ci(x)
)

< α
(√

2
)d−1

+
2α

δ

(√
2
)d−1

(7)

Figure 1: hatched area < 2γ2

δ
<

√
2×2α
δ

γ2

γ2

0

1

2

2

δ

δ/2

/2
 <

x’

x j

i

As this inequality is independent of x, finally we get:

sup
x∈Dδ

I

λ
(

Cj

(

x + γ1
−→n ij

x + γ2
−→τ ij

x

)

∩ Ci(x)
)

<

(

α +
2α

δ

)

(√
2
)d−1

(8)

then

sup
x∈Dδ

I

λ (Uα
i (x)) < (|I| − 1)

(

α +
2α

δ

)

(√
2
)d−1

�

Now consider x0 ∈ Dδ
I and S(x0) a neighborhood of x0 included in a sphere of radius α. Let

W (x0) be the set of ω remaining in their Voronoi cells when x0 go to any x ∈ S(x0). For all
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ω ∈ W (x0) we have

infx∈S(x0) gx(ω) ≥ gx0(ω) −∑j∈I Λ
(

C−1
x0 (ω) − j

)

(

‖x0
j − ω‖2 − infx∈S(x0) ‖x0

j − ω‖2
)

≥ gx0
j
(ω) −∑j∈I

(

‖x0
j − ω‖2 − infx∈S(x0) ‖x0

j − ω‖2
)

(9)

For all ω ∈ [0, 1]d, for a small enough α, we have
(

‖x0
j − ω‖2 − infx∈S(x0) ‖xj − ω‖2

)

< ε
2B|I| so

∫

W (x0)

∑

j∈I

(

‖x0
j − ω‖2 − inf

x∈S(x0)
‖xj − ω‖2

)

dP (ω) <
ε

2
and

∫

W (x0)

(

gx0(ω) − inf
x∈S(x0)

gx(ω)

)

<
ε

2

(10)

Now, let W (x0)c be the set of ω changing of Voronoi cells when the centroids go from x0 to

x ∈ Sx0. For all ω ∈ W (x0)c there exist two different indices i and j such that ω ∈ Ci(x
0) and

ω ∈ Cj(x). Let us define a sequence xk, k ∈ {0, · · · , ‖I|}, by sequentially changing the components

of x0 into the components of x such that x|I| = x (xk is the set of intermediate configurations

to transform x0 in x), then there exists a moment l ∈ {0, · · · , |I| − 1}, such that ω ∈ Ci(x
l) and

ω /∈ Ci(x
l+1). Indeed, if it were not the case, you could find a sequence xk, k ∈ {0, · · · , ‖I|}, with

x|I| = x such that ω ∈ Ci(x
|I|) = Ci(x), which would be a contradiction. So W (x0)c is included in

the set of ω which change of Voronoi set when we change sequentially the components of x0 by the

components of x.

If α < δ
4 , then when the components x0

i of x0 are moving sequentially from x0 to xi of x, each

intermediate configuration stays in D
δ
2
I . Since, for all i ∈ I, ‖xi − ω‖2 is bounded by 1 on [0, 1]d,

the lemma 3.1, assure that

∫

W (x0)c

gx(ω)dP (ω) < B|I|(|I| − 1))

(

4α

δ
+ α

)

(√
2
)d−1

(11)
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Finally, if we choose a small enough α such that B|I|(|I| − 1))
(

4α
δ

+ α
) (√

2
)d−1

< ε
2 , we get

∫

Dδ
I

gx0(ω)dP (ω) − ε <

∫

Dδ
I

(

inf
x∈S(x0)

gx(ω)

)

dP (ω) (12)

Exactly in the same way, for a small enough α, we get

∫

Dδ
I

(

sup
x∈S(x0)

gx(ω)

)

dP (ω) <

∫

Dδ
I

gx0(ω)dP (ω) + ε (13)

Therefore, the sufficient condition for the uniform law of large numbers is true.

3.2 Consistency

We want to show the consistency of the procedure involving choosing maps (xn)n∈N∗ which almost

minimizes the empirical distortions (Vn(x))n∈N∗ in Dδ
I .

