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Abstract Historically, the first occurrence of multi-armed bandit
problems was given by medical trials. In the case of a severe
We consider the framework of stochastic multi-armed disease, ill patients only are included in the trial and thet ¢
bandit problems and study the possibilities and limita- of picking the wrong treatment is high (the associated rdwar
tions of strategies that explore sequentially the arms. would equal a large negative value). It is important to min-
The strategies are assessed in terms of their simple re- imize the cumulative regret, since the test and cure phases
grets, a regret notion that captures the fact that explo- coincide. However, for cosmetic products, there existsa te
ration is only constrained by the number of available phase separated from the commercialization phase, and one
rounds (not necessarily known in advance), in contrast aims at minimizing the regret of the commercialized product
to the case when the cumulative regret is considered and rather than the cumulative regret in the test phase, which is
when exploitation needs to be performed at the same irrelevant. (Here, several formulee for a cream are consid-
time. We believe that this performance criterion is suited ered and some quantitative measurement, like skin moistur-
to situations when the cost of pulling an arm is expressed ization, is performed.)
in terms of resources rather than rewards. We discuss The pure exploration problem addresses the design of
the links between simple and cumulative regrets. The strategies making the best possible use of available numeri
main result is that the required exploration—exploitation cal resources (e.g., aputime) in order to optimize the per-
trade-offs are qualitatively different, in view of a gerlera formance of some decision-making task. That is, it occurs
lower bound on the simple regret in terms of the cumu- in situations with a preliminary exploration phase in which
lative regret. We then refine this statement. costs are not measured in terms of rewards but rather in terms

of resources, that come in limited budget.
1 Introduction A motivating example concerns recent works on computer-

go (e.g., the MoGo program of [GWMTP6]). A given time,
Learning processes usually face an exploration versus ex-.e., a given amount ofpu times is given to the player to
ploitation dilemma, since they have to get information on explore the possible outcome of a sequences of plays and
the environment (exploration) to be able to take good ac- output a final decision. An efficient exploration of the séarc
tions (exploitation). A key example is the multi-armed ban- space is obtained by considering a hierarchy of forecasters
dit problem [Rob5_2], a sequential decision problem where, minimizing some_cumulative regret — see, for instance, the
at each stage, the forecaster has to pull one ou afiven ucT strategy of [KS06] and theAsT strategy of [CMO[7].
stochastic arms and gets a reward drawn at random accordindgdowever, the cumulative regret does not seem to be the right
to the distribution of the chosen arm. The usual assessmentvay to base the strategies on, since the simulation costs are
criterion of a strategy is given by its cumulative regreg th  the same for exploring all options, bad and good ones. This
sum of differences between the expected reward of the besiobservation was actually the starting point of the notion of
arm and the obtained rewards. Typical good strategies, likesimple regret and of this work.

the uce strategies of|[ACBFQ2], trade off between explo- Afinal related example is the maximization of some func-
ration and exploitation. tion f, observed with noise, see, e.d., [Kle44, BMJS09].

Our setting is as follows. The forecaster may sample Whenever evaluating at a point is costly (e.g., in terms of
the arms a given number of times(not necessarily known  numerical or financial costs), the issue is to choose as ade-
in advance) and is then asked to output a recommendationgquately as possible where to query the value of this function
formed by a probability distribution over the arms. He is in order to have a good approximation to the maximum. The
evaluated by his simple regret, that is, the difference betw  pure exploration problem considered here addresses gxactl
the average payoff of the best arm and the average payoffthe design of adaptive exploration strategies making tisé be
obtained by his recommendation. The distinguishing featur use of available resources in order to make the most precise
from the classical multi-armed bandit problem is that the ex prediction once all resources are consumed.
ploration phase and the evaluation phase are separated. We As a remark, it also turns out that in all examples con-
now illustrate why this is a natural framework for numerous sidered above, we may impose the further restriction theat th
applications. forecaster ignores ahead of time the amount of available re-



sources (time, budget, or the number of patients to be in-
cluded) — that is, we seek for anytime performance. The| Parameters:K probability distributions for the rewards of the
problem of pure exploration presented above was referred to| arms,vi, ..., vk
as “budgeted multi-armed bandit problem” in the open prob- _

lem ]. [Bchop] solves the pure exploration problem Foreachfound = 1,2,...,

in a minmax sense for the case of two arms only and rewards (1) the forecaster chooses € P{1,..., K} and pulls an
given by probability distributions oveld, 1]. [EDMMOZ]] armI, at random according tp.;

and [MTO4] consider a related setting where forecasters per
form exploration during a random number of rouridsind
aim at identifying are—best arm. They study the possibili-

(2) the environment draws the rewdrdfor that action (also
denoted byXy, 7, (+) with the notation introduced in the

ties and limitations of policies achieving this goal witheov text;

whelming1 — § probability and indicate in particular upper (3) the forecaster outputs a recommendation

and lower bounds on (the expectation @f) Another re- v € P{1,...,K};

lated problem in the statistical literature is the idengifion ) o

of the best arm (with high probability). However, the bi- (4) Ifthe environment sends a stopping signal, then the game

takes an end; otherwise, the next round starts.

nary assessment criterion used there (the forecasteher eit
right or wrong in recommending an arm) does not capture
the possible closeness in performance of the recommended

arm compared to the optimal one, which the simple regret Figuré 1:  The pure exploration problem for multi-armed
does. bandits.

Problem setup, notation pected regret on a one-shot instance of the game, if a random

We consider a sequential decision problem for multi-armed action is taken according to,. Formally,

bandits, where a forecaster plays against a stochastie envi_ - . _ _

ronment.K > 2 arms, denotgd gy :gL ... K,areavail- '~ r(vr) =u" —py,  where u” =y = P e

able and thej—th of them is parameterized by a probabil- d -

ity distributiony; over[0, 1] (with expectatiory;); at those and - fiy, = Z

rounds when it is pulled, its associated reward is drawn at i=1

random according te;, independently of all previous re-  denote respectively the expectations of the rewards of the

wards. For each armand all time rounds. > 1, we denote  pest armj* (a best arm, if there are several of them with

by T;(n) the number of timeg was pulled from rounds 1 same maximal expectation) and of the recommendation

ton, and byX; 1, X;o,..., X 1,(n) the sequence of asso- A useful notation in the sequel is the gdg = u* — p;

ciated rewards. between the maximal expected reward and the one ofthe
The forecaster has to deal simultaneously with two tasks, th arm ; as well as the minimal gap

a primary one and an associated one. The associated task .

consists in exploration, i.e., the forecaster should iatgic A= P Aj -

at each round the arm/; to be pulled. He may resort to _ o ) _

a randomized strategy, which, based on past rewards, pre- A quantity of related interest is the cumulative regret at

scribes a probability distributiop; € P{1,..., K} (where roundn, .

we denote byP{1, ..., K} the set of all probability distribu- R o— «

tions over the indexes of the arms). In that cdsés drawn T Z s

at random according to the probability distributign and =1 . ) ,

the forecaster gets to see the associated reWaralso de- A popular treatment of the mgltl—armed bandit problems is

noted beIt,th (1) With the notation above. The sequence to construct forecasters ensuring tid,, = o(n), see, e.g.,

