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ABSTRACT

This work is concerned with the estimation of multidimensional regression and the asymp-

totic behaviour of the test involved in selecting models. The main problem with such models

is that we need to know the covariance matrix of the noise to get an optimal estimator. We

show in this paper that if we choose to minimise the logarithm of the determinant of the em-

pirical error covariance matrix, then we get an asymptotically optimal estimator. Moreover,

under suitable assumptions, we show that this cost function leads to a very simple asymp-

totic law for testing the number of parameters of an identifiable and regular regression model.

Numerical experiments confirm the theoretical results.

1. INTRODUCTION

Let us consider a sequence (Yt, Zt)t∈N
of i.i.d. (i.e. independent identically distributed)

random vectors. The law of (Yt, Zt) ∈ R
d × R

d′ is the same as the generic variable (Y, Z).

We assume that the model can be written

Yt = Fw0(Zt) + εt, (1)

where

• Fw0 is a parametric function, the true parameters being denoted w0.

• (εt) is an i.i.d.-centred noise with unknown definite positive covariance matrix Γ0.
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The observations will be denoted with the lower-case letters ((zt, yt))1≤t≤n. This notation

allows us to consider a wide range of regression models. For example Fw0 can be a vector with

d lines and d′ columns, the parameter is the components of the matrix and the model will be

a classical linear model. Another example can be constrained linear models, knowing that

constraints can also be nonlinear. Finally, Fw0 can also be a nonlinear parametric function

like a multilayer perceptron (MLP). An MLP with H hidden units (see Rumelhart et al.

(1986)) is defined by a family of functions

Fw(z) =
H
∑

h=1

bjs(a
T
j z + cj) + d,

where T denotes the transposition, z ∈ R
d′, s(t) = tanh(t) and

w = (a1, · · · , aH , b1, · · · , bH , c1, · · · , cH , d) ∈ R
Hd′ × R

2H+1. We will focus on the MLP

example, because it is a widely used tool for nonlinear regression (see White (1992)), but it

could be any other non linear and differentiable model.

Note that, for an MLP function, there exists a finite number of transformations of the

weights leaving these functions unchanged; these transformations form a finite group (see

Sussmann (1992)). Therefore, we will consider equivalence classes of MLPs: two MLPs are

in the same class if the first one is the image by such a transformation of the second one.

The set of parameters considered is then the quotient space of parameters. In the sequel, we

will assume that the model is identifiable:

Fw1
(Z)

a.s.
= Fw2

(Z) ⇔ w1 = w2. (2)

For example, this can be done if we consider one-hidden-layer MLPs with the true number

of hidden units and with parameters in the quotient space. Another example is the linear

regression function, with or without constraint. The consequence of the identifiability of the

model is that, in most cases, the Hessian matrix of the model will be definite positive.Also,

note that it is not hard to generalise all that is shown in this paper for stationary mixing

variables and therefore for time series. For example, let us assume that the regression

function verifies ‖Fw0(z)‖ ≤ a‖z‖ + b, with 0 ≤ a < 1 and b ∈ R. Let (Yt)t∈N be the
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stationary solution of the equation:

Yt = Fw0(Yt−1) + εt,

where the noise (εt)t∈N has a positive density everywhere with respect to the Lebesgue

measure and is with an order moment strictly larger than 1. It is well known (see Duflo

(1997)), that(Yt)t∈N will be geometrically ergodic and verifies a strong law of large numbers.

In particular, as MLPs are bounded functions, if Fw0 is an MLP function, all the proofs

given in this paper will be valid exactly in the same way as in Yao (2000).

1.1. EFFICIENT ESTIMATION

The estimation of the model (1) is done by minimising a suitable cost function with

respect to the parameters. A common choice for the cost function is the mean square error

(MSE):

Vn(w) :=
1

n

n
∑

t=1

‖yt − Fw (zt)‖2 ,

where ‖.‖ denotes the Euclidean norm on R
d. This function is widely used because in the

linear case without constraint on the parameters this cost function is optimal (see Lütkepohl

(1993)). In fact, this cost function gives a satisfactory estimator when there is one and

only one estimator which minimises the trace of the covariance matrix of the noise (see

Magnus and Neudecker (1988)). However in other cases (constraint linear model, non-linear

regression, etc.) it leads in general to a suboptimal estimator (see, for example, Lütkepohl

(1993) for the constraint linear model). Then, a better solution is to use an approximation

of the covariance error matrix to compute the generalised least square estimator:

1

n

n
∑

t=1

(yt − Fw (zt))
T Γ−1 (yt − Fw (zt)) ,

where Γ has to be a good approximation of the true covariance matrix of the noise Γ0.

