Local limit theorems for Brownian additive functionals and penalisation of Brownian paths, IX
Résumé
We obtain a local limit theorem for the laws of a class of Brownian additive functionals and we apply this result to a penalisation problem. We study precisely the case of the additive functional : $\Big(A_t^{-} := \int_0^t 1_{X_s < 0}ds, t\geq 0\Big) $. On the other hand, we describe Feynman-Kac type penalisation results for long Brownian bridges thus completing some similar previous study for standard Brownian motion (see [RVY,I]).
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...