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Abstract

Damping in air gaps is studied at RF frequencies and
modelled with a viscoelastic wave propagation model,
since the traditional squeezed-film damping model is
not valid in the MHz regime. The FEM study shows
that above a certain frequency the wave propagation in
the air gap can be modelled assuming closed damper
borders. This closed-border problem is solved analyt-
ically from the linearized Navier-Stokes equations in
1D. This results in a compact model for the mechani-
cal impedance that includes the damping, inertial, and
spring forces. The model produces the gas resonances
in the air gap when the wavelength of the acoustic wave
is smaller than the gap dimensions. The model is ap-
plicable in cases where the frequency of oscillation in a
squeezed-film damper is so high that the gas is trapped
in the gap. The model is applied in calculating damp-
ing due to air in a RF MEMS disk resonator.

1. INTRODUCTION

Capacitively coupled MEMS resonators are character-
ized by very small gap sizes, well below 1 µm [1]–[3]. To
achieve high Q values, RF MEMS resonators are nor-
mally operated at very low pressure to minimize the
damping due to gas flow in the air gaps. This is not al-
ways necessary, since the squeezed-film damping effect
that dominates the damping behaviour at low frequen-
cies may be negligible at high frequencies [3].

Damping in air gaps of oscillating structures has
been traditionally modelled with the Reynolds equa-
tion [4], [5]. It considers the viscous gas flow and com-
pressibility. The Reynolds equation is usable only up
to a certain frequency where the inertial forces can be
neglected (Reynolds number � 1). This limitation can
be avoided considering the inertia in the gap flow [6].
This leads to a 2D viscoelastic wave propagation model.
Beltman has applied it in modelling problems where
the pressure across the small gap can be assumed con-
stant [7], [8].

When the length of the acoustic wave is compa-
rable to the height of the gap, the problem becomes
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Figure 1: A squeeze-film damper consisting of parallel
surfaces moving perpendicularly.

more complicated. The pressure is no more constant
across the gap and the density is not proportional to the
pressure. Moreover, neither isothermal nor adiabatic
assumptions can be made, the temperature variation
and thermal conductivity must be accounted for in the
model. This leads to another damping mechanism in
addition to the viscous damping and a 3D wave propa-
gation model is needed for an accurate analysis. FEM
tools are required in solving such model equations [9],
[10].

In this paper, the linearized Navier-Stokes (N-S)
equations are first presented and the 1D viscoelastic
wave propagation equations are derived. Its variables
are the pressure, density, velocity and temperature,
that all vary across the gap. The equations are solved
analytically considering the boundary conditions. Due
to the small dimensions in micromechanical devices,
slip conditions are used for temperature [11].

2D FEM simulations are used to verify the resulting
mechanical impedance model and to show how open-
border and closed-border models give exactly the same
results above a certain frequency. This verifies that the
gas is trapped in the gap at high frequencies and the
acoustic wave propagates only in the direction across
the gap. The problem reduces to 1D and the wave
propagation model can be solved analytically.

The model is applied in calculating the gas damping
in an air gap of a RF MEMS disk resonator [1]–[3].
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2. VISCOELASTIC WAVE PROPAGATION
MODEL

In this chapter, a wave propagation model is derived
for the structure shown in Fig. 1. The figure shows the
dimension of the damper surface (lx, ly) and the air
gap h0. Normalized coordinates (x, y, and z) are used
in the text instead of the absolute coordinates (x, y,
and x) shown in the figure. The upper surface moves
and acts on the gas in the air gap. The damper is
characterized by mechanical impedance. It is the force
F acting on the surface divided by its velocity w0.

Zm = − F

w0
(1)

2.1. Characteristic Numbers

The behaviour of the flow in a narrow air gap is de-
scribed in the frequency domain by a few characteristic
numbers. The Reynolds number Re (the square of the
shear wave number s) is the ratio between inertial and
viscous forces:

s2 = Re =
ωh2

0ρ0

η
, (2)

where ρ0 is the density of the gas, η is the viscosity
coefficient, and h0 is the characteristic height of the air
gap.