For example, if we use a sequence of matrices Γn converging in probability to Γ0, it is easy

to show (see Chapter 5 in Galland (1987)) that the estimator obtained by minimising the

cost function:
1

n

n
∑

t=1

(yt − Fw (zt))
T Γ−1

n (yt − Fw (zt))
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has the same asymptotic properties as the estimator which minimises

1

n

n
∑

t=1

(yt − Fw (zt))
T Γ−1

0 (yt − Fw (zt)) .

There are many ways to construct a sequence of (Γk)k∈N∗ yielding an approximation of Γ0.

The simplest is to use the ordinary least square estimator Ŵ 1
n := arg min 1

n

∑n

t=1 ‖yt − Fw (zt)‖2,

in order to estimate the covariance matrix of the noise:

Γ1
n := Γ

(

Ŵ 1
n

)

:=
1

n

n
∑

t=1

(yt − FŴ 1
n
(zt))(yt − FŴ 1

n
(zt))

T .

Moreover, we can use this new covariance matrix to find a generalised least square estimator

Ŵ 2
n :

Ŵ 2
n = arg min

w

1

n

n
∑

t=1

(yt − Fw (zt))
T
(

Γ1
n

)−1
(yt − Fw (zt))

and calculate again a new covariance matrix

Γ2
n := Γ

(

Ŵ 2
n

)

=
1

n

n
∑

t=1

(yt − FŴ 2
n
(zt))(yt − FŴ 2

n
(zt))

T .

Finally, it can be shown (see Gallant (1987)) that this procedure gives a sequence of param-

eters

Ŵ 1
n → Γ1

n → Ŵ 2
n → Γ2

n → · · ·

minimising the logarithm of the determinant of the empirical covariance matrix:

Un (w) := log det

(

1

n

n
∑

t=1

(yt − Fw(zt))(yt − Fw(zt))
T

)

. (3)

Hence, the cost function Un(w) is the same as the generalised least square cost function

with the best approximation of the true covariance matrix calculable with the available

data. Nevertheless it is important to note that the matrix Γn is always a function of model

parameters and it will be better to write Γn(w) instead of Γn. The asymptotic study of

the model must take into account the dependency of Γn on these parameters, and the real

function to study is in fact:

1

n

n
∑

t=1

(yt − Fw (zt))
T Γ−1

n (w) (yt − Fw (zt)) .
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This difficulty has always been overlooked except when the covariance matrix is included in

the parameters of the model and this solution leads to consider a pseudo Gaussian likelihood

as in Gourieroux et al. (1984). However, in this case it is necessary to reinforce the as-

sumptions on the moment of the noise to obtain the asymptotic normality of the estimated

covariance matrix. Although the logarithm of the determinant of the empirical covariance

is known to be related to the concentrated Gaussian likelihood function, it will be better to

study it directly because such artificial strong assumptions about the noise are not needed.

For all these reasons, we propose to study the asymptotic properties of the cost function

Un (w) and the estimator minimising this cost function: Ŵn := arg min Un (w) will be shown

to have the same asymptotic behaviour as the generalised least square estimator using the

true covariance matrix of the noise.

1.2. TESTING THE NUMBER OF PARAMETERS

The cost function Un(w) is not only optimal in the sense that it has the same asymptotic

behaviour as the generalised least square estimator using the true covariance matrix of the

noise, but it also leads to a very simple procedure for testing the nullity of the parameters.

Let q be an integer smaller than s, we want to test “H0 : w ∈ Θq ⊂ R
q” against “H1 : w ∈

Θs ⊂ R
s”, where Θq and Θs are compact sets. H0 expresses the fact that w belongs to a

subset of Θs with a lower parametric dimension than s and so that s − q parameters are

equal to zero. If we consider the classic mean square error cost function: Vn(w), we get the

following test statistic (see Yao (2000)):

Sn = n ×
(

min
w∈Θq

Vn(w) − min
w∈Θs

Vn(w)

)

.

Under the null hypothesis H0, it is shown in Yao (2000) that Sn converges in distribution to

a weighted sum of χ2
1

Sn
D→

s−q
∑

i=1

λiχ
2
i,1,

where the χ2
i,1 are s − q i.i.d. χ2

1 variables and λi are strictly positive values, different from

1 if the true covariance matrix of the noise is not the identity matrix.
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However, if we use the function Un (w) , under H0, the test statistic:

Tn = n ×
(

min
w∈Θq

Un(w) − min
w∈Θs

Un(w)

)

will converge to a classical χ2
s−q and the asymptotic level of the test will be very easy to

compute. This is another advantage of using the proposed cost function.

