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ANALYSIS OF ASYMMETRIC PIEZOELECTRIC COMPOSITE BEAM

This paper deals with the vibration analysis of an asymmetric composite beam composed of glass a piezoelectric material. The Bernoulli's beam theory is adopted for mechanical deformations, and the electric potential field of the piezoelectric material is assumed such that the divergence-free requirement of the electrical displacements is satisfied. The accuracy of the analytic model is assessed by comparing the resonance frequencies obtained by the analytic model with those obtained by the finite element method. The model developed can be used as a tool for designing piezoelectric actuators such as micro-pumps.

INTRODUCTION

Because piezoelectric materials are widely used as actuators and sensors in the form of composites, analyses of such composite structures have attracted much attention. Examples include the analytical modeling of a beam with surface-bonded or embedded piezoelectric sensors and actuators (Bailey and Hubbard [START_REF] Bailey | Distributed piezoelectric-polymer active vibration control of a cantilever beam[END_REF], Lee [START_REF] Lee | Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I : governing equations and reciprocal relationships[END_REF], Wang and Rogers [START_REF] Wang | Laminate plate theory for spatially distributed induced strain actuators[END_REF]), use of piezoelectric materials in composite laminates and for vibration control (Wang et al. [START_REF] Wang | Some issues of control of structures using piezoelectric actuators[END_REF], Blanguernon et al. [START_REF] Blanguernon | Active control of a beam using a piezoceramic element[END_REF]). The use of the finite element method in the analysis of piezoelectric coupled structures has been studied (Robinson and Reddy [START_REF] Robinson | Analysis of piezoelectrically actuated beams using a layer-wise displacement theory[END_REF], Huang and Park [START_REF] Huang | Finite element modeling of piezoelectric sensors and actuators[END_REF], Saravanos and Heyliger [START_REF] Saravanos | Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators[END_REF], Kim et al. [START_REF] Kim | Finite element modeling of a smart cantilever plate and comparison with experiments[END_REF]) and executed in commercial FEA codes (HKS Inc [START_REF]HKS Inc ABAQUS User's Manual (version 5.2)[END_REF]).

Crawley and de Luis [START_REF] Crawley | Use of piezoelectric actuators as elements of intelligent structures[END_REF] developed a uniform strain model with surface bonded and embedded piezoelectric actuator patches. Models for composite structures with piezoelectric materials as sensors and actuators have also been published (Han and Lee [START_REF] Han | Analysis of composite plates with piezoelectric actuators for vibration control using layerwise displacement theory[END_REF]). Kunkel et al. [START_REF] Kunkel | Finiteelement analysis of vibrational modes in piezoelectric ceramic disks[END_REF] and Kocbach et al. [START_REF] Kocbach | Resonance frequency spectra with convergence tests of piezoceramic disks using the finite element method[END_REF] have studied the natural vibrational modes of axially symmetric piezoelectric ceramic disks by the finite element method. Q Wang et al. [START_REF] Wang | Analysis of piezoelectric coupled circular plate[END_REF] have considered the free vibration analysis of a piezoelectric coupled circular plate. They used the Kirchhoff thin plate model for the displacement field and assumed a quadratic variation for the electrical potential in the thickness direction.. Most of the aforementioned works are concerned with symmetric structures with flexural deformation only. In this paper an asymmetric beam, in which both flexural and stretching deformations occur simultaneously, is considered. The beam is composed of a glass with a piezoelectric material poled in the thickness direction. The Bernoulli's beam theory is adopted for mechanical deformations and the same assumption on the electric potential adopted in Q Wang et al. [START_REF] Wang | Analysis of piezoelectric coupled circular plate[END_REF] is followed. The governing equations are derived by the principle of virtual work. The validation of the proposed model is done by comparing the results from the model and those obtained by the finite element method.

BASIC EQUATIONS

Under the so-called quasi-static approximation, the electric field is assumed to be irrotational and the Maxwell equations can be simplified as 0

∇ ⋅ = D , ( 1 
) 0 ∇ × = E , (2) 
where and denote as the electric displacement and electric field intensity, respectively. From Eq.

D E

(2) , the electric field can be expressed in term of the electric potential Φ as = -∇Φ E .

(3) The constitutive equations for a piezoelectric material can be described as

i i S i i j j i c e D E e α α β β α E α α σ γ ε γ = - = + , ( 4 
)
where i e α is the piezoelectric stress constants and c αβ is the elastic stiffness at constant . E The governing equations for the electrical and mechanical fields may be derived by the principle of ©EDA Publishing/DTIP 2007 ISBN: 978-2-35500-000-3 δ may be expressed as 0 6) can be derived as ( )

ext int ine W W W W δ δ δ δ = + + = , (6) 
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Figure 1 shows a glass beam with a piezoelectric beam mounted on its surface. The length of this model is expressed as L; the thickness of the piezoelectric material as ; the thickness of the glass as ; the total thickness of this composite beam model as .
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According to Bernoulli's beam theory, the displacement field is assumed as follows:

1 0 2 3 ( , ) ( ) ( , ) w u u x t z z h z h x u w x t ∂ ⎧ = -- ⎪ -≤ ≤ ∂ ⎨ ⎪ = ⎩ 1 , (9) 
where and are the components of displacements in the 1 u 3 u xand directions of the plane, respectively. The strain z -

1 1 , u 1 γ = is given by 1 1 , 1 0 ( ) u u z z w γ ′ = = -- ′ ′, (10) 
where ( ) f ′ is the partial derivative of the function ( )

f
with respect to the spatial coordinate x .