Let

χ̄β
n :=

{

x ∈ Dδ
I such that Vn(x) < inf

x∈Dδ
I

Vn(x) +
1

β(n)

}

(14)

be the set of estimators that almost minimize the empirical distortion, with β(n) being a strictly

positive function, such that limn→+∞ β(n) = ∞. Let χ̄ = arg minx∈Dδ
I
V (x) be the set of maps

minimizing the theoretical distortion, eventually reduced to one map. It is easy to verify that the

function x 7−→ V (x) is continuous on Dδ
I , so for all neighborhood N of χ̄, η (N ) > 0 exists such

that

∀x ∈ Dδ
I\N , V (x) > min

x∈Dδ
I

V (x) + η (N ) (15)

to show the strong consistency, it is enough to prove that for all neighborhoods N of χ̄ we have

lim
n→∞

χ̄β
n

a.s.⊂ N ⇐⇒ lim
n→∞

V
(

χ̄β
n

)

− V (χ̄)
a.s.
≤ η (N ) (16)
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with V (E) − V (F ) := sup {V (x) − V (y) for x ∈ E and y ∈ F}. By definition Vn

(

χ̄β
n

) a.s.
≤

Vn (χ̄)+ 1
β(n) , and the uniform law of large numbers yields limn→∞ Vn (χ̄)−V (χ̄)

a.s.
= 0, we get then

limn→∞ Vn

(

χ̄β
n

) a.s.
≤ V (χ̄) + η(N )

2 . Moreover, we have limn→∞ V
(

χ̄β
n

)

− Vn

(

χ̄β
n

)

a.s.
= 0 and

lim
n→∞

V
(

χ̄β
n

)

− η (N )

2

a.s.
< lim

n→∞
Vn

(

χ̄β
n

) a.s.
≤ V (χ̄) +

η (N )

2
(17)

finally limn→∞ V
(

χ̄β
n

)

− V (χ̄)
a.s.
≤ η (N ), this proves the strong consistency of the maps which

almost minimizes the empirical distortion.

4 Differences between the SOM algorithm and distortion measure

Using the result of the previous section we can investigate the differences between the minima

of the empirical distortion and the equilibria of the SOM algorithm. Namely, if these equilibria

were maps almost minimizing the empirical distortion criterion they will converge, as the number

of observations increases, to the minimum of the theoretical distortion measure but we will show

that it is not generally the case. In the next section we will compute the gradient of the function

V (x), and show that even in multidimensional cases, the equilibria of the SOM algorithm and the

minima of V (x) do not match. These results generalize the results of Kohonen [9] obtained for

unidimensional cases.

4.1 Derivability of V (x)

Let us now write

DI :=

{

(

xi =
(

x1
i , · · · , xd

i

))

i∈I
∈
(

[0, 1]d
)I ∣
∣

∣
∀k ∈ {1, · · · , d}

∥

∥

∥
xk

i − xk
j

∥

∥

∥
> 0 if i 6= j

}

(18)
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For i and j ∈ I, notes −→n ij
x the vector

xj−xi

‖xj−xi‖ and let

M ij
x :=:

{

u ∈ R
d/

〈

u − xi − xj

2
, xi − xj

〉

= 0

}

(19)

be the mediator hyperplan. Let us note λij
x (ω) the Lebesgue measure on M ij

x . Fort and Pagès [3],

have shown the following lemma:

Lemma 4.1 Let φ be an R valued continuous function on [0, 1]d. For x ∈ DI , let be Φi (x) :=
∫

Ci(x) φ (ω) dω. We note also (e1, · · · , ed) the canonical base of R
d. The function Φi is continuously

derivable on DI and ∀i 6= j, l ∈ {1, · · · , d}

∂Φi

∂xl
j

(x) =

∫

C̄i(x)∩C̄j(x)
φ (ω)

{

1

2

〈−→n ij
x , el

〉

+
1

‖xj − xi‖
×
〈(

xi + xj

2
− ω

)

, el

〉}

λij
x (ω) dω (20)

Moreover, if we note ∂Φi

∂xi
(x) :=













∂Φi

∂x1
j

(x)

...