Organisation of the paper. In order to prove these properties, the paper is organised

as follows: First, the main results are stated in three theorems, the first deals with the

consistency of the estimator minimising Un(w), the second with its asymptotic normality

and the third with the asymptotic law of the test procedure used to determine the number

of parameters. Then, the theoretical results are confirmed by numerical experiments. The

proofs of the theorems involving technical calculation of the first and second derivatives of

Un(w) are postponed to the appendix.

2. ASYMPTOTIC PROPERTIES

First we give the conditions to state the consistency theorem, then to state the asymptotic

normality theorem of the estimator Ŵn minimising the function Un(w). In the sequel all the

expectations will be calculated with respect to the true law of (Y, Z).

Conditions for the consistency (C).

1. The parameter space W is a compact space included in R
K , with K the dimension of

the parameter vector w. The unique true parameter w0 is assumed to be in the interior

of W. Note that w0 is unique because the model is assumed to be identifiable. The

compactness of the parameter space means that parameters have to be bounded by

a constant even if this constant can be very large. This is the case in practice if one

uses a computer, since its numerical precision is finite. This rather classical hypothesis

is needed to get the Glivenko-Cantelli property, which yields a uniform law of large

numbers (see van der Vaart (1998)).

2. The noise of the model ε is square integrable.
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3. For almost all z the function w 7→ Fw(z) is continuous; moreover there exists a square

integrable function m such that

sup
w∈W

‖Fw(z)‖ ≤ m(z).

These conditions are easily verifiable for regular models. For example, in the case of an

MLP, it suffices to assume that the variable Z is with finite third order moment. Indeed,

in this case there exists a constant C such that we have the following inequalities (see Yao

(2000)):

supw∈W ‖Fw(Z)‖ ≤ C

supw∈W ‖∂Fw(Z)
∂wk

‖ ≤ C(1 + ‖Z‖)
supw∈W ‖∂2Fw(Z)

∂wk∂wl
‖ ≤ C(1 + ‖Z‖2)

supw∈W ‖ ∂3Fw(Z)
∂wj∂wk∂wl

‖ ≤ C‖(1 + ‖Z‖3).

For a linear model it suffices to assume that the variable Z is with finite second order moment.

Then, we deduce the theorem of consistency:

Theorem 1. Under the conditions (C), we have:

Ŵn
a.s.→ w0.

Now, we can establish the asymptotic normality for the estimator:

Conditions for the asymptotic normality (AN).

1. There exists a square integrable function m1 such that, for all k ∈ 1, · · · , K:

sup
w∈W

‖∂Fw(z)

∂wk

‖ ≤ m1(z).

2. There exists integrable functions m2 and m3 such that for all j, k, l ∈ 1, · · · , K:

sup
w∈W

‖∂2Fw(z)

∂wj∂wk

‖ ≤ m2(z) and sup
w∈W

‖ ∂3Fw(z)

∂wj∂wk∂wl

‖ ≤ m3(z).

Thus, we deduce the theorem:
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Theorem 2. Under the conditions (C) and (AN), when n → ∞,

√
n(Ŵn − w0)

D→ N (0, I−1
0 ),

where, if we note

B(wk, wl) :=
∂Fw(Z)

∂wk

∂Fw(Z)

∂wl

T

,

the component (k, l) of the matrix I0 is:

tr
(

Γ−1
0 E

(

B(w0
k, w

0
l )
))

.

Remark. If W ∗
n is the estimator of the generalised least squares:

W ∗
n := arg min

1

n

n
∑

t=1

(Yt − Fw (Zt))
T Γ−1

0 (Yt − Fw (Zt)) ,

then it is easy to check that

√
n(W ∗

n − w0)
D→ N (0, I−1

0 ).

So, Ŵn has the same asymptotic behaviour as the generalised least square estimator

with the true covariance matrix Γ−1
0 which is asymptotically optimal (see for example Ljung

(1999)). Therefore, the proposed estimator is asymptotically optimal too.

Asymptotic distribution of the test statistic Tn. Let us remind that we want to test

“H0 : w ∈ Θq ⊂ R
q” against “H1 : w ∈ Θs ⊂ R

s”. H0 expresses the fact that w belongs to a

subset of Θs with a parametric dimension smaller than s so that s− q parameters are equal

to zero.