The reduced frequency k = ωh0/c0 is scaled with
nominal displacement h0 and the speed of sound c0 =√

γPA/ρ0, where γ is the specific heat ratio and PA is
the ambient pressure.

The Knudsen number Kn = λ/h0 is a measure of gas
rarefaction and λ is the mean free path. The Prandtl
number Pr characterizes the thermal properties. Here,
the square root of Pr is used,

φ =
√
Pr =

√
ηCp

κ
, (3)

where Cp is the specific heat at constant pressure and
κ is the thermal conductivity.

KT is the “thermal Knudsen number” [11] that char-
acterizes the temperature jump at the surfaces due to
rarefied gas

KT =
2 − αT

αT

[
2γ

γ + 1

]
Kn

φ2
, (4)

where αT is the energy accommodation coefficient.

2.2. Linearized Navier-Stokes Equations

The dimensionless notation by Beltman [7] is used here
for the linearized time-harmonic Navier-Stokes equa-
tions:

iu = − g

kγ

∂p

∂x
+

1
s2

[
g2 ∂2u

∂x2
+

(g

a

)2 ∂2u

∂y2
+

∂2u

∂z2

]

+
1
3

g

s2

∂

∂x

[
g
∂u

∂x
+

(g

a

) ∂v

∂y
+

∂w

∂z

]
(5)

iv = − g

akγ

∂p

∂y
+

1
s2

[
g2 ∂2v

∂x2
+

(g

a

)2 ∂2v

∂y2
+

∂2v

∂z2

]

+
1
3

g

as2

∂

∂y

[
g
∂u

∂x
+

(g

a

) ∂v

∂y
+

∂w

∂z

]
(6)

iw = − 1
kγ

∂p

∂z
+

1
s2

[
g2 ∂2w

∂x2
+

(g

a

)2 ∂2w

∂y2
+

∂2w

∂z2

]

+
1
3

1
s2

∂

∂z

[
g
∂u

∂x
+

(g

a

) ∂v

∂y
+

∂w

∂z

]
(7)

g
∂u

∂x
+

g

a

∂v

∂y
+

∂w

∂z
= −ikρ (8)

p = ρ + T (9)

iT =
1

s2φ2

[
g2 ∂2T

∂x2
+

(g

a

)2 ∂2T

∂y2
+

∂2T

∂z2

]
+ i

γ − 1
γ

p,

(10)
where u, v, and w are velocity components in the x-,
y-, and z-direction, respectively. The equations are in
normalized form such that velocities u, v, and w are
normalized to the speed of sound c0 and the dimen-
sions x, y, and z are normalized with the characteristic
dimensions lx, ly, and h0, respectively. p, ρ, and T rep-
resent small relative variations around PA, ρ0 and TA,
respectively. The narrowness of the gap g = h0/lx and
ratio of the plate a = ly/lx as shown in Fig. 1.

2.3. 1D Wave Propagation Model

In his “narrow gap” solution (Appendix B in [7]), Belt-
man simplifies equations assuming g/s � 1 and negli-
gible z-directional velocity w compared with the veloc-
ities u and v. Here the situation is different: small gap
is not assumed, but velocities u and v are assumed to
be negligible. This reflects the trapped gas situation.
Now, it yields

iw = − 1
kγ

∂p

∂z
+

4
3s2

∂2w

∂z2
(11)

∂w

∂z
= −ikρ (12)

p = ρ + T (13)

iT =
1

s2φ2

∂2T

∂z2
+ i

γ − 1
γ

p. (14)

Instead of zero boundary conditions, slip boundary con-
ditions for temperature T [11] are applied:

T |z=1 = −KT
∂T

∂z

∣∣∣∣
z=1

, T |z=0 = KT
∂T

∂z

∣∣∣∣
z=0

. (15)
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2.4. Simple Solution

First, the approximate case is studied for a simple model.
Since the model is derived for relatively high frequen-
cies, large s is assumed in Eq. (14). Temperature be-
comes