(¢¢) is referred to as an allocation strategy. The primary [LR8E)] or [RCBFO2], and everk, = o(n) ass., as follows,

task is to output at the end of each round recommenda- €9+ from [ACBFSO2, Theorem 6.3] together with a martin-

tion ¢, € P{1,...,K} to be used to form a randomized gale argument. The quantities= 1. — iz, are sometimes

play in a one-shot instance if/when the environment sendsca"tEd mstgntaneotys Ireg,]éets_. T/hey dlfferfto.m .the snnplle r
some stopping signal meaning that the exploration phase is3'€tS7+ and in particularfi, = ry + ...+ 7, ISin general
not equal tor; + ... + 7,,. Theoren{]L, among others, will

over. The sequende),) is referred to as a recommendation h indicat " ety dR
strategy. Figurﬂl summarizes the description of the sequen Owever indicate Ssome connections betwegand vy,

tial game and points out that the information available ® th Goal and structure of the papeWe study the links be-
forecaster for choosing;, respectively),, is formed by the  tween simple and cumulative regrets. Intuitively, an effi-
Xjsforj=1,...,Kands=1,...,T;(t—1), respectively,  cient allocation strategy for the simple regret should oy
s=1,...,T;(¢). some exploration—exploitation trade-off. Our main cdri

As we are only interested in the performances of the rec- tion (Theorenﬂl, Sectioﬂ 2) is a lower bound on the simple
ommendation strategy/, ), we call this problem the pure ex-  regret in terms of the cumulative regret suffered in the expl
ploration problem for multi-armed bandits and evaluate the ration phase, showing that the trade-off involved in theimin
strategies through their simple regrets. The simple ragfret mization of the simple regret is somewhat different from the
a recommendatiott, = (v;+);=1,....n iS defined as the ex-  one for the cumulative regret. In Secti(ﬁhs 3 ﬂ1d 4, we then

K

.....



refine this statement and illustrate it by simulations. Inpa
ticular, we show how, despite all, strategies designedier t
cumulative regret can outperform (for moderate values)of

Corollary 2 For allocation strategieg:), all recommen-
dation strategiegv, ), and all sets ofK’ > 3 (distinct, Ber-
noulli) distributions on the rewards, there exist two c@mds

strategies with optimal rates of convergence for the simple 8 > 0 and~ > 0 such that, up to relabeling,

regret. Finally, in Sectioﬂ 5, we consider the setting ofarm

indexed by a metric space and discuss a necessary and suf-

ficient condition for the existence of forecasters with dmal
simple or cumulative regrets.

2 The smaller the cumulative regret, the
larger the simple regret

It is immediate that for the recommendation formed by the
empirical distribution of plays of Figurﬂ 3,

1
wnzﬁgéha

the regrets satisfy,, = R,,/n; therefore, upper bounds on
ER,, lead to upper bounds div,,. We show here that upper
bounds orER,, also lead to lower bounds div,,: the bet-
ter the guaranteed upper boundI®R,,, the worst the lower
bound onEr,,, no matter what the recommendation strate-
giesy,, are.

This is interpreted as a variation of the “classical” trade-
off between exploration and exploitation. Here, while the
recommendation strategi@s, rely only on the exploitation

of the results of the preliminary exploration phase, the de-

sign of the allocation policieg,, consists in an efficient ex-
ploration of the arms. To guarantee this efficient explorati

Er, > Be "™,

To get further the point of Theoreﬂw 1, one should keep in
mind that the typical (distribution-dependent) rate ofugito
of the cumulative regrets of good algorithms, e.g., UCB1 of
[RCBFO0F], isc(n) = Inn. This, as asserted ifi [CRB5], is
the optimal rate. But the recommendation strategies based
on such allocation strategies are bound to suffer a simple re
gret that decreases at best polynomially fast. We state this
result for the slight modification UC@®) of UCB1 stated in
Figureﬂz; its proof relies on noting that it achieves a cumula
tive regret bounded by(n) = plnn.

Corollary 3 The allocation strategy,) given by the fore-
caster UCRp) of Figure[? ensures that for all recommen-
dation strategieg;) and all sets ofK’ > 3 (distinct, Ber-
noulli) distributions on the rewards, there exist two c@mds

8 > 0and~ > 0 such that, up to relabeling,

Er, > B8n="" .

Proof: The intuitive version of the proof of Theordh 1 is as
follows. The basic idea is to consider a tie case when the
best and worst arms have zero empirical means; it happens
often enough (with a probability at least exponential in the
number of times we pulled these arms) and results in the

past payoffs of the arms have to be considered and thus, eveifiorecaster basically having to pick another arm and suferi
in the exploration phase, some exploitation is needed. The-some regret. Permutations are used to control the case of

oremﬂ. and its corollaries aim at quantifying the amount of
exploration needed. In particular, to have an optimal réte o

untypical or naive forecasters that would despite all pall a
arm with zero empirical mean, since they force a situation

decrease for the simple regret, each arm should be sampledvhen those forecasters choose the worst arm instead of the

a linear number of times, while for the cumulative regret, it

is known that the forecaster should not do so more than a

logarithmic number of times on the suboptimal arms.

Formally, our main result is as follows. It is strong in
the sense that we get lower boundsdéimpossible Bernoulli
distributionsv, . . ., vx over the rewards.

Theorem 1 (Main result) For all allocation strategiegy; )
and all functions : {1,2,...} — R such that

for all (Bernoulli) distributionsvy, ..
wards, there exists a constant > 0 with ER,,
Ce(n),

., vk on the re-
<

S

the simple regret of all recommendation stratedi¢g based
on the allocation strategiegy, ) is such that

for all sets of K > 3 (distinct, Bernoulli) distributions
on the rewards, all different from a Dirac distribution at
1, there exists a constafi? > 0 with

]E'f'n 2 é 67D5(n)
2
(up to a relabeling, . . ., vk of the considered distri-

butions intov, (1), . . ., vx(x) for some permutatiom).

Since the cumulative regrets are always bounded by
one gets the following.

best one.

Formally, we fix the allocation strategiég,) and a cor-
responding functior such that the assumption of the the-
orem is satisfied. We consider below a setrof> 3 (dis-
tinct) Bernoulli distributions; actually, we only use beio
that their parameters are (up to a first relabeling) such that
1>p > p2 2 p3 > ... 2 px = 0anduz > px (thus,

p2 > 0). o
Another layer of notation is needed. It depends on a
given permutationr of {1, ..., K'}. To have a gentle start,

we first describe the notation when the permutation is the
identity, o id. We denote byP andE the probability
and expectation with respect to tié&tuple of distributions
oversthe armsy, ..., vg. Fori = 1 (respectively; = K),
we denote by; ;4 andE; ;4 the probability and expectation
with respect to the{-tuples formed by, s, ..., vk (re-
spectivelypg, vo, ..., vk _1,dp), Wwheredy denotes the Dirac
measure off. For a given permutatiom, we consider simi-
lar notation up to a relabelindg?, andE, refer to the prob-
ability and expectation with respect to thétuple of distri-
butions over the arms formed by tlmgflm, oy Vg1 (K)-
Note in particular that thg—th best arm is located in the
o(7)-th position. Now, we denote far= 1 (respectively,
i = K) byP, , andE, , the probability and expectation with
respect to theé(-tuple formed by the/, -1, except that we
replaced the best of them, located in #h@)—th position,



by a Dirac measure on 0 (respectively, the best and worst
of them, located in the'(1)—th ando (K )—th positions, by
Dirac measures on 0). We provide a proof in six steps.

