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Abstract

We consider the framework of stochastic multi-armed
bandit problems and study the possibilities and limita-
tions of strategies that explore sequentially the arms.
The strategies are assessed in terms of their simple re-
grets, a regret notion that captures the fact that explo-
ration is only constrained by the number of available
rounds (not necessarily known in advance), in contrast
to the case when the cumulative regret is considered and
when exploitation needs to be performed at the same
time. We believe that this performance criterion is suited
to situations when the cost of pulling an arm is expressed
in terms of resources rather than rewards. We discuss
the links between simple and cumulative regrets. The
main result is that the required exploration–exploitation
trade-offs are qualitatively different, in view of a general
lower bound on the simple regret in terms of the cumu-
lative regret. We then refine this statement.

1 Introduction
Learning processes usually face an exploration versus ex-
ploitation dilemma, since they have to get information on
the environment (exploration) to be able to take good ac-
tions (exploitation). A key example is the multi-armed ban-
dit problem [Rob52], a sequential decision problem where,
at each stage, the forecaster has to pull one out ofK given
stochastic arms and gets a reward drawn at random according
to the distribution of the chosen arm. The usual assessment
criterion of a strategy is given by its cumulative regret, the
sum of differences between the expected reward of the best
arm and the obtained rewards. Typical good strategies, like
the UCB strategies of [ACBF02], trade off between explo-
ration and exploitation.

Our setting is as follows. The forecaster may sample
the arms a given number of timesn (not necessarily known
in advance) and is then asked to output a recommendation,
formed by a probability distribution over the arms. He is
evaluated by his simple regret, that is, the difference between
the average payoff of the best arm and the average payoff
obtained by his recommendation. The distinguishing feature
from the classical multi-armed bandit problem is that the ex-
ploration phase and the evaluation phase are separated. We
now illustrate why this is a natural framework for numerous
applications.

Historically, the first occurrence of multi-armed bandit
problems was given by medical trials. In the case of a severe
disease, ill patients only are included in the trial and the cost
of picking the wrong treatment is high (the associated reward
would equal a large negative value). It is important to min-
imize the cumulative regret, since the test and cure phases
coincide. However, for cosmetic products, there exists a test
phase separated from the commercialization phase, and one
aims at minimizing the regret of the commercialized product
rather than the cumulative regret in the test phase, which is
irrelevant. (Here, several formulæ for a cream are consid-
ered and some quantitative measurement, like skin moistur-
ization, is performed.)

The pure exploration problem addresses the design of
strategies making the best possible use of available numeri-
cal resources (e.g., asCPU time) in order to optimize the per-
formance of some decision-making task. That is, it occurs
in situations with a preliminary exploration phase in which
costs are not measured in terms of rewards but rather in terms
of resources, that come in limited budget.

A motivating example concerns recent works on computer-
go (e.g., the MoGo program of [GWMT06]). A given time,
i.e., a given amount ofCPU times is given to the player to
explore the possible outcome of a sequences of plays and
output a final decision. An efficient exploration of the search
space is obtained by considering a hierarchy of forecasters
minimizing some cumulative regret – see, for instance, the
UCT strategy of [KS06] and theBAST strategy of [CM07].
However, the cumulative regret does not seem to be the right
way to base the strategies on, since the simulation costs are
the same for exploring all options, bad and good ones. This
observation was actually the starting point of the notion of
simple regret and of this work.

A final related example is the maximization of some func-
tion f , observed with noise, see, e.g., [Kle04, BMSS09].
Whenever evaluatingf at a point is costly (e.g., in terms of
numerical or financial costs), the issue is to choose as ade-
quately as possible where to query the value of this function
in order to have a good approximation to the maximum. The
pure exploration problem considered here addresses exactly
the design of adaptive exploration strategies making the best
use of available resources in order to make the most precise
prediction once all resources are consumed.

As a remark, it also turns out that in all examples con-
sidered above, we may impose the further restriction that the
forecaster ignores ahead of time the amount of available re-



sources (time, budget, or the number of patients to be in-
cluded) – that is, we seek for anytime performance. The
problem of pure exploration presented above was referred to
as “budgeted multi-armed bandit problem” in the open prob-
lem [MLG04]. [Sch06] solves the pure exploration problem
in a minmax sense for the case of two arms only and rewards
given by probability distributions over[0, 1]. [EDMM02]
and [MT04] consider a related setting where forecasters per-
form exploration during a random number of roundsT and
aim at identifying anε–best arm. They study the possibili-
ties and limitations of policies achieving this goal with over-
whelming1 − δ probability and indicate in particular upper
and lower bounds on (the expectation of)T . Another re-
lated problem in the statistical literature is the identification
of the best arm (with high probability). However, the bi-
nary assessment criterion used there (the forecaster is either
right or wrong in recommending an arm) does not capture
the possible closeness in performance of the recommended
arm compared to the optimal one, which the simple regret
does.