T =
γ − 1

γ
p, (16)

and density from Eq. (13) results in ρ = p/γ. This con-
dition is equivalent with the adiabatic assumption (The
isothermal assumption, that is good at low frequencies
only, would result in ρ = p). The pressure is solved
from Eq. (12) resulting in

p = − γ

ik
∂w

∂z
. (17)

Equation (11) describes the relation between pres-
sure and velocity in the z-direction and after inserting
Eq. (17) into it,

iw =
(

1
ik2

+
4

3s2

)
∂2w

∂z2
(18)

results. The velocity function

w(z) =
w0 sinh(qz)

sinh(q)
, (19)

where

q = −i
(

1
k2

+ i
4

3s2

)− 1
2

(20)

is a solution of Eq. (18) and satisfies the boundary con-
ditions w(1) = w0 and w(0) = 0. At low frequencies,
q → 0 and w(z) approaches to linear velocity w0z cor-
responding the approximation by Beltmann.

The pressure is now from Eq. (17)

p(1) = − γ

ik
∂w

∂z

∣∣∣∣
z=1

= − γ

ik
w0q

tanh(q)
, (21)

resulting to an unnormalized force of F = lxlyPAp(1).

2.5. Resonant Frequencies

The expression for resonant frequencies can be approx-
imated from Eq. (21) assuming a large s compares to
k (small viscosity), then q is simplified to −ik. The
resonance occur when the denominator in (21) is zero
or infinity. This happens when iq = Nπ/2, where
N = 1, 2, 3, . . .. Odd values of N give antiresonances,
while even values of N give resonances. The approxi-
mate Nth resonant frequency is

fN =
N

4h0

√
γPA

ρ0
=

Nc0

4h0
(22)

The first antiresonance f1 especially is interesting,
since if the device is operated close to this frequency,
a very small damping due to gas can be achieved. For
air at atmospheric pressure, f1 = 87.7 MHz for a gap
of 1µm.

2.6. Exact Solution

The exact solution for Eqs. (11) – (14) is presented in
the Appendix. The boundary conditions for velocity
are w(0) = 0 and w(1) = w0, and the temperature has
slip conditions at the surfaces. The solution gives ve-
locity w, pressure p, temperature T and density ρ in
the gas as function of z. The calculation of these vari-
ables requires the evaluation a lot of complex auxiliary
variables.

The result is presented as an unnormalized mechan-
ical impedance that is calculated from the pressure act-
ing on the upper surface.

Zm = − lxlyPAp(1)
w0

. (23)

3. MODEL VERIFICATION

FEM simulations were performed with a solver for dis-
sipative acoustic flow [10] included in Elmer [9] soft-
ware. It solves the linearized N-S equations (5) – (10).

Here, a 1D damper geometry is assumed, that is,
the y-dimension of the damper is assumed to be much
larger than the x-dimension. This assumption does not
limit the usability of the model, since the final model
does depend only on the surface area, not on the shape
of the damper. In the simulations, the damper length
is assumed to be lx = 20 µm and the air gap height is
h0 = 1 µm (ly = 1 m).

Table 1: Gas parameters used in the simulations.

Description Value Unit

PA pressure 101 103 N/m2

TA temperature 300 oK
η viscosity coefficient 18.5 10−6 Ns/m2

ρ0 density of air 1.155 kg/m3

CP specific heat 1.01 103 J/kg/K
γ specific heat ratio 1.4
κ heat conductivity 0.025 W/m/K
λ mean free path 68 10−9 m
αT energy accomm. 1

A sinusoidal velocity amplitude of 0.1 m/s was used
as the excitation. The symmetry of the structure was
utilized in the FEM simulations; only a half of the air
gap was simulated. Boundary conditions p(±lx/2) = 0
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Figure 2: Exact solution in the case of closed ends (—
—) compared with the FEM simulation results of open
and closed ends cases (magnitudes × and phases �).

were used at the damper borders. Slip boundary con-
ditions for temperature were used and ideally thermal
conducting surfaces were assumed. A mesh of 8000 el-
ements was used, and the simulation was performed at
49 frequencies from 1MHz to 1GHz. The gas parame-
ters are shown in Table 1.