Step 1lower bounds by an average the maximum of the
simple regrets obtained by relabeling,

1
max E,ry > il Z Eorn
o

—p
K 2 ZEG’ [1 _wa(l),n] )

where we used that und&,, the index of the best arm is
o(1) and the minimal regret for playing any other arm is at
leastyy — po.

H1

>

Step 2rewrites each term of the sum owers the prod-
uct of three simple terms. We use first tl#at, is the same
asP,, except that it ensures that am(l) has zero reward
throughout. Denoting by

Tj(n)
Cim= Y Xju
t=1
the cumulative reward of thg-th till roundn, one then gets
Eo [1 = to().n]
Eq (1= Yon) ICayn=0t
Eq {(1 ~Yoyn) | Coqyn = 0} x Py {Co1),n =0}
Eio {(1 - %(w)] Po {Co(1),n =0} .
Second, iterating the argument frdf , to Pg ,,
Eve | (1= Yota) |
> ]Ela{(l ~Yoyn) | Cotryn = 0}
xP1,o {Co().n = 0}
Exco | (1= Yon) | Pro {Cotroyn = 0}
and therefore,

Es [1 - 1/10'(1),71]
= EK,U [(1 - U)U(l),’ﬂ,) } X ]P)l,a {CU(K),n = O}
X Py {Cy(1),n =0} .

WV

(1)

Ste

of (@),
Pl,a’ {CU(K)_’n = 0}
=Eiq [(1 - ,UK)T"(K)(n)} > (1- MK)ELUTU(K)(n) 7

p 3deals with the second term in the right-hand side

where the equality can be seen by conditionindqn. ., I,,
and then taking the expectation, whereas the inequality is a

consequence of Jensen’s inequality. Now, the expected numwhere the summations ovey, . . .

ber of times the sub-optimal are(K) is pulled undei®; ,

is bounded by the regret, by the very definition of the latter:
(2 — pr) E1oToxy(n) < E1oR,. Since by hypothesis
(and by taking the maximum oK! values), there exists a
constantC such that foralb, E; ,R,, < Ce(n), we finally
get

PI,U{CU(K),n _ O} >(1- ‘LLK)C‘E(")/(M*#K) .

Step 4lower bounds the third term in the right-hand side
of () as

PU{CU(I)-,H = 0} = (1 — MI)CE(")/Hz )

We denote byWV,, = (I1,Y1,...,I,,Y,) the history of ac-
tions pulled and obtained payoffs up to time What fol-
lows is reminiscent of the techniques used[in [M[T04]. We
are interested in realizations, = (i1, y1,- - -, in, Yn) Of the
history such that whenevei(1) was played, it got a null re-
ward. (We denote above biy(¢) is the realization off;(t)
corresponding tav,,, for all j andt.) The likelihood of such
aw, underP, is (1 — u;)'® ™ times the one undek, ,.
Thus,

PU{CU(l),n = 0} = ZPU {Wn = wn}
S (1= ) O By (W = w,)
E,, [(1 _ Ml)Tm)(n)}

where the sums are over those historigs such that the
realizations of the payoffs obtained by the astfi) equal
To),s = 0foralls = 1,...,t,1)(n). The argument is
concluded as before, first by Jensen’s inequality and then, b
USing that#Q El,dTa(l)(n) < El,aRn < CE(’II) by defini-
tion of the regret and the hypothesis put on its control.

Step 5resorts to a symmetry argument to show that as
far as the first term of the right-hand side ﬂf (1) is concerned

;EKJ [1 - 1/10(1),71} > K7

SincePg , only depends oa(2),...,0(K — 1), we denote

by P?(2):--o(K=1) the common value of these probability
distributions whenr(1) ando(K) vary (and a similar no-
tation for the associated expectation). We can thus group
the permutations two by two according to thesg< — 2)—
tuples, one of the two permutations being defined-{y)
equal to one of the two elements ff, . . ., K'} not present

in the (K — 2)—tuple, and the other one being such thét)
equals the other such element. Formally,

ZEK,Uz/JU(l),n
— Z iz dx—1 Z Vi
J2s- K -1 Je{l,.... K\ {j2,--jx—1}
< 25 J K —1 K!
J25--45 JK -1

, jx—1 are over all possi-
ble (K — 2)—tuples of distinct elements i, ..., K }.



Step 6simply puts all pieces together,

max E,r,
B1—
> lKg : Z EK,U[(l - zpa(l),n)] Py {00(1),n = 0}
X Pl,a’ {OO'(K),n = O}
> % ((1 _ ‘LLK)C/(AQ*#K) (1— ’ul)C/;Q)E(n) '

3 Upper bounds on the simple regret

In this section, we aim at qualifying the implications of The

oremD., by pointing out that is should be interpreted as a
result for largen only. For moderate values, strategies not
pulling each arm a linear number of the times in the ex-

ploration phase can have interesting simple regrets. To do
so, and because of space constraints, we consider only twg

allocation strategies (the uniform allocation and the asatri
UCB(p) of UCB1 where the quantile factor may be a pa-

rameter) and three recommendation strategies (the ontes tha

recommend respectively the empirical distribution of glay
the empirical best arm, or the most played arm). They are
formally defined in Figuref 2 ar[di 3.

Parameters:K arms

Uniform allocation
Plays all arms one after the other

Foreachround = 1,2, ...,

use p: = d; mod k], Where [t mod K] denotes the
value oft modulo K.

UCB(p)
First plays each arm once and then the one with the best upper
confidence bound

Parameter:quantile factop
Forroundst = 1,..., K, playy; = 6
Foreachround = K +1,K+2,...,

(1) compute, forallj =1, ..., K, the quantities

Tj(t—1)

> X
s=1

1

Tj(t - 1)

Bjt-1 =

(2) useps = g+, where

ji_1 € argmax [ + pln(t— 1)
- r L P )
Jt—1 J:% P Hjt—1 TJ(t _ 1)

-----

(ties broken by choosing, for instance, the arm with

smallest index).

Figure 2: Two allocation strategies.

Parameters:the historyIs, ..., I, of played actions and of
their associated rewards;, . . ., Y, grouped according to the
arms asXj1,..., Xy, forj=1,...,n

Empirical best arm (EBA)
Only considers armg with T;(n) > 1, computes their asso-
ciated empirical means

and forms a deterministic recommendation (conditionadly
the history),

Yn =62
(ties broken in some way).

—

where J;, € argmax fijn
J

Most played arm (MPA)
Forms a deterministic recommendation (conditionally te t
history),

tn =6
(ties broken in some way).

=

where J;; € argmax T}(n) .
PR

Empirical distribution of plays (EDP)
Draws a recommendation using the probability distribution

Yn = %Z‘”t :
t=1

Figure 3: Three recommendation strategies.

Before diving into the technical statements, we point out
some inherentissues in exhibiting upper bounds for the sim-
ple regret. A first delicate case occurs when there is only one
optimal arm and the gaps for all others take the common val-
uesA, for some smallA. It seems rather intuitive that one
can then not do anything better than assigning the same num-
ber of pulls to all the arms; the formalization of this intait
leads to the distribution-free lower bound ¢f [ACBFp02].
Thus, for some problems, the uniform allocation strategy
seems to be the best one, and this has to appear somewhere in
the upper bounds. On the other hand, consider a case when
there are several suboptimal arms, a few of them with small
gapsA;, all other ones with large gaps;. One can take
advantage of this situation with an adaptive algorithm such
as UCHp) and quickly focus on a small subset of good can-
didates among the arms. For similar problems, the bound
on the simple regret for this forecaster should be better tha
the one corresponding to the uniform allocation strategs, s
Section[3}J4. Note also that in all cases, as discussed in de-
tails in Sectior[|4, the simple regret of the uniform allocati
strategy will be smaller than the one of UGB after some
time. These subtleties lead to a less easy analysis than the
classical one for the cumulative regret.