Let us write

Ŵn = arg minw∈Θs
Un(w) and Ŵ 0

n = arg minw∈Θq
Un(w), where Θq is viewed as a subset of

Θs. Under the null hypothesis H0, the asymptotic distribution of Tn is a consequence of

Theorem 2. Indeed, if we replace Tn by its Taylor expansion around Ŵn and Ŵ 0
n , following

van der Vaart (1998), chapter 16, we have the classical development:

8



Theorem 3. under the conditions (C) and (AN), if we assume that matrix I0 is not singular

and under the null hypothesis H0, we have:

Tn = n
(

Ŵn − Ŵ 0
n

)T

I0

(

Ŵn − Ŵ 0
n

)

+ oP (1)
D→ χ2

s−q,

where oP (1) means “negligible in probability” and is defined in van der Vaart (1998).

3. EXPERIMENTAL RESULTS

3.1. SIMULATED EXAMPLE

Although the estimator associated with the cost function Un (w) is theoretically better

than the ordinary mean least square estimator, we have to confirm this fact by simulation

in some cases. For example, there are some pitfalls in practical situations with MLPs.

The first point is that we have no guarantee of reaching the global minimum of the cost

function because we use differential optimisation to estimate Ŵn. Hence, we can only hope

to find a good local minimum if we use many estimations with different initial weights.

The second point is the fact that MLPs are black boxes, which means that it is difficult

to interpret on their parameters and it is almost impossible to compare MLPs by comparing

their parameters, even if we try to take into account the possible permutations of the weights.

These reasons explain why we choose to compare the estimated covariance matrices of

the noise instead of directly comparing the estimated parameters of MLPs.

The model. To simulate our data, we use an MLP with 2 inputs, 3 hidden units, and 2

outputs. We choose to simulate a time series, because it is a very easy task as the outputs

at time t are the inputs for time t + 1. Moreover, with MLPs, the statistical properties of

such a model are the same as with independent identically distributed (i.i.d.) data. Indeed,

since the MLP function is bounded and the noise has a density positive everywhere with

respect to the Lebesgue measure, the time series simulated is an example of a process with

a geometrically ergodic solution (see Yao (2000)) and verifies a strong law of large numbers.

The equation of the model is the following

Yt+1 = Fw0
(Yt) + εt+1,
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where

• Y0 = (0, 0).

• (Yt)1≤t≤1000, Yt ∈ R
2, is the bi-dimensional simulated random process.

• Fw0
is an MLP function with weights w0 randomly chosen between −2 and 2.

• (εt) is an i.i.d. Gaussian centred noise with covariance matrix Γ0 =





1.81 1.8

1.8 1.81



.

In order to empirically study the statistical properties of our estimator, we make 100 inde-

pendent simulations of the bi-dimensional time series of length 1000.

Results. For each time series we estimate the weights of the MLP using the cost function

Un (w) and the ordinary least square estimator. The estimations were made using the second

order algorithm BFGS (see Press et al. (1992)), and for each estimation we chose the best

result obtained after 20 random initialisations of the weights in the hope of avoiding to

plague our learning with poor local minima.

We here show the mean of the estimated covariance matrices of the noise for Un(w) and

the mean square error (MSE) cost function:

Un (w) :





1.793 1.785

1.785 1.797



 and MSE :





1.779 1.767

1.767 1.783



 .

The estimated standard deviation of the terms of the matrices are all equal to 0.003, so

the differences observed between the terms of the two matrices are greater than twice their

standard deviation and probably not due to chance. We can see that the estimated covariance

of the noise is on average better with the estimator associated with the cost function Un (w).

In particular, it seems that there is slightly less over-fitting with this estimator, and the

non-diagonal terms are greater than with the least square estimator. As expected, the

determinant of the mean matrix associated with Un(w) is 0.036 instead of 0.050 for the

matrix associated with the MSE.

10



3.2. APPLICATION TO REAL TIME SERIES: POLLUTION OF OZONE

Ozone is a reactive oxide, which is formed both in the stratosphere and troposphere.