Problem setup, notation

We consider a sequential decision problem for multi-armed
bandits, where a forecaster plays against a stochastic envi-
ronment.K > 2 arms, denoted byj = 1, . . . ,K, are avail-
able and thej–th of them is parameterized by a probabil-
ity distributionνj over [0, 1] (with expectationµj); at those
rounds when it is pulled, its associated reward is drawn at
random according toνj , independently of all previous re-
wards. For each armj and all time roundsn > 1, we denote
by Tj(n) the number of timesj was pulled from rounds 1
to n, and byXj,1, Xj,2, . . . , Xj,Tj(n) the sequence of asso-
ciated rewards.

The forecaster has to deal simultaneously with two tasks,
a primary one and an associated one. The associated task
consists in exploration, i.e., the forecaster should indicate
at each roundt the armIt to be pulled. He may resort to
a randomized strategy, which, based on past rewards, pre-
scribes a probability distributionϕt ∈ P{1, . . . ,K} (where
we denote byP{1, . . . ,K} the set of all probability distribu-
tions over the indexes of the arms). In that case,It is drawn
at random according to the probability distributionϕt and
the forecaster gets to see the associated rewardYt, also de-
noted byXIt,TIt (t) with the notation above. The sequence
(ϕt) is referred to as an allocation strategy. The primary
task is to output at the end of each roundt a recommenda-
tion ψt ∈ P{1, . . . ,K} to be used to form a randomized
play in a one-shot instance if/when the environment sends
some stopping signal meaning that the exploration phase is
over. The sequence(ψt) is referred to as a recommendation
strategy. Figure 1 summarizes the description of the sequen-
tial game and points out that the information available to the
forecaster for choosingϕt, respectivelyψt, is formed by the
Xj,s for j = 1, . . . ,K ands = 1, . . . , Tj(t−1), respectively,
s = 1, . . . , Tj(t).

As we are only interested in the performances of the rec-
ommendation strategy(ψt), we call this problem the pure ex-
ploration problem for multi-armed bandits and evaluate the
strategies through their simple regrets. The simple regretof
a recommendationψt = (ψj,t)j=1,...,N is defined as the ex-

Parameters:K probability distributions for the rewards of the
arms,ν1, . . . , νK

For each roundt = 1, 2, . . . ,

(1) the forecaster choosesϕt ∈ P{1, . . . ,K} and pulls an
armIt at random according toϕt;

(2) the environment draws the rewardYt for that action (also
denoted byXIt,TIt

(t) with the notation introduced in the
text);

(3) the forecaster outputs a recommendation
ψt ∈ P{1, . . . ,K};

(4) If the environment sends a stopping signal, then the game
takes an end; otherwise, the next round starts.

Figure 1: The pure exploration problem for multi-armed
bandits.

pected regret on a one-shot instance of the game, if a random
action is taken according toψt. Formally,

rt = r
(
ψt
)

= µ∗ − µψt where µ∗ = µj∗ = max
j=1,...,K

µj

and µψt =
∑

j=1,...,K

ψj,t µj

denote respectively the expectations of the rewards of the
best armj∗ (a best arm, if there are several of them with
same maximal expectation) and of the recommendationψt.
A useful notation in the sequel is the gap∆j = µ∗ − µj
between the maximal expected reward and the one of thej–
th arm ; as well as the minimal gap

∆ = min
j:∆j>0

∆j .

A quantity of related interest is the cumulative regret at
roundn,

Rn =

n∑

t=1

µ∗ − µIt .

A popular treatment of the multi-armed bandit problems is
to construct forecasters ensuring thatERn = o(n), see, e.g.,
[LR85] or [ACBF02], and evenRn = o(n) a.s., as follows,
e.g., from [ACBFS02, Theorem 6.3] together with a martin-
gale argument. The quantitiesr′t = µ∗ − µIt are sometimes
called instantaneous regrets. They differ from the simple re-
gretsrt and in particular,Rn = r′1 + . . . + r′n is in general
not equal tor1 + . . . + rn. Theorem 1, among others, will
however indicate some connections betweenrn andRn.