3.1 Overview of the bounds

TabIeD. summarizes the distribution-dependent and distrib
tion-free bounds we could prove so far. It shows that two
interesting couple of strategies are, on one hand, the umifo
allocation together with the choice of the empirical best,ar
and on the other hand, UGB) together with the choice of
the most played arm. The first pair was perhaps expecte
the second one might be considered more suprising.

We only prove here upper bounds on the simple regrets of
these two pairs and omit the proofs of all other upper bounds.
The distribution-dependent lower bound is stated in Corol-

lary  and the distribution-free lower bound follows from a
straightforward adaptation of the proof of the lower bound
on the cumulative regret i) [ACBFS02].

Table[] indicates that while for distribution-dependent
bounds, the optimal rates of decrease in the numbef
rounds for simple regrets is exponential, for distributfoee
bounds, the rate worsenstg,/n. A similar situation arises
for the cumulative regret, seg [LR85] (optinialn rate for
distribution-dependent bounds) versps [ACBFS02] (optima
/n rate for distribution-free bounds).

Distribution-dependent
EDP EBA MPA
Uniform Qe On
UCB(p) O(plnn)/n On© On?0-»
Lower bound Qe On
Distribution-free
EDP EBA MPA
Uniform 0 K 1:11 K
ucep) Oy 2K i - \/m
n vplnn n
Lower bound 0K
n

Table 1: Distribution-dependent (top) and distribution-

free (bottom) bounds on the expected simple regret of the
considered pairs of allocation (lines) and recommendation
(columns) strategies. Lower bounds are also indicated. The

0 symbols denote the universal constants, whereag the
are distribution-dependent constants.

3.2 Asimple benchmark: the uniform allocation
strategy

As explained above, the combination of the uniform alloca-
tion with the recommendation indicating the empirical best

arm, forms an important theoretical benchmark. This sec-

tion studies briefly its theoretical properties: it achetee
optimal rates of decrease both in terms of its distribution-
dependent and distribution-free bounds.

Yk |n/ i) OF EBA (see FigurﬂB), wherer | denotes the lower
integer part of a real number. The reason why we prefer

YK |n/ K| 109y is only technical. The analysis is indeed sim-
pler when all averages over the rewards obtained by each arm
are over the same number of terms. This happens at rounds
n multiple of K and this is why we prefer taking the recom-

¢ mendation of rounds | n/ K | instead of the one of round

We propose two distribution-dependent bounds, the first
one is sharper in the case when there are few arms, while the
second one is suited for large Both match the lower bound
exhibited in Corollary]2.

Proposition 1 The uniform allocation strategy associated to
the recommendation given by the empirical best arm (at round
K |n/K]) ensures that the simple regrets are bounded by

IETn g Z Aj eiA? Ln/Kj/Q
J:A;>0

foralln > K;and by

nx (14 55

Proof: To prove the first inequality, we relate the simple re-
gret to the probability of choosing a non-optimal arm,

Bro= 3 A< Y AP{n > i)

J:A;>0 J:A; >0

where the upper bound follows from the fact that to be the
empirical best arm, an armhmust have performed, in par-
ticular, better than a best argit. We now apply Hoeffd-
ing’s inequality (for i.i.d. random variables, sge [Hoeg63]
Ljn — B+ is an average ofn/K | i.i.d. random variables
bounded betweer1 and1 and with common expectation
—A;. Thus, the probability of interest is bounded by

P{fijn—fijen >0} = P{(ﬁj,n—ﬁj*,n)—(—ﬁj) > Aj}

- @%) EER

which yields the first result.

The second inequality is proved by resorting to a sharper
concentration argument, namely, the method of bounded dif-
ferences, sed [McDB9], see aldo [D].01, Chapter 2]. The
proof, less central to this paper, will be eventually onditte
and can be found, for now, in appendix. |

The distribution-free bound is obtained not as a corollary
of the distribution-dependent bound, but as a consequédnce o
its proof. A direct optimization over tha ; in the first bound
of Propositiorﬂl indeed yields a suboptimal distributioeef
bound. One therefore has to proceed with slightly more care.

<

Below, we mean by the recommendation given by the Corollary 4 The uniform allocation strategy associated to

empirical best arm at rounfi’ |n/K | the recommendation

the recommendation given by the empirical best arm (at round



K|n/K ) ensures that the simple regrets are bounded in a where, in the inequality, the first summation is over the-opti

distribution-free sense, fot > K, as mal arms, the second one, over the suboptimal ones. There-
fore, we get
2KIn K
su Er, <2 . aixn < Tix(n
Ul,...,rl)/K " n JZ* J 72* J ( )

Proof: It is not enough to optimize the bound of Proposi- and there exists at least one arm optimal grirsuch that
tion [§ over theA, for it would yield an additional multi- T}« (n) > a;-n. Since by definition of the vect@u, . . ., ar),
plicative factor ofK . Instead, we extract fromits proof that one hasa; < a;- for all suboptimal arms, it comes that
11 n Tj(n) < ajn < ajn < Tj(n) for all suboptimal arms,
E; » < exp <—— L—J Af) : and the most played ardfj; is thus an optimal arm.
2LKd Thus, using that\; < 1 for all j, the simple regret can
we now distinguish whether a givek; is more or less than ~ be bounded as

athreshold, use thab v, ,, = 1andA,; < 1forall j, and _ . .
can thus write ! ! Er, = EAJ; < Z P{Tj(n) > ajn} .

J:A;>0
K
Er, = Z A By, A side-result extracted from the proof ¢f [ACBKF02, Theo-
=1 rem 1] states that for all suboptimal armsnd all rounds
t>K+1,
< e+ Z Aj Ed}j,n (2)
G0, >e P{I, =j and Tj(t —1) > ¢} <2t~
n A2 4pl
< e+ Y. Ajexp <_#> whenever (> pAI;n. (3)
j:A]‘ >e 7
9 | n This yields that for a suboptimal argnand since by the as-
< e+ (K —1)e exp ¢ | %] ’ sumptions om and thea;, the choice/ = a;n — 1 satisfies
2 (> K+1andl > (4plnn)/A2,

where the last inequality comes by function study, provided P{Tj(n) > a;n}
thate > 1/|n/K|: for C > 0, the functionz € [0,1] — / /

z exp(—Ca?/2) is decreasing offil //C, 1]. Substituting < zn: IP’{Tj(t ) —an—1and = j}

e =+/(2In K)/|n/K | concludes the proof. | t=arm '

3.3 Analysis of UCBp) combined with MPA < Z 24172 ¢ L(ajn)Z(l—p) (4)
We need a technical lemma and then exploit it to obtain two t=a;n p—1

different distribution-dependent bounds of differentitigis. where we used a union bound for the second inequality and