Near the surface of the ground, ozone is directly harmful to human health, plant life and

damages physical materials. The population, especially in large cities and in suburban zones

which suffer from summer smog, wants to be warned of high pollutant concentrations in

advance. Statistical ozone modelling and more particularly regression models have been

widely studied, see Comrie (1997), Gardner and Dorling (1998). Generally, linear models

do not seem to capture all the complexity of this phenomenon. Thus, the use of nonlinear

techniques is recommended to deal with ozone prediction. Here we want to predict ozone

pollution at two sites at the same time. The sites are in the south of Paris (13th district)

and at the top of the Eiffel Tower. As these sites are very near each other we can expect

that the two components of the noise are highly correlated.

The model. The neural model used in this study is autoregressive and includes exogenous

parameters (called NARX model). Our aim is to predict the maximum level of ozone pollu-

tion of the next day, given today’s maximum level of pollution and the maximal temperature

of the next day. If we note Y 1 the maximum level of pollution for Paris 13, Y 2 the maximum

level of pollution for the Eiffel Tower and Temp the temperature, the model can be written

as follows:

(Y 1
t+1, Y

2
t+1) = Fw(Y 1

t , Y 2
t , T empt+1) + εt+1. (4)

If we assume that the temperature (Tempt)t∈N is a geometrically ergodic process and that

the noise (εt)t ∈ N has a strictly positive density with respect to the Lebesgue measure, as

Fw is a bounded function, the stationary solution (Y 1
t , Y 2

t )t∈N of the equation (4) will be

geometrically ergodic and the previous theorems can easily be extended to this time series.

As usual with real time series, over-training is a crucial problem. MLPs are very over-

parametrised models. This occurs when the model learns the details of the noise of the

training data. Over-trained models have very poor performance on fresh data. In this study,

to avoid over-training, we use the Statistical Stepwise Method (SSM) pruning technique,
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using a BIC-like information criterion (Cottrell et al. (1995)). The MLP with the minimal

dimension is found by eliminating of the irrelevant weights in order to minimise a BIC-like

criterion, that is to say the cost function penalised by the term q ln(n)
n

, where q is the number

of parameters of the model and n is the number of observations. Here, we will compare the

behaviour of this method for both cost functions: the mean square error (MSE) and the

logarithm of the determinant of the empirical covariance matrix of the noise (Un(w)).

Dataset. This study presents the ozone concentration of the Air Quality Network of the

Ile de France Region (AIRPARIF, Paris, France). The data used in this work span from

1994 to 1997. According to the model, we have the following explicative variables:

• The maximum temperature of the day

• Persistence is used by introducing the previous day’s ozone peak.

Before being used in the neural network, all these data have been centred and normalised.

The learning dataset consists of observations from 1994 to 1996. Only the months from April

to September are used because there is no peak of ozone pollution during the winter period.

The months from April to September of 1997 are kept for a test set, which will be used for

evaluating models.

The results. For the learning set, we get the following results:

Un(w) :





0.26 0.19

0.19 0.34



 and MSE :





0.26 0.18

0.18 0.34



 .

For the test set, we get the following results:

Un(w) :





0.32 0.21

0.21 0.39



 and MSE :





0.34 0.20

0.20 0.41



 .

The two matrices are almost the same for the learning set, however the non-diagonal terms

are greater for the Un(w) cost function. The best MLP for Un(w) has 13 weights, and the
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best MLP for the MSE cost function has 15 weights. Hence, the proposed cost function leads

to a more parsimonious model, certainly because the pruning technique is very sensitive to

the variance of estimated parameters. This gain is valuable regarding the generalisation

capacity of the model, since in this way the difference is almost null for the learning data

set but is greater for the test data. For comparison, we did the training with a one-output

MLP to predict each level of pollution and the results match the diagonal terms of the MSE

cost function.

4. CONCLUSION

In the linear multidimensional regression model without constraint the optimal estimator

has an analytic solution and it minimises both the ordinary mean square function and Un(w),

therefore it is not useful, for this case, to consider Un(w). However, for the constrained linear

model and for the non-linear multidimensional regression model, the ordinary least square

estimator is sub-optimal if the covariance matrix of the noise is not the identity matrix. We

can overcome this difficulty by using the cost function Un(w) = log det(Γn(w)). Indeed, this

cost function is the same as the generalised least square cost function with the best approx-

imation of the true covariance matrix calculable with the available data. In this paper, the

proofs of the consistency, of the normality asymptotic and of the optimality of this estimator

have been provided. Moreover, we have proved that, if the model is identifiable, this cost

function leads to a simpler test to determine the number of weights. These theoretical results

have been confirmed by a simulated example, and we have seen on a real time series that

we can expect slight improvement, especially in model selection, because pruning techniques

are very sensitive to the variance of the estimated weights. Nevertheless, we have to note

that the main difficulty in regression with MLPs is the lack of theoretical justification for

procedures determining the number of hidden units. Indeed, determining the true number of

hidden units is very important in order to have an identifiable model. For practical situations

and without theoretical justification, a BIC-like penalised cost function seems to work well.