∂Φi

∂xd
j

(x)













∂Φi

∂xi
(x) = −

∑

j∈I,j 6=i

∂Φi

∂xj
(x) (21)

Then, we deduce the theorem:

Theorem 4.2 If P (dω) = f (ω) dω, where f is continuous on [0; 1]d, then V is continuously
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derivable on DI and we have

∂V
∂xi

(x) =
∑

k∈I Λ (i − k)
∫

Ck(x) (xi − ω)P (dω)

+1
2

∑

j∈I

∑

k∈I,k 6=i (Λ (k − j) − Λ (i − j))

×
∫

C̄k(x)∩C̄i(x) ‖xj − ω‖2
(

1
2
−→n ki

x + 1
‖xk−xi‖ ×

(

xi+xk

2 − ω
)

)

f (ω)λki
x dω

(22)

where ∂V
∂xi

(x) =













∂V
∂x1

i

(x)

...

∂V
∂xd

i

(x)













Proof As the function V (x) is continuous on DI , we only have to show that the partial derivatives

exist and are continuous. We note hl
i ∈ R

|I|×d the vector with all components null except the

component corresponding to xl
i , which is h > 0. Then

V (x+hl
i)−V (x)

h
=

1
2

∑

k,j∈I, k,j 6=i Λ(k−j)
∫

Ck(x+hl
i)
‖xj−ω‖2P (dω)− 1

2

∑

k,j∈I, k,j 6=i Λ(k−j)
∫

Ck(x)
‖xj−ω‖2P (dω)

h

+

1
2

∑

j∈I, j 6=i Λ(i−j)
∫

Ci(x+hl
i)
‖xj−ω‖2P (dω)− 1

2

∑

j∈I,j 6=i Λ(i−j)
∫

Ci(x)‖xj−ω‖2P (dω)

h

+

1
2

∑

k∈I,k 6=i Λ(k−i)
∫

Ck(x+hl
i)
‖xi+hl

i−ω‖2
P (dω)−

∫

Ck(x)
‖xi−ω‖2P (dω)

h

+

1
2

(

∫

Ci(x+hl
i)
‖xi+hl

i−ω‖2
P (dω)−

∫

Ci(x)‖xi−ω‖2P (dω)

)

h

(23)

Where the first two lines of the sums concern centroids different from xi and the last two lines the

variation involving xi. Now, by applying the lemma 4.1, to the first two lines of the sum we get:
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limh→0
V (x+hl

i)−V (x)

h
= 1

2

∑

k,j∈I, k,j 6=i Λ (k − j)
∫

C̄k(x)∩C̄i(x) ‖xj − ω‖2
{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el

〉

}

λki
x (ω) dω

−1
2

∑

k,j∈I, k,j 6=i Λ (i − j)
∫

C̄k(x)∩C̄i(x) ‖xj − ω‖2
{

1
2

〈

−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el

〉

}

λki
x (ω) dω

+ limh→0

1
2

∑

k∈I,k 6=i Λ(k−i)
∫

Ck(x+hl
i)
‖xi−ω‖2+2h(xl

i−wl)+o(h)P (dω)−
∫

Ck(x)‖xi−ω‖2P (dω)

h

+ limh→0

1
2

(

∫

Ci(x+hl
i)
‖xi−ω‖2+2h(xl

i−wl)+o(h)P (dω)−
∫

Ci(x)
‖xi−ω‖2P (dω)

)

h

(24)