3.1. Open/closed Damper Boundaries

The justification to the use of closed borders instead
of the open ones when the gas is trapped, is studied.
Fig. 2 shows FEM simulations of the same damper with
closed and open borders. The amplitude and phase
responses are identical above 70 MHz. This is close to
the first resonant frequency at 88 MHz.

3.2. Comparison Between the Simple and the
Exact Model

Fig. 3 shows the difference between simple and exact
solutions. The response of the exact model is identical
with FEM simulation results. The resonant frequency
of the simple solution matches well with the one calcu-
lated from Eq. (22). The difference between the simple
and exact models is considerable.

3.3. Damping Coefficient and Spring
Constant

Fig. 4 presents the damping coefficient and the spring
constant given by the model. The damping coefficient
c = Re(Zm) has a minimum at the first resonance.
When this minimum is matched with the resonance
of the mechanical structure, the damping due to gas
is very low and the quality factor of the resonator is
limited, in practice, by other loss mechanisms.

10M 30M 100M 300M 1G
100n

300n

1µ

3µ

-90

-50

-10

30

70
APLAC 8.21 User: HUT CT Lab.Thu Nov  9 2006
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Figure 3: Exact solution (——) compared with simple
solution (– – –) and results of FEM simulation (mag-
nitudes × and phases �).
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Figure 4: Damping coefficient c (——) in Kg/s and
the spring constant k (– – –) in N/m as a function of
frequency.

The spring constant k = Im(Zm)ω is constant at
small frequencies but crosses the zero at the first res-
onance. A negative spring constant indicates inertial
force, not a spring force. The spring-like behaviour
takes over at higher frequencies.

4. AIR DAMPING IN A DISK
RESONATOR

The model is applied here in predicting damping in the
air gap of a disk resonator documented in [3]. Figure 5
shows the structure of the resonator. Table 2 shows
dimensions for two resonators. Radial oscillation of
the disk is assumed. The air gap is very small compared
to the radius of the resonator thus the parallel-plate
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Figure 5: Structure of a disk resonator forming a RF
filter.

model can be applied. lx is here the width of the air
gap H , while ly is the length of the gap 2πR.

Table 2: Parameters for disk resonators.

Description Disk 1 Disk 2 Unit

R disk radius 18 10 µm
H disk height 2.1 2.1 µm
h0 air gap 0.087 0.068 µm

fr resonant freq. 151.3 274 MHz
c damping coeff. 19 14 10−9 kg/s

Table 2 indicates the damping coefficients c given
by the model. According to the quality factor mea-
surements [3] in vacuum and at ambient air pressure,
the damping coefficients estimated here explain only
about a fourth part of the total damping due to air.

5. CONCLUSIONS

Design aids for estimating damping in air gaps of RF
MEMS resonators were presented in the form of com-
pact models. With these models, the Reynolds equa-
tion has been extended to be applicable to rapidly os-
cillating surfaces and rare gas conditions. The model
is in agreement with FEM simulation results.

FEM simulations show that the model can be used
in predicting the damping and spring forces due to gas
accurately at frequencies that are larger than the first
resonant frequency. This validated the assumption for
trapped gas and closed damper borders in the analysis.
Slip conditions are used to have an accurate model also
for small air gaps.

It was shown that the model is useful in predict-
ing the resonances due to gas. The resonator can be
designed such that the minimum of the damping coef-
ficient matches the resonance of the device.

The comparison shows that for an accurate model it
is necessary to include the full temperature dependency
in the model. However, the simple model gives a rough

estimate of the behaviour of the damping and spring
forces.