5. APPENDIX
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Proof of theorem 1. First we have to show that the limit, as n goes to infinite, of Un(w)

is minimised only by w0.

Lemma 1. Under the conditions (C):

lim
n→∞

Un(w) − Un(w0)
a.s.

≥ 0

and

lim
n→∞

Un(w) − Un(w0)
a.s.
= 0 ⇔ w = w0.

Proof: Let us note

Γ(w) = E
(

(Y − Fw(Z))(Y − Fw(Z))T
)

(5)

the expectation of the covariance matrix of the noise for the model parameter w and remark

that Γ0 = Γ(w0). By the strong law of large numbers we have

Un(w) − Un(w0)
a.s.→ log det(Γ(w)) − log det(Γ0) = log det(Γ(w))

det(Γ0)

= log det (Γ−1(w0) (Γ(w) − Γ0) + Id) ,

where Id denotes the identity matrix of R
d. So, the lemma is true if Γ(w) − Γ0 is a positive

matrix, null only if w = w0, because the determinant of (Γ−1(w0) (Γ(w) − Γ0) + Id) will be

bigger than 1. This is the case since

Γ(w) = E
(

(Y − Fw(Z))(Y − Fw(Z))T
)

= E
(

(Y − Fw0(Z) + Fw0(Z) − Fw(Z))(Y − Fw0(Z) + Fw0(Z) − Fw(Z))T
)

= E
(

(Y − Fw0(Z))(Y − Fw0(Z))T
)

+ E
(

(Fw0(Z) − Fw(Z))(Fw0(Z) − Fw(Z))T
)

= Γ0 + E
(

(Fw0(Z) − Fw(Z))(Fw0(Z) − Fw(Z))T
)

.

Then, the lemma is proved because the model is assumed to be identifiable (see equation

(2)), so

E
(

(Fw0(Z) − Fw(Z))(Fw0(Z) − Fw(Z))T
)

,

is a positive matrix, null only if w = w0
�
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From the assumptions (C), following example 19.8 of van der Vaart (1998) the set of

functions

w 7→ (Y − Fw(Z))(Y − Fw(Z))T , w ∈ W

is Glivenko-Cantelli.

Now, by lemma 1, we remark that for all neighbourhood O of w0 there exists a number

η(O) > 0 such that for all w /∈ O we have

log det (Γ(w)) > log det (Γ0) + η(O).

In order to show the strong consistency we have to prove that for all neighbourhood O
of w0 we have limn→∞ Ŵn

a.s.⊂ O, which is equivalent to

lim
n→∞

log det
(

Γ(Ŵn)
)

− log det (Γ0)
a.s.
< η(O),

where Γ(Ŵn) is defined by equation (5). By definition, we have:

log det
(

Γn(Ŵn)
) a.s.

≤ log det
(

Γn(w0)
)

.

The Glivenko-Cantelli property and the continuity of the function Γ 7→ log det(Γ) imply that

lim
n→∞

log det
(

Γn(w0)
)

− log det (Γ0)
a.s.
= 0,

therefore

lim
n→∞

log det
(

Γn(Ŵn)
)

a.s.
< log det (Γ0) +

η(O)

2
.

They also imply that

lim
n→∞

log det
(

Γn(Ŵn)
)

− lim
n→∞

log det
(

Γ(Ŵn)
)

a.s.
= 0

and finally

lim
n→∞

log det
(

Γ(Ŵn)
)

− η(O)

2

a.s.
< lim

n→∞
log det

(

Γn(Ŵn)
)

a.s.
< log det (Γ0) +

η(O)

2
,

so

lim
n→∞

log det
(

Γ(Ŵn)
)

a.s.
< log det (Γ0) + η(O)

�
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Proof of theorem 2. As usual, the asymptotic normality of the estimator minimising

Un(w) is a consequence of the Taylor expansion of Un(w) around the parameter w0. So, the

computation of the first and second derivative of Un(w) is necessary to get these results.

Let us introduce a notation: if Fw(z) is a d-dimensional parametric function depending

on a parameter vector w, we write ∂Fw(z)
∂wk

(resp. ∂2Fw(z)
∂wk∂wl

) for the d-dimensional vector of

the partial derivative (resp. second order partial derivatives) of each component of Fw(z).