Then, by applying the lemma 4.1 to the last two lines, we get:

limh→0
V (x+hl

i)−V (x)

h
= 1

2

∑

k,j∈I, k,j 6=i (Λ (k − j) − Λ (i − j))
∫

C̄k(x)∩C̄i(x) ‖xj − ω‖2
{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el

〉

}

λki
x (ω) dω

+1
2

∑

k∈I,k 6=i Λ (k − i)
∫

C̄k(x)∩C̄i(x) ‖xi − ω‖2
{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el

〉

}

λki
x (ω) dω

−1
2

∑

k∈I,k 6=i

∫

C̄k(x)∩C̄i(x) ‖xi − ω‖2
{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el

〉

}

λki
x (ω) dω

+
∑

k∈I Λ (k − i)
∫

Ck(x)(x
l
i − wl)P (dω)

(25)

finally

limh→0
V (x+hl

i)−V (x)

h
= ∂V

∂xl
i

(x) = 1
2

∑

k,j∈I, k 6=i (Λ (k − j) − Λ (i − j))

∫

C̄k(x)∩C̄i(x) ‖xj − ω‖2
{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el

〉

}

λki
x (ω) dω

+
∑

k∈I Λ (k − i)
∫

Ck(x)(x
l
i − wl)P (dω)�

(26)

If we assume that the minimum of distortion measure is reached in the interior of DI (i.e. that

no centroids collapse), we deduce from the previous results that it does not match the equilibrium

of the Kohonen algorithm. Indeed, a point x∗ := (x∗
i )i∈I asymptotically stable for the Kohonen
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algorithm will verify for all i ∈ I:

∑

k∈I

Λ (i − k)

∫

Ck(x)
(xi − ω) P (dω) = 0 (27)

This equation is valid even for the batch algorithm (see Fort, Cottrell and Letrémy [4]). It can

match with a minimum of the limit distortion only if

1
2

∑

j∈I

∑

k∈I,k 6=i (Λ (k − j) − Λ (i − j))

×
∫

C̄k(x)∩C̄i(x) ‖xj − ω‖2
(

1
2
−→n ki

x + 1
‖xk−xi‖ ×

(

xi+xk

2 − ω
)

)

f (ω) λki
x dω = 0

(28)

but, in general, this term is not null.

4.2 Example of a Kohonen string with 3 centroids

The previous section has shown that the minimum of distortion measure does not match the

equilibrium of the Kohonen algorithm. We will illustrate this with a simple example. The classical

explanation (see Kohonen [7]) of local potential minimization by the Kohonen algorithm is far from

being satisfactory. Actually it seems that the minima of the distortion measure always occur on a

discontinuity point, where the function is not derivable.

To illustrate this, let a Kohonen string be on segment [0, 1] (see figure 2), with a discrete

neighborhood
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Figure 2: Kohonen string

0 1

1 1

X X X
1 2 3

4.2.1 The theoretical difference

The equilibrium of the SOM algorithm is reached on points x verifying

∂V
∂x1

(x) =
∫

C1(x) (x1 − ω)P (dω) +
∫

C2(x) (x1 − ω)P (dω) = 0

∂V
∂x2

(x) =
∫

C1(x) (x2 − ω)P (dω) +
∫

C2(x) (x2 − ω)P (dω) +
∫

C3(x) (x2 − ω)P (dω) = 0

∂V
∂x3

(x) =
∫

C2(x) (x3 − ω)P (dω) +
∫

C3(x) (x3 − ω)P (dω) = 0

(29)

but the minima of the distortion are reached on points x verifying

∂V
∂x1

(x) =
∫

C1(x) (x1 − ω) P (dω) +
∫

C2(x) (x1 − ω)P (dω) − 1
4

∥

∥x3 − x1+x2
2

∥

∥

2
f
(

x1+x2
2

)

= 0

∂V
∂x2

(x) =
∫

C1(x) (x2 − ω) P (dω) +
∫

C2(x) (x2 − ω)P (dω) +
∫

C3(x) (x2 − ω)P (dω)

−1
4

∥

∥x3 − x1+x2
2

∥

∥

2
f
(

x1+x2
2

)

+ 1
4

∥

∥x1 − x3+x2
2

∥

∥

2
f
(

x3+x2
2

)

= 0

∂V
∂x3

(x) =
∫

C2(x) (x3 − ω) P (dω) +
∫

C3(x) (x3 − ω)P (dω) + 1
4

∥

∥x1 − x2+x3
2

∥

∥

2
f
(

x2+x3
2

)

= 0

(30)

If we assume, for example, that the density of observations is uniform U[0;1], i.e. f(x) = 1 if

x ∈ [0; 1], then these two sets of points have no point in common. Indeed, if the two sets are equal

then










x3 − x1+x2
2 = 0

x1 − x2+x3
2 = 0

(31)
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Therefore, x1 = x2 = x3, but this point is clearly not an equilibrium of the Kohonen map.