Lemma 5 The allocation strategy given by UGB (where (E) for}he third inequality. A summation over all suboptima
p > 1) associated to the recommendation given by the most&'msj concludes the proof. u
played arm ensures that the simple regrets are boundedina A first distribution-dependent bound is stated below; the
distribution-dependent sense as follows. Forall. .., ax bound does not involve any quantity depending onAhe
such thata; > O forall j, witha; +...+ax =1,andsuch  pyt it only holds for rounds: large enough, a statement
that for all suboptimal armg and all optimal armsj*, one  that does involve the\;. Its interest is first, that its bound

hasa; < a;-, is simple to read, and second, that the techniques used to
1 2(1-p) prove itimply ea_sily_ a distribution-free bound, stated hr_eT
Ern < —— > (a;n) orem[} and which is comparable to Corollgfy 4. A discus-
P g sion of the earlier results of [KSpé] follows, as well as a
for all n sufficiently large, e.g., such that, for all suboptimal second distribution-dependent bound that will be compared
armsj, to Propositior{JL in Sectioh 3.4.
amn>1+ dplnn and an>K+2. Theorem 6 The allocation strategy given by UCB (where
A? ! p > 1) associated to the recommendation given by the most

_ i played arm ensures that the simple regrets are bounded in a
Piqof. ‘We first prove that wheneyfr the most played arm gjstribution-dependent sense by
J is different from an optimal arnj*, then at least one of 1
the suboptimal armg is such thaf’;(n) > a;n. To do so, E K" 50y
Tn < n
we prove the converse and assume ffigth) < a;n for all p—1

suboptimal arms. Then,

for all n sufficiently large, e.g., such that

K K
4Kpl
(Do) =300 < X0+ T wo e BII  aca).
1= 1= J* J



This result matches the lower bound exhibited in Corol-
IaryE; in the upper bound presented above, the polynomial
rate of decrease is distribution-free. In addition, itstates
Theorerrﬂl: the largew, the larger the (theoretically guar-
anteed bound on the) cumulative regret of UgBbut the
smaller the simple regret of UGB) associated to the rec-

ommendation qiven by the mast played arm. )
Proof: We apply Lenimg|5 with the uniform choieg =

1/K and recall that\ is the minimum of theA; >0. W
heorem 7 The allocation strategy given by fJ(I;;a (where

p > 1) associated to the recommendation given by the most
played arm ensures that the simple regrets are bounded in a
distribution-free sense by
4Kplnn
n—K

:o<

foralln > K(K + 2).

K2p—1
p—1

)

Proof: We start the proof by applyin§[|(2), which holds in
general, as well as the factthgt = j only if T;(n) > n/K,
that is,

Er, n2(-p)

AN

Kplnn

n

Vim = Lgz=jy S Lzymyzn/ky
to get

n
Er, =EAj; <e+ AjP{Tj(n) > E} .
JiAj>e
Applying () witha; = 1/K leads to
Bi 21 ,20-p)
-1

Er, <e+ Z »

JiAj>e
wheree is chosen such that for all; > ¢, the needed con-
diton/ =n/K —1> (4plnn)/A? is satisfied /K —1 >
K + 1 being satisfied by the assumption erand K). The
conclusion thus follows from taking, for instance,

[4pK Inn
n—K '’

and upper bounding all remaininy; by 1.

Remark 1 We can rephrase the results pf [KB06] as using
UCB1 as an allocation strategy and forming a recommen-
dation according to the empirical best arm. In particular,
[KS08, Theorem 5] provides a distribution-dependent bound
on the probability of not picking the best arm with this pro-
cedure. It can be used to derive a bound on the simple regret
By reproducing their calculations (to have an explicit egpr
sion of the leading constant in terms of the), we got

3.4 Discussion: Comparison of the bounds

We now explain why, in some cases, the bound provided by
our theoretical analysis in Lemmg 5 is better than the bound
stated in Proposition| 1. This will be further illustratedtime
simulation section.

The central point in the argument is that the bound of
Lemmal[} is of the form(O)n2(—), for some distribution-
dependent constand), that is, it has a distribution-free con-
vergence rate. In comparison, the bound of Proposﬂon 1
involves the gap4\; in the rate of convergence.

Some care is needed in the comparison, since the bound
for UCB(p) holds only forn large enough, but it is easy to
find situations where for moderate valuesmfthe bound
exhibited for the sampling with UCB) is better than the
one for the uniform allocation. These situations typicaily
volve a rather large numbé¥ of arms; in the latter case, the
uniform allocation strategy only sampl¢s/K | each arm,
whereas the UCB strategy focuses rapidly its exploration on
the best arms.

A general detailed argument to provide such examples
is provided in the appendix. It will be omitted in the final
version, where only the heuristic arguments above will be
kept.

4 A brief simulation study

We propose three simple experiments to illustrate our theo-
retical analysis (each of them was runi instances of the
problem and we plotted the average simple regrets). The first
one corresponds in some sense to the worst case alluded at
at the beginning of Sectidn 3. It shows that for small values
of n (e.g.,n < 80 in Figure|4), the uniform allocation strat-
egy is very competitive. Of course the range of these values
of n can be made arbitrarily large by decreasing the gaps.
The second one corresponds to the discussion in Sdctjon 3.4,
while the third one represents a rather typical behavionef t
strategies whelk is large.

The attentive reader may be surprised that we never see
the uniform allocation strategy converging more rapidirth
UCB-based strategies, whereas the combination of the lower
bound of Corollary 3 and the upper bound of Proposiﬂon 1
shows that for all distributions over the arms, the unifoilm a
location strategy will be better than UCB after some point
n. Actually, thisn is very large, so large that at it, the simple
regrets are already below computers precision. This has an
important impact on the interpretation of the lower bound of
Theoren{]L. While its statement is in finite time, it should be
interpreted as providing an asymptotic result.

5 Pure exploration for XY—armed bandit
problems (i.e., in topological spaces)

pA3/2
Er, < Z 4 (l) ! This section is of theoretical interest. We consider e
iA0 Aj \n armed bandit problem of, e.g], [KIdol, BMS$09] and (re-

)define the notions of cumulative and simple regrets. We
show that the cumulative regret can be minimized if and only
if the simple regret can be minimized, and use this equiva-
fence to characterize the metric spadésn which the cu-
mulative regret can be minimized: the separable ones. Here,
in addition of its natural interpretation, the simple readgheis
appears as a tool for proving results on the cumulative tegre

for all n > 1. This bound, in particular because of the lead-
ing constantd /A ; and of the distribution-dependant expo-
nent, is not as nice as the bound presented in Thelgrem 6. Th
best distribution-free bound we could get from this bound
was of the order ol /vInn, a rate by far slower than the
optimal1/,/n rate stated in Theoreff 7.
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Figure 4: K = 20 arms with Bernoulli distributions of pa-  Figure 6: K = 100 arms with Bernoulli distributions, whose
rameter<).50 for the first19th of them and).66 for the last parameters are chosen independently at randdf in.
one.

Vi=B(0.1).i=1..18; v 4=B(0.5); v,,,=B(0.9) Parameters:an environmen¥ on X
0.25 T
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Uniform sampling with empirical best arm
02 1 (1) the forecaster chooses a distributipn € P(X) and
\ pulls an arml, at random according t9;

(2) the environment draws the reward for that action, ac-
cording toE(I;);

Expectation of the simple regret

Aim:
Find a pulling strategyy:) such that the cumulative regret
-
T Ry, =nsup p(zr) — Z e
0 . . : . ' TEX —1
40 60 80 100 120 140 160 180 200

Allocation budget

is small (i.e.,0(n)).

