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ABSTRACT 
 
Silicon-MEMS gyroscope is an important part of MEMS 
( Micro Electrical Mechanical System). There are some 
disturb ignored in traditional gyroscope that must be 
evaluated newly because of its smaller size (reach the 
level of micron). In these disturb, the air pressure largely 
influences the performance of the MEMS gyroscope. 
Different air pressure causes different gas damping 
coefficient for the MEMS comb linear vibration 
gyroscope and different gas damping coefficient 
influences the quality factor of the gyroscope directive. 
The quality factor influences the dynamic working 
bandwidth of the MEMS comb linear vibration gyroscope, 
so it is influences the output characteristic of the MEMS 
comb linear vibration gyroscope. The paper shows the 
relationship between the air pressure and the output 
amplified and phase of the detecting axis through 
analyzing the air pressure influence on the MEMS comb 
linear vibration gyroscope. It discusses the influence on 
the distributive frequency and quality factor of the MEMS 
comb linear vibration gyroscope for different air pressure. 

 

1. BASIC STRUCTURE OF THE MEMS COMB 
LINEAR VIBRATION GYROSCOPE 

 
Fig. 1 is the sketch of the MEMS comb linear vibration 
gyroscope. It mainly consists of two side drivers, one 
mass, damper including springs that jointed the moving 
mass and static spring, and datum seat. There are some 
fixed combs in drivers and some moving combs in masses. 
The two side drivers are fixed on datum seat. The moving 
mass is jointed with datum seat by flexible springs. The 
mass are only moved linearly in the direction of x-axis 
and y-axis due to the action of flexible supports and 
springs. 

 
Fig. 1 Sketch of the MEMS comb linear vibration 

gyroscope 
It has periodical electrostatic force between the fixed 
combs and the moving combs in the direction of x-axis 
when the moving combs on detecting mass is jointed the 
ground and a alternating current with direct current 
excursion is added on the fixed combs on two side drivers. 
So the detecting mass is vibrated in line periodically 
between the two side drivers. Here, if the body is tuned 
round y-axis, the detecting mass is vibrated in line in the 
direction plumbed the datum seat (i.e. the direction of z-
axis).  
Because it has sensitivity electrode under the detecting 
mass, the sensitivity capacitance is changed due to the 
linear vibration of the detecting mass in the direction of z-
axis. The changing quantity of the capacitance is in 
proportion to the input angle rate (i.e. the angle rate of the 
body is tuned round y-axis). Then we can get the input 
angle rate when we detect the changing quantity of the 
sensitivity capacitance. 
 

2. MOVING MODULE OF THE MEMS COMB 
LINEAR VIBRATION GYROSCOPE 

 
We assume that the angle rate of the body tuned round y-
axis is IGyω . The linear vibrated speed of the moving 

mass in the direction of x-axis is )(tv . Then the Coriolis 
force acceleration generated in the direction of z-axis is 

)(2 tva IGyz ω=                      (2.1) 
The corresponding rate is 

)()(2)(2 txdttvv yIGIGyz ωω∫ ==     (2.2) 

Then the movement equation of the moving mass in the 
direction of z-axis is 
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∫∫ == dttxdttxtz IGyIGy )(2)(2)( ωω        (2.3) 

The electrostatic force added on the moving mass in the 
direction of x-axis is 

d
wVn

F r
l 2

)12( 2
0εε−

=               (2.4) 

where: n is the number of the moving combs; V is the 
adding voltage. Because the adding voltage is the 
alternating current with direct current excursion, the 
expression of the power voltage is 

)sin(0 tVVV ca ω±= ; w is the overlap width of the 
comb; d is the clearance between the static and the 
moving combs; rε  is the relative constant of insulated 

medium; 0ε  is the vacuum relative constant 

( mpF /85.80 =ε ). 
So the movement equation of the moving mass in the 
direction of x-axis is 

tFtkx
dt

tdxc
dt

txdm cωsin)()()(
2

2

=++    (2.5) 

where: c is the damping coefficient, k is the elastic 

coefficient, 
d

VwVn
F ar 00)12(2 εε−
= . 