The damping coefficients estimated here for disk
resonators could not explain the total damping due to
air. There are probably other damping mechanisms
that act on the disk surfaces.
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APPENDIX

An exact solution for Eqs. (11) – (14) is presented con-
sidering the boundary conditions. After some manipu-
lation, the following fourth order differential equation
results

1
s2φ2

(
1
ik

+
4kγ

3s2

)
w′′′′−

(
i4k

3s2
+

ikγ

s2φ2
+

1
k

)
w′′−kw = 0

(24)
for velocity w(z) and

1
s2φ2

(
1
ik

+
4kγ

3s2

)
T ′′′′−

(
i4k

3s2
+

ikγ

s2φ2
+

1
k

)
T ′′−kT = 0

(25)
to temperature T (z) as well. In this appendix, the
derivatives with the respect to z are denoted with primes
(T ′′′′ = ∂4T/∂z4).

This homogenous linear equation with constant com-
plex coefficients has characteristic equation

α1r
4 + α2r

2 − k = 0, (26)

α1 =
1

s2φ2

(
1
ik

+
4kγ

3s2

)
(27)

α2 = −
(

i4k

3s2
+

ikγ

s2φ2
+

1
k

)
(28)

The roots of Eq. (26) are

r1 =

√
−α2 +

√
α2

2 + 4α1k

2α1
, r3 = −r1 (29)

r2 =

√
−α2 −

√
α2

2 + 4α1k

2α1
, r4 = −r2 (30)

and then the solution of Eq. (24) is

w(z) = C1e
r1z + C2e

r2z + C3e
r3z + C4e

r4z. (31)

Constants C1, C2, C3, and C4 are determined with
boundary conditions. For velocity, w(0) = 0 and w(1) =
w0 and two missing boundary conditions are to temper-
ature: T (1) = −KTT ′(1), T (0) = KTT ′(0). Therefore,
the temperature is written as function of velocity w.
Eqs. (11) – (14) reduce now to

T ′ = A1w + A2w
′′ (32)

w′ = A3T + A4T
′′, (33)

where

A1 = −ikγ, (34)

A2 =
(

1
ik

+
4kγ

3s2

)
, (35)

A3 = − ik
γ − 1

, (36)

A4 =
kγ

(γ − 1)s2φ2
. (37)

Solving T from Eqs. (32) and (33) and p from Eqs. (12),
(13) and (38) yields

T (z) = B1w
′ + B2w

′′′, (38)

p(z) = − 1
ik

w′ + T =
(

B1 − 1
ik

)
w′ + B2w

′′′, (39)

where B1 and B2 are the auxiliary variables:

B1 =
1 − A1A4

A3
, B2 = −A2A4

A3
. (40)

Equation (38) can be used to utilize boundary con-
ditions for temperature to solve the velocity:

T (1) = B1w
′(1) + B2w

′′′(1) = 0, (41)
T (0) = B1w

′(0) + B2w
′′′(0) = 0. (42)

After applying w(0) = 0 and w(1) = w0 in addition to
the conditions above, the following system of equations
results:

C1 + C2 + C3 + C4 = 0, (43)
C1e

r1 + C2e
r2 + C3e

r3 + C4e
r4 = w0, (44)

C1Q1 + C2Q2 + C3Q3 + C4Q4 = 0, (45)
C1Q1e

r1 + C2Q2e
r2 + C3Q3e

r3 + C4Q4e
r4 = 0, (46)

where Qi = B1ri+B2r
3
i . The coefficients Ci in Eq. (31)

are

C1 =
H2P3M − GP3 − MP2

P1 + P2L − H1P3 − H2P3L
, (47)

C2 = LC1 + M, (48)
C3 = G − H1C1 − H2C2, (49)
C4 = −C1 − C2 − C3, (50)

where
G = w0/(er3 − er4), (51)

H1 = (er1 − er4)/(er3 − er4), (52)

H2 = (er2 − er4)/(er3 − er4), (53)

L =
H1K3 − K1

K2 − H2K3
, (54)

M =
−GK3

K2 − H2K3
, (55)

Ki = B1(ri − r4) + B2(r3
i − r3

4), (56)

and

Pi = B1(rie
ri − r4e

r4) + B2(r3
i eri − r3

4e
r4). (57)

Now the values for variables p(z), w(z), T (z) can be
calculated from Eqs. (39), (31) and (38), respectively.
The density is simply ρ(z) = p(z) − T (z).
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