Goal and structure of the paper: We study the links be-
tween simple and cumulative regrets. Intuitively, an effi-
cient allocation strategy for the simple regret should relyon
some exploration–exploitation trade-off. Our main contribu-
tion (Theorem 1, Section 2) is a lower bound on the simple
regret in terms of the cumulative regret suffered in the explo-
ration phase, showing that the trade-off involved in the mini-
mization of the simple regret is somewhat different from the
one for the cumulative regret. In Sections 3 and 4, we then



refine this statement and illustrate it by simulations. In par-
ticular, we show how, despite all, strategies designed for the
cumulative regret can outperform (for moderate values ofn)
strategies with optimal rates of convergence for the simple
regret. Finally, in Section 5, we consider the setting of arms
indexed by a metric space and discuss a necessary and suf-
ficient condition for the existence of forecasters with small
simple or cumulative regrets.

2 The smaller the cumulative regret, the
larger the simple regret

It is immediate that for the recommendation formed by the
empirical distribution of plays of Figure 3,

ψn =
1

n

n∑

t=1

δIt ,

the regrets satisfyrn = Rn/n; therefore, upper bounds on
ERn lead to upper bounds onErn. We show here that upper
bounds onERn also lead to lower bounds onErn: the bet-
ter the guaranteed upper bound onERn, the worst the lower
bound onErn, no matter what the recommendation strate-
giesψn are.

This is interpreted as a variation of the “classical” trade-
off between exploration and exploitation. Here, while the
recommendation strategiesψn rely only on the exploitation
of the results of the preliminary exploration phase, the de-
sign of the allocation policiesϕn consists in an efficient ex-
ploration of the arms. To guarantee this efficient exploration,
past payoffs of the arms have to be considered and thus, even
in the exploration phase, some exploitation is needed. The-
orem 1 and its corollaries aim at quantifying the amount of
exploration needed. In particular, to have an optimal rate of
decrease for the simple regret, each arm should be sampled
a linear number of times, while for the cumulative regret, it
is known that the forecaster should not do so more than a
logarithmic number of times on the suboptimal arms.

Formally, our main result is as follows. It is strong in
the sense that we get lower bounds forall possible Bernoulli
distributionsν1, . . . , νK over the rewards.

Theorem 1 (Main result) For all allocation strategies(ϕt)
and all functionsε : {1, 2, . . .} → R such that

for all (Bernoulli) distributionsν1, . . . , νK on the re-
wards, there exists a constantC > 0 with ERn 6

Cε(n),

the simple regret of all recommendation strategies(ψt) based
on the allocation strategies(ϕt) is such that

for all sets ofK > 3 (distinct, Bernoulli) distributions
on the rewards, all different from a Dirac distribution at
1, there exists a constantD > 0 with

Ern >
∆

2
e−Dε(n)

(up to a relabelingν1, . . . , νK of the considered distri-
butions intoνπ(1), . . . , νπ(K) for some permutationπ).

Since the cumulative regrets are always bounded byn,
one gets the following.

Corollary 2 For allocation strategies(ϕt), all recommen-
dation strategies(ψt), and all sets ofK > 3 (distinct, Ber-
noulli) distributions on the rewards, there exist two constants
β > 0 andγ > 0 such that, up to relabeling,

Ern > β e−γn .

To get further the point of Theorem 1, one should keep in
mind that the typical (distribution-dependent) rate of growth
of the cumulative regrets of good algorithms, e.g., UCB1 of
[ACBF02], is ε(n) = lnn. This, as asserted in [LR85], is
the optimal rate. But the recommendation strategies based
on such allocation strategies are bound to suffer a simple re-
gret that decreases at best polynomially fast. We state this
result for the slight modification UCB(p) of UCB1 stated in
Figure 2; its proof relies on noting that it achieves a cumula-
tive regret bounded byε(n) = p lnn.

Corollary 3 The allocation strategy(ϕt) given by the fore-
caster UCB(p) of Figure 2 ensures that for all recommen-
dation strategies(ψt) and all sets ofK > 3 (distinct, Ber-
noulli) distributions on the rewards, there exist two constants
β > 0 andγ > 0 such that, up to relabeling,

Ern > β n−γp .