Figure 5: Parameters of the numerical application in Sec-

tion§. Figure 7: X—armed bandit problems.

5.1 Description of ¥*—armed bandit problems ering the recommendation given by the empirical distriuti
For a (bounded) intervaB of R, say|[0, 1] again, we denote of plays of Figurd[3 and applying the same argument as the
by P([0, 1)) the set of probability distributions ovép, 1]  ©n€ used at the beginning of Sect[pn 2.

Similarly, given a topological spack, we denote byP(.X') _ But surprisingly enough, it can be seen that the two no-

the set of probability distributions ove¥. We then call en-  tOnS are equivalent, and this is why we will henceforth con-

vironment onX any mapping® : X — P([0,1]). We say centrate on explorability only, for which charactenzancas

that  is continuous if the mapping that associates to each the ones of Theoreif) 9 are simpler to exhibit and prove.

x € X the expectatiop(z) of F(x) is continuous. Lemma 8 A family of environmentg" is explorable if and
The X—armed bandit problem is described in Figudes 7 only if itis explorable—exploitable.

and[§. There, an environmehton X is fixed by Nature The proof will be omitted from this extended abstract and

and we want various notions of regret to be small, given this can be found in the appendix. It relies essentially on design

environment. ing a strategy suited for cumulative regret from a strategy
We consider now families of environments and say that minimizing the simple regret; to do so, exploration and ex-

a family F of environments is explorable—exploitable (re- ploitation occur at fixed rounds in two distinct phases and

spectively, explorable) if there exists a strategy such tha only the payoffs obtained during exploitation are fed irte t

for any environmenf € F, the expected cumulative re- base allocation strategy.

gretER,, (expectation taken with respect to and all aux- - .

iliary randomizations) is(n) (respectivelyEr, = o(1)). 5.2 Apositive result for metric spaces

Of course, explorability ofF is a milder requirement than ~ We denote byP([0, 1])* the family of all possible environ-

explorability—exploitability of 7, as can be seen by consid- mentsE onX, and byC (P ([0, 1])*) the subset oP ([0, 1])*



Parameters:environmentE on X

Foreachround =1,2,...,

(1) the forecaster chooses a distributipn € P(X) and
pulls an arm/;, at random according tQ;;

(2) the environment draws the rewayd for that action, ac-
cording toE(I+);
(3) the forecaster outputs a recommendatiere P(X); [ACBF02]

(4) Ifthe environment sends a stopping signal, then the ggme
takes an end; otherwise, the next round starts.

Aim:

Find an allocation strategfy:) and a recommendation stratr [Bil68]
egy (¢») such that the simple regret
[BMSS09]
o = sup p(e) = [ ) din(o)
rzeX X
is small (i.e.,0(1)). [CMO7]
Figure 8: The pure exploration problem fdr-armed bandit ~ [DL01]
problems.
[EDMMO02]
formed by the continuous environments.
Example 1 Previous sections were about the fanfily{0, 1])*
of all environments ove’ = {1, ..., K} being explorable. [GWMTO6]
The main result concerningj—armed bandit problems is [Hoe63]
formed by the following equivalences in metric spaces. It
generalizes the result of examfje 1.
Theorem 9 LetX be a metric space. ThehP([0,1])%) is [Kle04]
explorable if and only ifY is separable.
[KS06]

Corollary 10 LetX be asetP([0,1])* is explorable if and
only if X is countable.

The proofs can be found in the appendix. Their main [LR85]
technical ingredient is that there exists a probabilityribs-
tion over a metric spac# giving a positive probability mass

to all open sets if and only it’ is separable. Then, whenever [McD89]
it exists, it allows some uniform exploration.
6 Conclusions and future work IMLGO4]

We introduced a notion of simple regret, that models the
situations where a forecaster is given an exploration phase
before outputting a recommendation. We showed that the
exploration—exploitation trade-off needed to minimize sim-

ple regret is quantitatively different from the one to bedise
when minimizing the cumulative regret. We provided disirib
tion-dependent and distribution-free bounds on the simple
regret. As long as distribution-dependent upper bounds are
concerned, asymptotic behaviors are in favor of the uniform [Sch06]
(or linear) exploration of each arm. However, as illustiate

by the simulations, this asymptotic phase seems to occur

when computer precision limits are reached and UCB-based

MT04]

[Rob52]

[ACBFS02]

strategies perform better than the uniform allocation fodm
erate values ofi. We provided situations where the superi-
ority of UCB-based strategies over the uniform allocat®n i
reflected in the bounds, and we believe this line of analysis
may be extended. Possible directions include improving the
analysis of the performance of UCB-based strategies strate
gies both for the simple and cumulative regrets.
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A Proofs and discussion to be omitted from which leads to the claimed upper bound. Putting things to-
the final version gether, we get that for the choice

A.1 Proof of the second statement of Propositioﬂ 1 _ { ~ ~ }
o e=—E | max [ij, — [j*n
Proof: We start by writing 3:8;>0

2In K
Er, = A;E®; ), > min A; — 4/ ——— >0
j:AZj>O 7 i8>0 7\ n/K|

N N (for n sufficiently large, a statement made precise below),
< (| max A )P JIRaX Hjin Z Hy o one has
where the inequality follows from the fact that regret is-suf p{ max fijn = fij- n}
fered only when an arm with suboptimal expectation has the §:8;>07 o

best empirical performances. Now, the quantity of interest 9 LQJ 2
can be rewritten as < exp| - IZ

n N N L .
LEJ <j}£?§ouj,n—uf,n> —f(le...,XL%J) < . - K 2
for some functionf, where for alls = 1,...,|n/K|, we S AP Ty {EJ ing>0 7 T\ n/K]

denote byfs the vecton( X s, ..., Xk s). (f isdefinedas a
maximum of at mosK — 1 sums of differences.) We apply ~ The result follows fom such that

the method of bounded differences, spe [MdD89], see also Sk 1
[DLO1], Chapter 2]. It is straightforward that since all ran- min Aj — | ——= > = min Aj;
dom variables of interest take values|in1], the bounded 3:84>0 [n/EK] ™ 254,50

differences condition is satisfied with ranges all equal.to 2 the second part of the theorem indeed only considerssuch
Therefore, the indicated concentration inequality stdtas ]

P { <£?§0 Hin = “J’*=n> - [ﬁ?ﬁo Hin = “J’*»n] 2 5} B Detailed discussion of the heuristic

A arguments presented in Sectioi 3] 4
K
S exp <_ 4 ) We first state the following corollary to Lemrfia 5.
for all e > 0. We choose Theorem 11 The allocation strategy given by UCB (where
p > 1) associated to the recommendation given by the most
ce=_F [ max 7., — ;- n] played arm ensures that the simple regrets are bounded in a
JiA;>00 ’ distribution-dependent sense by
. ~ ~ 2(p—1)
> i, A < | s (Fan e+ A} Br, < o (A_>
(where we used that the maximum &ffirst quantities plus P2 i b

the minimum ofK” other quantities is less than the maximum for all 5, sufficiently large, e.g., such that

of the K sums). We now argue that
) 9 no_dp+l K+2
n

e > \2
N R 2In K Inn =~ 3 and n > I¢; (A7,
E | max {fjn— fjrn+ A5} <4/ —
J:8;>0 [n/K] whereA’ = max; A; and we denote by the number of

optimal arms and

this is done by a classical argument, using bounds on the

moment generating function of the random variables of in- . 1
terest. Conside?; = [n/K]|(fijn — fj-n + A;) for all b=% 1
j =1,..., K. Independence and Hoeffding’s lemma (see, A2 + Z A2
e.g., , Chapter 2]) imply that for aN > 0, iz