 
3. GAS DAMPING INFLUENCE FOR THE MEMS 

COMB LINEAR VIBRATION GYROSCOPE 
 
When the inner configuration of the MEMS comb linear 
vibration gyroscope is in vacuum, the damping coefficient 
is zero. Equation (2.5) is changed to 

tFtkx
dt

txdm cωsin)()(
2

2

=+         (3.1) 

So the output of the driving mode is  

)(
sin

)( 22
nc

c

m
tF

tx
ωω
ω
−

=                  (3.2) 

Where, nω  is the resonance frequency, it is determined 
by the mass and the flexibility coefficient and expressed 

as mkn /=ω . 
The output of the detecting mode is 

)(
sin)(

)( 22
ncc

cyIG tF
tz

ωωω
ωω

−
=            (3.3) 

When the air is included in the inner of the MEMS comb 
linear vibration gyroscope, according to the analyses 
method of amplitude modulation of carrier wave, the 
output of the driving mode is 

2222 )2()(

)sin(
)(

cnnc

ctF
tx

ωξωωω

ω

+−

Φ−
=    (3.4) 

where: 
mk
c

2
=ξ . 

Integrated (1.3) and (1.6), we can achieve the output of 
the detecting mode is 

2222 )2()(
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where: 
ξ2
1

=Q . 

We can see from (3.1)-(3.5) that the pressure is important 
to MEMS linear vibration gyroscope. The change of the 
pressure will bring the change of the damping coefficient. 
The gas created by other matters volatilization and part’s 
surface overflow is increased when the temperature 
increase. So the density of the gas and the pressure are 
changed. The relationship of the mucosity coefficient of 
the gas medium and the temperature is as follows (the 
other influence of the temperature for the MEMS comb 
linear vibration gyroscope is not considered here): 

nTT )/( 00µµ =                        (3.7) 

Where: 0µ is the gas mucosity coefficient at temperature 

0T , µ  is the gas mucosity coefficient at temperature T, n 
is the grade, different gas has different grade. 
So, the expression of ξ  in (3.4) is as follows: 

mk
TTc n

2
)/( 000 µ

ξ
+

=                (3.8) 

where, 0c  is others damping coefficient except gas. 
 

4. SIMULATION 
 
Enactment data are as follows: 
The length of the comb is mµ200 , the width of the 
comb is mµ20 , the space between the moving and the 
static comb at axis y is mµ3 . The resonance frequency is 

500Hz, so Hzc 5002 ×= πω . 
Simulation figures are as follows: 
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Fig.2 Relationship of the phase and the air damping 

 
Fig.3 Relationship of the driving displacement and the air 

damping 

 
Fig.4 Relationship of the detect scope and the air damping 
Figure 2 is the relationship of the phase and the gas 
damping. We can see from the figure that the relationship 
of the phase and the gas damping is linearity at most. Its 
changing scope is 0.17°-0.47°. This changing is arisen by 
the changing of the gas damping because of the increased 
temperature only. So influence of the gas damping on the 
phase is important. 
Figure 3 is showed the relationship of the scope of the 
driving axis and the gas damping. We can see from the 
picture that the relationship of the driving scope and the 
gas damping is nonlinear. The driving scope is devalued 
along with the gas damping increased. 
Figure 4 is the relationship of the detecting scope and the 
gas damping. The picture shows that the relationship of 
the detecting scope and the gas damping is nonlinear. The 
detecting scope is devalued along with the gas damping 
increased. 
 

5. CONCLUTION 
 
The changing of the gas medium is one of the most 
important influence factors for the MEMS comb linear 
vibration gyroscope. At the same time, it is one of the 

most neglected factors. We can see from the above 
analyze that the influence of the gas damping for the 
MEMS comb linear vibration gyroscope is very great. The 
size of the damping coefficient decides the characteristic 
of the frequency response. 
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