Proof: The intuitive version of the proof of Theorem 1 is as
follows. The basic idea is to consider a tie case when the
best and worst arms have zero empirical means; it happens
often enough (with a probability at least exponential in the
number of times we pulled these arms) and results in the
forecaster basically having to pick another arm and suffering
some regret. Permutations are used to control the case of
untypical or naive forecasters that would despite all pull an
arm with zero empirical mean, since they force a situation
when those forecasters choose the worst arm instead of the
best one.

Formally, we fix the allocation strategies(ϕt) and a cor-
responding functionε such that the assumption of the the-
orem is satisfied. We consider below a set ofK > 3 (dis-
tinct) Bernoulli distributions; actually, we only use below
that their parameters are (up to a first relabeling) such that
1 > µ1 > µ2 > µ3 > . . . > µK > 0 andµ2 > µK (thus,
µ2 > 0).

Another layer of notation is needed. It depends on a
given permutationσ of {1, . . . , K}. To have a gentle start,
we first describe the notation when the permutation is the
identity, σ = id. We denote byP and E the probability
and expectation with respect to theK-tuple of distributions
overs the armsν1, . . . , νK . For i = 1 (respectively,i = K),
we denote byPi,id andEi,id the probability and expectation
with respect to theK-tuples formed byδ0, ν2, . . . , νK (re-
spectively,δ0, ν2, . . . , νK−1, δ0), whereδ0 denotes the Dirac
measure on0. For a given permutationσ, we consider simi-
lar notation up to a relabeling.Pσ andEσ refer to the prob-
ability and expectation with respect to theK-tuple of distri-
butions over the arms formed by theνσ−1(1), . . . , νσ−1(K).
Note in particular that thej–th best arm is located in the
σ(j)–th position. Now, we denote fori = 1 (respectively,
i = K) by Pi,σ andEi,σ the probability and expectation with
respect to theK-tuple formed by theνσ−1(j), except that we
replaced the best of them, located in theσ(1)–th position,



by a Dirac measure on 0 (respectively, the best and worst
of them, located in theσ(1)–th andσ(K)–th positions, by
Dirac measures on 0). We provide a proof in six steps.

Step 1lower bounds by an average the maximum of the
simple regrets obtained by relabeling,

max
σ

Eσrn >
1

K!

∑

σ

Eσrn

>
µ1 − µ2

K!

∑

σ

Eσ

[
1 − ψσ(1),n

]
,

where we used that underPσ, the index of the best arm is
σ(1) and the minimal regret for playing any other arm is at
leastµ1 − µ2.

Step 2rewrites each term of the sum overσ as the prod-
uct of three simple terms. We use first thatP1,σ is the same
asPσ, except that it ensures that armσ(1) has zero reward
throughout. Denoting by

Cj,n =

Tj(n)∑

t=1

Xj,t

the cumulative reward of thej–th till roundn, one then gets

Eσ

[
1 − ψσ(1),n

]

> Eσ

[(
1 − ψσ(1),n

)
I{Cσ(1),n=0}

]

= Eσ

[(
1 − ψσ(1),n

) ∣∣ Cσ(1),n = 0
]
× Pσ

{
Cσ(1),n = 0

}

= E1,σ

[(
1 − ψσ(1),n

) ]
Pσ

{
Cσ(1),n = 0

}
.

Second, iterating the argument fromP1,σ to PK,σ,

E1,σ

[(
1 − ψσ(1),n

) ]

> E1,σ

[(
1 − ψσ(1),n

) ∣∣ Cσ(K),n = 0
]

×P1,σ

{
Cσ(K),n = 0

}

= EK,σ

[(
1 − ψσ(1),n

) ]
P1,σ

{
Cσ(K),n = 0

}

and therefore,

Eσ

[
1 − ψσ(1),n

]
(1)

> EK,σ

[(
1 − ψσ(1),n

) ]
×P1,σ

{
Cσ(K),n = 0

}

×Pσ

{
Cσ(1),n = 0

}
.

Step 3deals with the second term in the right-hand side
of (1),

P1,σ

{
Cσ(K),n = 0

}

= E1,σ

[
(1 − µK)Tσ(K)(n)

]
> (1 − µK)E1,σTσ(K)(n) ,

where the equality can be seen by conditioning onI1, . . . , In
and then taking the expectation, whereas the inequality is a
consequence of Jensen’s inequality. Now, the expected num-
ber of times the sub-optimal armσ(K) is pulled underP1,σ

is bounded by the regret, by the very definition of the latter:
(µ2 − µK) E1,σTσ(K)(n) 6 E1,σRn. Since by hypothesis
(and by taking the maximum ofK! values), there exists a
constantC such that for allσ, E1,σRn 6 C ε(n), we finally
get

P1,σ

{
Cσ(K),n = 0

}
> (1 − µK)

Cε(n)/(µ2−µK)
.