Moreover, if Γ(w) is a matrix depending on w, let us write ∂
∂wk

Γ(w) the matrix of partial

derivatives of each component of Γ(w).

First derivatives. Now, if Γn(w) is a matrix depending on the parameter vector w,

we get from Magnus and Neudecker (1988)

∂

∂wk

log det (Γn(w)) = tr

(

Γ−1
n (w)

∂

∂wk

Γn(w)

)

,

with

Γn(w) =
1

n

n
∑

t=1

(yt − Fw(zt))(yt − Fw(zt))
T .

Note that this matrix Γn(w) and its inverse are symmetrical. Now, if we write

An(wk) =
1

n

n
∑

t=1

(

−∂Fw(zt)

∂wk

(yt − Fw(zt))
T

)

, (6)

using the fact that

tr
(

Γ−1
n (w)An(wk)

)

= tr
(

AT
n (wk)Γ

−1
n (w)

)

= tr
(

Γ−1
n (w)AT

n(wk)
)

,

we get
∂

∂wk

log det (Γn(w)) = 2tr
(

Γ−1
n (w)An(wk)

)

.

As we will see in an example, the calculation of this derivative is generally easy.

Example: calculation of the derivative for an MLP. The ith component of a

multidimensional function will be denoted Fw(zt)(i) and for a matrix A = (Aij), we write

vec(A) the vector obtained by concatenation of the columns of A. Following the previous

16



results, and according to Magnus and Neudecker (1988), we can write the derivative of

log(det(Γn (w))) with respect to the weight wk:

∂

∂wk

log det(Γn (w)) = vec
(

Γ−1
n (w)

)T
vec

(

Γn (w)

∂wk

)

, (7)

with Γn(w)
∂wk

the matrix whose component ij is:

1

n

n
∑

t=1

[

−∂Fw(zt)(i)

∂wk

× (yt − Fw(zt)) (j) − ∂Fw(zt)(j)

∂wk

(yt − Fw(zt)) (i)

]

. (8)

Back-propagation is the standard way to compute the derivatives with an MLP function

(see Haykin (1999)). Here, if we consider the MLP restricted to the output i, the quantity

∂Fw(zt)(i)
∂wk

can be computed by back-propagating the constant 1. For example, figure 1 gives

an example of an MLP restricted to the output 2.

Figure 1: MLP restricted to the output 2: the continuous lines

HERE, Figure 1

Hence, the computation of the gradient of Un (w) with respect to the parameters of the

MLP is straightforward. We have to compute the derivative with respect to the weights of

each single output MLP extracted from the original MLP. This computation can be done

by back-propagating the constant value 1. Then, according to formula (8), we compute the

derivative of each term of the empirical covariance matrix of the noise. Finally the gradient is

obtained by the sum of all the derivative terms of the empirical covariance matrix multiplied

by the terms of its inverse as in formula (7).

Second derivatives. We now write

Bn(wk, wl) :=
1

n

n
∑

t=1

(

∂Fw(zt)

∂wk

∂Fw(zt)

∂wl

T
)

and

Cn(wk, wl) :=
1

n

n
∑

t=1

(

−(yt − Fw(zt))
∂2Fw(zt)

∂wk∂wl

T
)

.

We get
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∂2Un(w)
∂wk∂wl

= ∂
∂wl

2tr (Γ−1
n (w)An(wk)) =

2tr
(

∂Γ−1
n (w)
∂wl

A(wk)
)

+ 2tr (Γ−1
n (w)Bn(wk, wl)) + 2tr (Γn(w)−1Cn(wk, wl)) .

Now, Magnus and Neudecker (1988) give an analytic form of the derivative of an inverse

matrix:
∂Γ−1(w)

∂wk

= −Γ−1(w)

(

∂Γ(w)

∂wk

)

Γ−1(w)

so
∂2Un(w)
∂wk∂wl

= 2tr
(

Γ−1
n (w)

(

An(wk) + AT
n (wk)

)

Γ−1
n (w)An(wk)

)

+

2tr (Γ−1
n (w)Bn(wk, wl)) + 2tr (Γ−1

n (w)Cn(wk, wl))
(9)

Now, theorem 2 will follow from this fundamental lemma.

Lemma 2. Let ∆Un(w0) be the gradient vector of Un(w) at w0 and HUn(w0) be the

Hessian matrix of Un(w) at w0.