E [¥%] < exp <_1)\2 Ln/KJ) Proof: Wg apply Lgmm{|5 with the choicg = _ﬁ/A? for

2 all suboptimal armg anda;- = 3/A? for all optimal arms

(where we used again tha is given by a sum of random j*, wheres denotes the renormalization constant. |
variables bounded betweenl and1). A well-known in- For illustration, consider the case when there is one op-
equality for maxima of subgaussian random variables (see,timal arm, oneA—suboptimal arm an& — 2 arms that are
again, , Chapter 2]) then yields 2A—suboptimal. Then

1 2 K2 K
E[_max ZJ} < V2[n/K]InK, LRB-2_ 6+ K
;A

N B A2 (2A)2 T 4A?



and the previous bound of Theor@ 11 implies that
K—1(6+K\"""Y
p—1

for all n sufficiently large, e.qg.,

Er, <

(%)

n

n}nmx{MHJX6+KLMp+D<%%§)mn}.

Now, the upper bound ofir, for the uniform allocation
givenin Propositiorﬂl is larger than

Ae—A%n/K]/2 , foralln > K.

Thus forn such that

/it = e () 5 1 @

and(4p+1)Inn > (K +2)4A2?, the bound for the uniform

allocation is at least
K
A exp (—A2(4p +1) <6 + )

4A? ) 2K

1nn) — Ay~ @D (6+K) /8K

Formally, we consider regimes indexed by integers1
and of lengthl + ¢. Thet—th regime starts at round

t—1
1+Z(1+s)=t+t(t;1) =t(t;1).

s=1

During this regime, the following distributions are used,

e (Vaorn2)smria)

(o ((YS(S+1)/2)5:1,...,1§71)

Note that we only keep track of the payoffs obtained when
k =0inaregime.

The regretR!, at roundn of this strategy is as follows.
We decompose in a unigue manner as

t(n)(t(n) +1)
2

if £ =0;

Pitern/ash = f1<h<t

+ k(n)
where k(n) € {0,...

n =

tn)} . (@)

which may be much worse than the upper bojhd (5) for the Then,

UCB(p) strategy, wheneveK is large, as can be seen by

comparing the exponents2(p — 1) versus—(4p + 1)(6 +
K)/8K.
To illustrate this numerically (though this is probably no

the most convincing choice of the parameters), consider the

case whem\ = 0.4, K = 20, andp = 4. Thenn = 6020
satisfies[(6) and the upper boufil (5) for the U@Bstrategy

is4.11 x 10~ !4, which is much smaller than the one for the

uniform allocation, which is larger thain45 x 10—,

Rl < t(n)+ (7’1+2T2—|—. A ()= 1) ()1 —|—k(n)7’t(n))

t where the first term comes from the time rounds when the

new strategy used the base allocation strategy to explare an
where the other terms come from the ones when it exploited,
ie.,

m:mww—émmw@»

reX

The reason is that the uniform allocation strategy only Taking expectations with respect to any fixed environment,
samplegn/K | each arm, whereas the UCB strategy focuses we get

rapidly its exploration on the better arms.

C Proof of Lemma[§

s=
x - b
n n n

ER, o t(n) N Z“"ffl sErs + k(n)Ery)

Proof: In view of the comments before the statement of the first term in the right-hand side is of the orderigf/n

Lemma|]3, we need only to prove that an explorable farfily
is also explorable—exploitable. We consider a pair of aloc
tion (¢:) and recommendatiofi,,) strategies such that for
all environmentsy € F, the simple regret&r,, = o(1), and
provide a new strategf(;) such that its cumulative regret
ER!, = o(n) for all environments.

Itis defined informally as follows. At round= 1, it uses
¥} = o1 and gets a rewartl] = Y;. Based on this reward,
the recommendatiort; is formed and at round = 2, the
new strategy plays’, = ;. It gets a reward but does not
take it into account. It bases its choigg = ¢2 only on
Y/, and gets a rewartl; = Y;. Based onY{ andY;, the
recommendation)s is formed and played at rounds= 4
andt = 5, i.e.,¢) = ¢t = 2. And so on: the sequence of
distributions chosen by the new strategy is given by

1, Y1,

2, P2, P,

3, V3, U3, V3,

04, Ya, Ya, Y, Ya,
5, s, U5, V5, U5, s,

and the second one is a Cesaro average and thus converges
to 0. This concludes that the exhibited strategy has a small
cumulative regret for all environments of the family, which
is thus explorable—exploitable. |

D Proof of Theorem[9 and its corollary

The key ingredient is the following characterization of sep
arability (which relies on an application of Zorn’s lemma);
see, e.g.{[Bilg8, Appendix I, page 216].

Lemma 12 Let X be a metric space, with distance denoted
byd. X is separable if and only if it contains no uncountable
subsetA such that

p=inf{d(z,y) :z,y€ A} >0.

A nice application (which we do however not fully need
in the proof of Theorerﬁl 9, we only use the straightforward
direct part) is the following characterization of sepaliabi
in terms of the existence of a probability distribution with
full support. Though it seems natural, we did not see any
reference to it in the literature and this is why we state it.



Lemma 13 Let X be a metric space. There exists a proba-
bility distribution A on X’ with A(V') > 0 for all open setd”
if and only if X is separable.

Proof: We prove the converse implication first. Af is sep-
arable, we denote by, z,,... a dense sequence. Ifitis
finite with lengthV, we let

1 N
A= N Z O,
j=1
and otherwise,
1
i1
The result follows, since each open 3étcontains at least

somer;.
For the direct implication, we use Lemr@ 12 (and its
notations). IfX is not separable, then it contains uncount-
ably many disjoint open balls, formed by tii¥a, p/2), for
a € A. If there existed a probability distributichwith full
support onY’, it would in particular give a positive probabil-
ity to all these balls; but this is impossible, since there ar
uncountably many of them. |

D.1 Separability of X implies explorability of the

family C(P([0,1])%)
The proof relies on a somewhat uniform exploration. We
reach each open set &fin a geometric time.

Proof: SinceX is separable, there exists a probability distri-
bution\ on X’ with A(V') > 0 for all open set¥/, as asserted
by Lemmd 13.

(ties broken in some way, as usual). Note that exploration
and exploitation appear in two distinct phases, as was the
case already, for instance, in Sectjor] 3.2.

We now denote by

max  p(Lys1)/2) ;

* =3 and u*,. | =
a 222“(“’”) Fotm) = 1 iom)

the simple regret can then be decomposed as
W= E[M(Xii)}

(v =Bl ]) + (Bl150n] —E[o(x3])

where the first difference can be thought of as an approxima-
tion error, and the second one, as resulting from an estima-
tion error. We now show that both differences vanish in the
limit.

We first deal with the approximation error. We fix> 0.
Sincey is continuous o, there exists an open sBtsuch
that

Er,

Ve eV,
It follows that

pt—pr) <e.