Step 4lower bounds the third term in the right-hand side
of (1) as

Pσ

{
Cσ(1),n = 0

}
> (1 − µ1)

Cε(n)/µ2 .

We denote byWn = (I1, Y1, . . . , In, Yn) the history of ac-
tions pulled and obtained payoffs up to timen. What fol-
lows is reminiscent of the techniques used in [MT04]. We
are interested in realizationswn = (i1, y1, . . . , in, yn) of the
history such that wheneverσ(1) was played, it got a null re-
ward. (We denote above bytj(t) is the realization ofTj(t)
corresponding town, for all j andt.) The likelihood of such
awn underPσ is (1 − µ1)

tσ(1)(n) times the one underP1,σ.
Thus,

Pσ

{
Cσ(1),n = 0

}
=
∑

Pσ {Wn = wn}

=
∑

(1 − µ1)
tσ(1)(n)

P1,σ {Wn = wn}

= E1,σ

[
(1 − µ1)

Tσ(1)(n)
]

where the sums are over those historieswn such that the
realizations of the payoffs obtained by the armσ(1) equal
xσ(1),s = 0 for all s = 1, . . . , tσ(1)(n). The argument is
concluded as before, first by Jensen’s inequality and then, by
using thatµ2 E1,σTσ(1)(n) 6 E1,σRn 6 C ε(n) by defini-
tion of the regret and the hypothesis put on its control.

Step 5 resorts to a symmetry argument to show that as
far as the first term of the right-hand side of (1) is concerned,

∑

σ

EK,σ

[
1 − ψσ(1),n

]
>
K!

2
.

SincePK,σ only depends onσ(2), . . . , σ(K − 1), we denote
by P

σ(2),...,σ(K−1) the common value of these probability
distributions whenσ(1) andσ(K) vary (and a similar no-
tation for the associated expectation). We can thus group
the permutationsσ two by two according to these(K − 2)–
tuples, one of the two permutations being defined byσ(1)
equal to one of the two elements of{1, . . . ,K} not present
in the(K − 2)–tuple, and the other one being such thatσ(1)
equals the other such element. Formally,
∑

σ

EK,σψσ(1),n

=
∑

j2,...,jK−1

E
j2,...,jK−1




∑

j∈{1,...,K}\{j2,...,jK−1}

ψj,n





6
∑

j2,...,jK−1

E
j2,...,jK−1

[
1
]

=
K!

2
,

where the summations overj2, . . . , jK−1 are over all possi-
ble (K − 2)–tuples of distinct elements in{1, . . . ,K}.



Step 6simply puts all pieces together,

max
σ

Eσrn

>
µ1 − µ2

K!

∑

σ

EK,σ

[(
1 − ψσ(1),n

) ]
Pσ

{
Cσ(1),n = 0

}

×P1,σ

{
Cσ(K),n = 0

}

>
µ1 − µ2

2

(
(1 − µK)

C/(µ2−µK)
(1 − µ1)

C/µ2

)ε(n)

.

3 Upper bounds on the simple regret

In this section, we aim at qualifying the implications of The-
orem 1, by pointing out that is should be interpreted as a
result for largen only. For moderate values, strategies not
pulling each arm a linear number of the times in the ex-
ploration phase can have interesting simple regrets. To do
so, and because of space constraints, we consider only two
allocation strategies (the uniform allocation and the variant
UCB(p) of UCB1 where the quantile factor may be a pa-
rameter) and three recommendation strategies (the ones that
recommend respectively the empirical distribution of plays,
the empirical best arm, or the most played arm). They are
formally defined in Figures 2 and 3.

Parameters:K arms

Uniform allocation
Plays all arms one after the other

For each roundt = 1, 2, . . . ,

useϕt = δ[t mod K], where [t mod K] denotes the
value oft moduloK.