For the electric potential, a quadratic variation of the electrical potential in the z direction is assumed as

(Wang et al.,2001) - 1 1 ( , , ) ( ) ( , ) 0 x z t z h z x t z h φ ϕ = - ≤ ≤ , (11) 
where is measured from the interface, is the thickness of the piezoelectric beam, and

z 1 h ( , )
x t ϕ is a function of x and . From equation t (11) and the constitutive equations for the piezoelectric solids, the components of the electric field E and electric displacement are obtained as follows:
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Equations ( 16) and ( 17) to be further expressed as
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where ( ) For Eqs. ( 18) and ( 19) to be satisfied for arbitrary u δ , w δ , and δϕ , we must have
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)
The stress component (1) 11 σ in the piezoelectric plane is expressed as

(1) (1) 11 11 1 31 3 c e σ γ = -E , (23) 
and the stress component (2) 11 σ in the glass plane is expressed as The resultant force and moment can be expressed, respectively, as Solving Eqs. ( 29) and (30) for ϕ gives
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Differentiating the above equation with respect to the variable x twice gives

(6) (4) (4) 1 1 1 2 0 2 1 D w w w w F ϕ η ρ ρ η ′′ ′′ ⎡ ⎤ = - - + - ⎣ ⎦ . ( 32 
)
Substituting Eq. (32) into Eq. ( 29) gives a decoupled sixth-order differential equation for , namely

w (6) (4) (4) 1 1 1 2 0 2 0 0, D w w w w Dw w η ρ ρ ρ ρ ′′ ′′ ⎡ ⎤ - + - + + = ⎣ ⎦ (33) 
where [START_REF] Crawley | Use of piezoelectric actuators as elements of intelligent structures[END_REF] 2

D D η = + .

FREE VIBRATION

Let ( , ) ( ) i t w x t w x e ω =
, where is the amplitude of the ˆ( ) w x zdirection displacement as a function of x only. Rewriting equation (33) in terms of and eliminating the term ˆ( )

w x i t
e ω gives a sixth-order differential equation, namely 
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( ) 0 w x w x w x α β ′′ + - = , (35) 
where

1 2 2 2 1 0 ( ) 2D ρ η ρ ω α ⎡ ⎤ - = ⎢ ⎥ ⎣ ⎦ , and 
1 2 4 0 D ρ ω β ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠
.

The solution to equation (35) can be written as Jung-San Chen, Shyh-Haur Chen, and Kuang-Chong Wu ANALYSIS OF ASYMMETRIC PIEZOELECTRIC COMPOSITE BEAM Table 1. Material properties of the asymmetric piezoelectric composite beam.

Glass

Piezoelectric material (PZT-5A) Elastic properties 

1 3 3 ˆcosh( ) cos( ) w b n x b n x = + , (37) 
In this paper the beam is assumed to be simply supported with the boundary conditions given by ( ) ( )

1 2 2 w l M l = 0 = , (38) 
and the resulting characteristic equation can be shown to be:

3 cos 0 2 l n ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ . ( 39 
)
The frequency is obtained as

( ) ( ) 2 2 0 2 1 , 1,3,5, (odd integers) m D l m l m π ω ρ π ρ ηρ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ + - = ⋅⋅⋅ 0 . ( 40 
)

RESULTS

The resonant frequencies for the simply-supported beam were calculated using Eq. (40). The material parameters for the beam structure used in the numerical calculators are listed in table 1. Jung-San Chen, Shyh-Haur Chen, and Kuang-Chong Wu ANALYSIS OF ASYMMETRIC PIEZOELECTRIC COMPOSITE BEAM frequencies of this piezoelectric composite beam structure using Eq. ( 40) and finite element simulations, respectively. In this example, the thickness of the piezoelectric material is 200μm and that of the glass is 500μm. In addition, the variations of the first resonance frequency with the thickness ratio of the piezoelectric material and glass from 0.2 to 1.4 are displayed in figure 2. It can be seen that the results by Eq. (40) agree closely with those obtained from the finite element analysis.

CONCLUSIONS

In this paper the resonant frequency of an asymmetric piezoelectric composite beam is studied. An analytic expression for the resonant frequency has been derived. The resonant frequencies predicted by the analytic solution are shown to be close to those computed by finite element simulations.
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 2 Comparison of the first three resonance frequencies for the modified model.

	Mode no	Analytical results	FEA results	Error ( % )
	1		4.52E+04		4.48E+04	0.87
	2		3.81E+05		3.60E+05	5.56
	3		9.50E+05		8.57E+05	9.72
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