P{M*—MZ(n) > 5} < P{Vl <s<gn), Iysinype € V}
< (1= —0

provided thaty(n) — oo (a condition that will be satisfied,
see below). Since in additiop;;(n) < p*, we get

lim sup E[u;(n)} > ut—c;

since this holds for alt > 0, we have the desired conver-

The proposed strategy is then constructed in a way sim- 9€nce

ilar to the one exhibited in Sectidr] C, in the sense that we

also consider successives regimes, whereitie of them
has also length + ¢. They use the following allocations,

A if k=0;

Pr(t+1)/2+k = { if1<k<t.

§Ik(k+1)/2

Put in words, at the beginning of each regime, a new point

Iy(¢41)/2 is drawn at random ik’ according to\, and then,

all previously drawn pointg, 1,2, for1 <s <t¢-1,and

the new pointl; ;1) ,/» are pulled again, one after the other.
The recommendationg,, are deterministic and put all

probability mass on the best empirical arm among the first

playedg(n) arms (where the functiog will be determined
by the analysis). Formally, for all € X’ such that

Tn(x) = Z]I{It:z} 2 1 5
t=1

one defines

N -
fim() = T () ; Yeltri=s) -

Then,

Yp = 6x- Where X € argmax ﬁn(ls(sﬂ)ﬂ)
1<s<g(n)

W= Elyn] — 0.
For the difference resulting from the estimation error, we
denote

I € argmax pu(Iy(s41)/2)
1<s<g(n)

(ties broken in some way). Fix an arbitrary> 0. We note
thatifforall1 < s < g(n),

ﬁn(ls(s+1)/2) - M(Is(s+1)/2)‘ <e P
then (together with the definition of})
w(X3) = fn(Xy) — e > fin(Iy) =€ > u(I}) — 2¢ .
Thus, we have proved the inequality
E |5 | — E[n(X)]
< 2e

+1P>{as < g(n),

(8)

//In(ls(s+1)/2) - M(Is(s+1)/2)‘ > 5} .

We use a union bound and control each (conditional) proba-
bility

i

//In(ls(s+1)/2) - M(Is(s+1)/2)‘ > € -An} (9)



for 1 < s < g(n), whereA,, is theo—algebra generated We now show the existence of a non empty 4ésuch that

by randomly drawn pointg; ;1) /2 for thosek with k(k + foralla € A’ andn > 1,

1)/2 < n. Conditionnally to themyi,, (Iy(s+1/2) is an aver- { } .

age of a deterministic number of summands, which only de- Ea |tn (B(a,p/2)) | = 0;

pends ors, and thus, classical concentration-of-the-measure this indicates thaE,r, = 1 foralln > 1 anda € A,

arguments can be used. For instance, the quantiies (9) arehus preventing in particula(P([0,1])*) from being ex-
bounded, via an application of Hoeffding's inequality (for plorable by the fixed forecaster.

i.i.d. random variables, sef [Ho¢63]), by The setA’ is constructed by studying the behavior of
2 the forecaster under the environmdii yielding null re-
QGXP(_zTn (Lugsny/2) € ) ' wards throughout the space, i.e., associated to the expecta

We lower boundT}, (Iy(s41)/2). The pointly(, 1y, Was tionsz € X — po(xz) = 0. In the first round, the fore-

pulled twice in regime, once in eachregimet-1, . .., t(n)— caster chooses a determi_nisticodistribut@@ln: 908 overd,
1, and maybe iri(n), wheren is decomposed again as[% @). picks; at random according tp?, gets a deterministic pay-

That is off Y1 = 0, and finally recommendg? (1) = 1(I1,Y1)

! (which depends om; only, since the obtained payoffs are all
To(Is(ss1)/2) 2 ) —s+12 Van—1-yg(n), null). In the second round, it chooses an allocatigii/; )
since we only consider < g(n) and ﬂ7) implies (that depends only o, for the same reasons as before),

9 , picks I, at random according tg9(I;), gets a null reward,
n < (tn)+2)7/2, thatis, t(n) > V2n —2. and recommends)(I;, I); and so on. We denote by the
Substituting this in the Hoeffding’s bound, integrating-t probability distribution giving the auxiliary randomizans
ing a union bound leads frorﬁl(S) to used to draw thé; at random, and for all measurable appli-
cations
E[Mf](ﬂ)} - E{M(Xn)} vilxy,...,x) € X = vz, ..., 1) € P(X)
< 2e +2g(n) exp (—2 (V2n —1 - g(n)) 52) _ we introduce the distributios - v € P(X) defined as fol-
lows. For all measurable se¥sC X,

Choosing for instanceg(n) = y/n/2 ensures that

A-v(V)=E Iy dv(ly,..., It)| .
lim sup E{M;(n)] _E[M(X;)] < 2% v(V) A[/X v dv(ly t)]

: i . . Now, let B,, andC,, be defined as the at most countable sets
i:sgzdthls is true for all arbitrary > 0, the proof is Cc:] of a such that, respectively, - ©9 andA - ¢ give a positive
' probability mass td3(a, p/2); and let

D.2 Separability of X is a necessary condition

!/
This basically follows from the impossibility of a uniform Al= AN\ U Bn U U Cn
exploration, as asserted by Lemma 13. nzl nzl

_ o be the uncountable, thus non empty, set of those elements of
Proof: Let X’ be a non-separable metric space (with distance 4 which are in naB,, or C,,.

denoted byd). Let A be an uncountable set apd> 0 de- By construction, for all. € A’, the forecaster then be-
fined as in Lemmg 12; in particular, the baa, p/2) are haves similarly under the environmers and Ey, since it
disjoint, fora € A. only gets null rewardsa(is in no B,,); this similar behavior

We now consider the subset@fP([0,1])*) formedby  means formally that for all measurable sétsC X’ and all
the environmentd€, defined as follows. They are indexed p > 1,

by a € A and their corresponding expectations are given by E [eﬁ (V)] —A-(V) and E [U) (V)} — A2V

+
fla 1T € X > (1 _ d(I’a)> ] In particular, since: is in noC,,, it hits in no recommenda-
p/2 tion v, the ball B(a, p/2), which is exactly what had to be

Note thatyu, is continuous, thaj,(xz) > 0 for all z € proved. u
B(a, p/2) but o (z) = 0forall x € X\ B(a,p/2), and
that the best arm ia and gets a reward* = p,(a) = 1. D.3 The countable case of Corollary 70
The associated environmefi} is deterministic, in the sense  \we adopt an “a la Bourbaki” approach and derive this special
that it is defined a®’, () = 0., () case from the general theory.

We fix a forecaster and denote By the expectation un-  proof: We endow’ with the discrete topology, i.e., choose
der environmenk, with respect with the auxiliary random-  the distance

izations used by the forecaster. By constructiopnf d(2,y) = L{gotyy -
Then, all applications defined oki are continuous; in par-
By, =1—E, [/X tra () dwn(z)] ticular, C(P([0,1))*) = P([0,1])*. In addition,X is then

separable if and only if it is countable. The result thus fol-
>1-E, [wn (B(a, p/2))} . lows immediately from Theorefq 9. |



D.4 An additional remark

Remark 2 In this extended abstract, we only consider non-
uniform bounds. Uniform bounds, i.e., bounds for

sup ER, or sup Er, ,

EcF EcF
can be exhibited in some specific scenarios; for instance,
when X is totally bounded andF is formed by continuous
functions with a common bounded Lipschitz constant.