UCB(p)
First plays each arm once and then the one with the best upper
confidence bound

Parameter:quantile factorp

For roundst = 1, . . . ,K, playϕt = δt

For each roundt = K + 1, K + 2, . . . ,

(1) compute, for allj = 1, . . . ,K, the quantities

bµj,t−1 =
1

Tj(t− 1)

Tj (t−1)
X

s=1

Xj,s ;

(2) useϕt = δj∗t−1
, where

j∗t−1 ∈ argmax
j=1,...,K

bµj,t−1 +

s

p ln(t− 1)

Tj(t− 1)

(ties broken by choosing, for instance, the arm with
smallest index).

Figure 2: Two allocation strategies.

Parameters: the historyI1, . . . , In of played actions and of
their associated rewardsY1, . . . , Yn, grouped according to the
arms asXj,1, . . . ,Xj,Tj (n), for j = 1, . . . , n

Empirical best arm (EBA)
Only considers armsj with Tj(n) > 1, computes their asso-
ciated empirical means

bµj,n =
1

Tj(n)

Tj (n)
X

s=1

Xj,s ,

and forms a deterministic recommendation (conditionally to
the history),

ψn = δJ∗

n
where J∗

n ∈ argmax
j

bµj,n

(ties broken in some way).

Most played arm (MPA)
Forms a deterministic recommendation (conditionally to the
history),

ψn = δJ∗

n
where J∗

n ∈ argmax
j=1,...,N

Tj(n) .

(ties broken in some way).

Empirical distribution of plays (EDP)
Draws a recommendation using the probability distribution

ψn =
1

n

n
X

t=1

δIt .

Figure 3: Three recommendation strategies.

Before diving into the technical statements, we point out
some inherent issues in exhibiting upper bounds for the sim-
ple regret. A first delicate case occurs when there is only one
optimal arm and the gaps for all others take the common val-
ues∆, for some small∆. It seems rather intuitive that one
can then not do anything better than assigning the same num-
ber of pulls to all the arms; the formalization of this intuition
leads to the distribution-free lower bound of [ACBFS02].
Thus, for some problems, the uniform allocation strategy
seems to be the best one, and this has to appear somewhere in
the upper bounds. On the other hand, consider a case when
there are several suboptimal arms, a few of them with small
gaps∆j , all other ones with large gaps∆j . One can take
advantage of this situation with an adaptive algorithm such
as UCB(p) and quickly focus on a small subset of good can-
didates among the arms. For similar problems, the bound
on the simple regret for this forecaster should be better than
the one corresponding to the uniform allocation strategy, see
Section 3.4. Note also that in all cases, as discussed in de-
tails in Section 4, the simple regret of the uniform allocation
strategy will be smaller than the one of UCB(p) after some
time. These subtleties lead to a less easy analysis than the
classical one for the cumulative regret.



3.1 Overview of the bounds

Table 1 summarizes the distribution-dependent and distribu-
tion-free bounds we could prove so far. It shows that two
interesting couple of strategies are, on one hand, the uniform
allocation together with the choice of the empirical best arm,
and on the other hand, UCB(p) together with the choice of
the most played arm. The first pair was perhaps expected,
the second one might be considered more suprising.

We only prove here upper bounds on the simple regrets of
these two pairs and omit the proofs of all other upper bounds.
The distribution-dependent lower bound is stated in Corol-
lary 2 and the distribution-free lower bound follows from a
straightforward adaptation of the proof of the lower bound
on the cumulative regret in [ACBFS02].

Table 1 indicates that while for distribution-dependent
bounds, the optimal rates of decrease in the numbern of
rounds for simple regrets is exponential, for distribution-free
bounds, the rate worsens to1/

√
n. A similar situation arises

for the cumulative regret, see [LR85] (optimallnn rate for
distribution-dependent bounds) versus [ACBFS02] (optimal√
n rate for distribution-free bounds).

Distribution-dependent

EDP EBA MPA

Uniform © e−©n

UCB(p) ©(p lnn)/n ©n−© ©n2(1−p)

Lower bound © e−©n

Distribution-free

EDP EBA MPA

Uniform �

r

K lnK

n

UCB(p) �

r

pK lnn

n

�√
p lnn

�

r

pK lnn

n

Lower bound �

r

K

n

Table 1: Distribution-dependent (top) and distribution-
free (bottom) bounds on the expected simple regret of the
considered pairs of allocation (lines) and recommendation
(columns) strategies. Lower bounds are also indicated. The
� symbols denote the universal constants, whereas the©
are distribution-dependent constants.