We finally define

B(wk, wl) :=
∂Fw(Z)

∂wk

∂Fw(Z)

∂wl

T

.

Then, under the assumption (AN) we get:

1.
√

n∆Un(w0)
D→ N (0, 4I0)

2. HUn(w0)
a.s.→ 2I0,

where the component (k, l) of the matrix I0 is:

tr
(

Γ−1
0 E

(

B(w0
k, w

0
l )
))

.

Proof of lemma 2: Let us begin with the first result. Under the condition (AN)-1, An(w0
k)

(see equation (6)) is square integrable, so it verifies the central limit theorem. As the kth term

of ∆Un(w0) is equal to 2tr (Γ−1
n (w0)An(w0

k)) and Γ−1
n (w0)

a.s.→ Γ−1
0 , by the Slutsky lemma (see

lemma 2.8 of van der Vaart (1998)), ∆Un(w0) verifies the central limit theorem too. Now,

let us write

A(wk) =

(

−∂Fw(Z)

∂wk

(Y − Fw(Z))T

)
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and write ∂U(w)
∂wk

:= log det(Γ(w))
∂wk

. We first remark that the component (k, l) of the matrix 4I0

is:

E

(

∂U(w0)

∂wk

∂U(w0)

∂w0
l

)

= E
(

2tr
(

Γ−1
0 AT (w0

k)
)

× 2tr
(

Γ−1
0 A(w0

l )
))

and, since the trace of the product is invariant by circular permutation,

E
(

∂U(w0)
∂wk

∂U(w0)
∂w0

l

)

= 4E
(

−∂F
w0 (Z)T

∂wk
Γ−1

0 (Y − Fw0(Z))(Y − Fw0(Z))T Γ−1
0

(

−∂F
w0 (Z))

∂wl

))

= 4E
(

∂F
w0 (Z)T

∂wk
Γ−1

0
∂F

w0 (Z)

∂wl

)

= 4tr
(

Γ−1
0 E

(

∂F
w0 (Z)

∂wk

∂F
w0 (Z)T

∂wl

))

= 4tr
(

Γ−1
0 E (B(w0

k, w
0
l ))
)

.

This proves the first result.

Let us now prove the second result. For the component (k, l) of the expectation of the

Hessian matrix, we remark that

lim
n→∞

An(w0
k) = E

(

A(w0
k)
)

= 0

because the noise ε = Y − Fw0(Z) is centred and independent of the random variable Z.

Hence

limn→∞ tr (Γ−1
n (w0)An(w0

k)Γ
−1
n (w0)An(w0

k)) =

limn→∞ tr
(

Γ−1
n (w0)AT

n (w0
k)Γ

−1
n (w0)An(w0

k)
)

= 0

and, for the same reason

lim
n→∞

trΓ−1
n Cn(w0

k, w
0
l ) = 0.

Finally

limn→∞ HUn(w0) = limn→∞ 2tr
(

Γ−1
n (w0)

(

An(w0
k) + AT

n (w0
k)
)

Γ−1
n (w0)An(w0

k)
)

+

2trΓ−1
n (w0)Bn(w0

k, w
0
l ) + 2trΓ−1

n Cn(w
0
k, w

0
l )

= 2tr
(

Γ−1
0 E (B(w0

k, w
0
l ))
)

�

As the matrix I0 is assumed to be invertible, following the same argument of local asymptotic

normality as in Yao (2000), we get the Taylor formula with an integral remainder:

∆Un(Ŵn) = ∆Un(w0) +

∫ 1

0

HUn(Ŵn + u(Ŵn − w0)du.
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The condition (AN)-2 implies that

‖∂Fw1
(z)

∂wk

− ∂Fw2
(z)

∂wk

‖ ≤ ‖w1 − w2‖m2(z)

and

‖∂2Fw1
(z)

∂wj∂wk

− ∂2Fw2
(z)

∂wj∂wk

‖ ≤ ‖w1 − w2‖m3(z).

So, there exists an integrable function g ((Y1, Z1), · · · , (Yn, Zn)) such that, for all w1 and w2

in W
‖HUn(w1) − HUn(2)‖

a.s.

≤ ‖w1 − w2‖g ((Y1, Z1), · · · , (Yn, Zn)) .

It follows from this inequality that

∫ 1

0

HUn(Ŵn + u(Ŵn − w0)du − HUn(w0)
a.s.→ 0.

Finally, Theorem 2 is an obvious consequence of this last equation and lemma 2. �
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