4.2.2 Illustration of the behavior of distortion measure

We will see that if one draws data with a uniform distribution on the segment [0, 1] and then one

computes the minimum of the distortion, then this minimum is always on a discontinuity point.

The more observations one has, the more discontinuities there are, but the global function looks

more and more regular. This is not surprising, since we know that the limit is derivable.

The method of simulation Since we have no numerical algorithm to compute the exact mini-

mum of variance, we proceed by exhaustive research based on a discretization of the space of the

centroids. To avoid too much computation, 0.001 is chosen as the discretization step. The following

figures are obtained in the following way:

1. Simulate n “data” (ω1, · · · , ωn), chosen with a uniform law on [0, 1].

2. Search exhaustively, on the discretization of DI , the string which minimizes the distortion.

3. For the best string (x∗
1, x

∗
2, x

∗
3), the graphical representations are obtained in the following

way:

• 3D Representation: we keep one centroid in the triplet (x∗
1, x∗

2, x∗
3), then we move the

other around a small neighborhood of its optimal position. The level z is the extended

variance multiplied by the number of observations n.

• 2D Representation: we keep two centroids in the triplet (x∗
1, x∗

2, x∗
3), then we move the

last one around a small neighborhood of its optimal position. The level z is the extended

variance multiplied by the number of observations n.



SOM and distortion measure 18

The following figures show the results obtained for a number of observations n varying from 10,

100 and 1000. We notice that, even for a small number of observations, the minima are always on

discontinuity points.

Figure 3: Distortion measure for 10 observations
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Figure 4: Distortion measure for 100 observations

x2

x3

z

x1

x3

z

x1

x2

z

0.30 0.32 0.34 0.36 0.38

11
.9

5
12

.0
0

12
.0

5
12

.1
0

12
.1

5

x1

z

0.46 0.48 0.50 0.52 0.54 0.56

12
.0

12
.1

12
.2

12
.3

12
.4

x2

z

0.62 0.64 0.66 0.68 0.70 0.72

11
.9

5
12

.0
0

12
.0

5
12

.1
0

12
.1

5
12

.2
0

x3

z

Figure 5: Distortion measure for 1000 observations
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5 Conclusion

For a finite number of observations, the Kohonen algorithm was supposed to give an approximation

of the minimum of distortion measure, but if it were the case, then why can the points of equilibrium

of the algorithm be different from the theoretical minimum of distortion? Moreover, we have shown

that if we choose maps that almost minimizes the empirical distortion, then these maps have to

converge to the set of maps which minimize the theoretical distortion. But, by calculating the

derivative of the theoretical distortion, we have shown that the equilibria of the Kohonen map can

not minimize this distortion in general. We illustrate this fact with an example where the minimum

is always reached on discontinuity points. This fact proves that the local derivability of distortion

measure is not an important property and is not a satisfactory explanation for the behavior of the

Kohonen algorithm when the number of observations is finite.

References

[1] Cottrell M., Fort, J.C. and Pagès G. (1998). Theoretical aspects of the SOM algorithm. Neu-

rocomputing, 21. 119-138.

[2] Erwin, E., Obermayer, K. and Schulten, K. (1992). Self-Organizing Maps: Ordering, Conver-

gence properties and Energy Functions. Biological Cybernetics, 67. 47-55.

[3] Fort, J.C. and Pagès G. (1995). On the a.s. convergence of the Kohonen algorithm with a

general neighborhood function. The Annals of Applied Probability, 5(4). 1177-1216.
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