3.2 A simple benchmark: the uniform allocation
strategy

As explained above, the combination of the uniform alloca-
tion with the recommendation indicating the empirical best
arm, forms an important theoretical benchmark. This sec-
tion studies briefly its theoretical properties: it achieves the
optimal rates of decrease both in terms of its distribution-
dependent and distribution-free bounds.

Below, we mean by the recommendation given by the
empirical best arm at roundK⌊n/K⌋ the recommendation

ψK⌊n/K⌋ of EBA (see Figure 3), where⌊x⌋ denotes the lower
integer part of a real numberx. The reason why we prefer
ψK⌊n/K⌋ toψn is only technical. The analysis is indeed sim-
pler when all averages over the rewards obtained by each arm
are over the same number of terms. This happens at rounds
n multiple ofK and this is why we prefer taking the recom-
mendation of roundK⌊n/K⌋ instead of the one of roundn.

We propose two distribution-dependent bounds, the first
one is sharper in the case when there are few arms, while the
second one is suited for largen. Both match the lower bound
exhibited in Corollary 2.

Proposition 1 The uniform allocation strategy associated to
the recommendation given by the empirical best arm (at round
K⌊n/K⌋) ensures that the simple regrets are bounded by

Ern 6
∑

j:∆j>0

∆j e
−∆2

j⌊n/K⌋/2

for all n > K; and by

Ern 6

(
max

j=1,...,K
∆j

)
exp

(
−1

8

⌊ n
K

⌋
∆2

)

for all

n >

(
1 +

8 lnK

∆2

)
K .

Proof: To prove the first inequality, we relate the simple re-
gret to the probability of choosing a non-optimal arm,

Ern =
∑

j:∆j>0

∆j Eψj,n 6
∑

j:∆j>0

∆j P
{
µ̂j,n > µ̂j∗,n

}

where the upper bound follows from the fact that to be the
empirical best arm, an armj must have performed, in par-
ticular, better than a best armj∗. We now apply Hoeffd-
ing’s inequality (for i.i.d. random variables, see [Hoe63]).
µ̂j,n − µ̂j∗,n is an average of⌊n/K⌋ i.i.d. random variables
bounded between−1 and1 and with common expectation
−∆j . Thus, the probability of interest is bounded by

P
{
µ̂j,n−µ̂j∗,n > 0

}
= P

{(
µ̂j,n−µ̂j∗,n

)
−
(
−∆j

)
> ∆j

}

6 exp

(
−

2
⌊
n
K

⌋2
∆2
j

4
⌊
n
K

⌋
)

= exp

(
−1

2

⌊ n
K

⌋
∆2
j

)
,

which yields the first result.
The second inequality is proved by resorting to a sharper

concentration argument, namely, the method of bounded dif-
ferences, see [McD89], see also [DL01, Chapter 2]. The
proof, less central to this paper, will be eventually omitted
and can be found, for now, in appendix.

The distribution-free bound is obtained not as a corollary
of the distribution-dependent bound, but as a consequence of
its proof. A direct optimization over the∆j in the first bound
of Proposition 1 indeed yields a suboptimal distribution-free
bound. One therefore has to proceed with slightly more care.

Corollary 4 The uniform allocation strategy associated to
the recommendation given by the empirical best arm (at round



K⌊n/K⌋) ensures that the simple regrets are bounded in a
distribution-free sense, forn > K, as

sup
ν1,...,νK

Ern 6 2

√
2K lnK

n
.

Proof: It is not enough to optimize the bound of Proposi-
tion 1 over the∆j , for it would yield an additional multi-
plicative factor ofK. Instead, we extract from its proof that

Eψj,n 6 exp

(
−1

2

⌊ n
K

⌋
∆2
j

)
;

we now distinguish whether a given∆j is more or less than
a thresholdε, use that

∑
ψj,n = 1 and∆j 6 1 for all j, and

can thus write

Ern =
K∑

j=1

∆j Eψj,n

6 ε+
∑

j:∆j>ε

∆j Eψj,n (2)

6 ε+
∑

j:∆j>ε

∆j exp

(
−
⌊
n
K

⌋
∆2
j

2

)

6 ε+ (K − 1)ε exp

(
−ε

2
⌊
n
K

⌋

2

)
,

where the last inequality comes by function study, provided
that ε > 1/⌊n/K⌋: for C > 0, the functionx ∈ [0, 1] 7→
x exp(−Cx2/2) is decreasing on[1/

√
C, 1]. Substituting

ε =
√

(2 lnK)/⌊n/K⌋ concludes the proof.

3.3 Analysis of UCB(p) combined with MPA

We need a technical lemma and then exploit it to obtain two
different distribution-dependent bounds of different utilities.

Lemma 5 The allocation strategy given by UCB(p) (where
p > 1) associated to the recommendation given by the most
played arm ensures that the simple regrets are bounded in a
distribution-dependent sense as follows. For alla1, . . . , aK
such thataj > 0 for all j, with a1 + . . .+ aK = 1, and such
that for all suboptimal armsj and all optimal armsj∗, one
hasaj 6 aj∗ ,

Ern 6
1

p− 1

∑

j 6=j∗

(ajn)2(1−p)

for all n sufficiently large, e.g., such that, for all suboptimal
armsj,

ajn > 1 +
4p lnn

∆2
j

and ajn > K + 2 .

Proof: We first prove that whenever the most played arm
J∗
n is different from an optimal armj∗, then at least one of

the suboptimal armsj is such thatTj(n) > ajn. To do so,
we prove the converse and assume thatTj(n) < ajn for all
suboptimal arms. Then,
(

K∑

i=1

ai

)
n = n =

K∑

i=1

Ti(n) <
∑

j∗

Tj∗(n) +
∑

j

ajn

where, in the inequality, the first summation is over the opti-
mal arms, the second one, over the suboptimal ones. There-
fore, we get ∑

j∗

aj∗n <
∑

j∗

Tj∗(n)

and there exists at least one arm optimal armj∗ such that
Tj∗(n) > aj∗n. Since by definition of the vector(a1, . . . , aK),
one hasaj 6 aj∗ for all suboptimal arms, it comes that
Tj(n) < ajn < aj∗n < Tj∗(n) for all suboptimal arms,
and the most played armJ∗

n is thus an optimal arm.
Thus, using that∆j 6 1 for all j, the simple regret can

be bounded as

Ern = E∆J∗

n
6

∑

j:∆j>0

P
{
Tj(n) > ajn

}
.

A side-result extracted from the proof of [ACBF02, Theo-
rem 1] states that for all suboptimal armsj and all rounds
t > K + 1,

P
{
It = j and Tj(t− 1) > ℓ

}
6 2 t1−2p

whenever ℓ >
4p lnn

∆2
j

. (3)

This yields that for a suboptimal armj and since by the as-
sumptions onn and theaj, the choiceℓ = ajn− 1 satisfies
ℓ > K + 1 andℓ > (4p lnn)/∆2

j ,

P
{
Tj(n) > ajn

}

6

n∑

t=ajn

P

{
Tj(t− 1) = ajn− 1 and It = j

}

6

n∑

t=ajn

2 t1−2p
6

1

p− 1
(ajn)2(1−p) (4)

where we used a union bound for the second inequality and
(3) for the third inequality. A summation over all suboptimal
armsj concludes the proof.

A first distribution-dependent bound is stated below; the
bound does not involve any quantity depending on the∆j ,
but it only holds for roundsn large enough, a statement
that does involve the∆j . Its interest is first, that its bound
is simple to read, and second, that the techniques used to
prove it imply easily a distribution-free bound, stated in The-
orem 7 and which is comparable to Corollary 4. A discus-
sion of the earlier results of [KS06] follows, as well as a
second distribution-dependent bound that will be compared
to Proposition 1 in Section 3.4.

Theorem 6 The allocation strategy given by UCB(p) (where
p > 1) associated to the recommendation given by the most
played arm ensures that the simple regrets are bounded in a
distribution-dependent sense by

Ern 6
K2p−1

p− 1
n2(1−p)

for all n sufficiently large, e.g., such that

n > K +
4Kp lnn

∆2
and n > K(K + 2) .



This result matches the lower bound exhibited in Corol-
lary 3; in the upper bound presented above, the polynomial
rate of decrease is distribution-free. In addition, it illustrates
Theorem 1: the largerp, the larger the (theoretically guar-
anteed bound on the) cumulative regret of UCB(p) but the
smaller the simple regret of UCB(p) associated to the rec-
ommendation given by the most played arm.
Proof: We apply Lemma 5 with the uniform choiceaj =
1/K and recall that∆ is the minimum of the∆j > 0.
Theorem 7 The allocation strategy given by UCB(p) (where
p > 1) associated to the recommendation given by the most
played arm ensures that the simple regrets are bounded in a
distribution-free sense by

Ern 6

√
4Kp lnn

n−K
+
K2p−1

p− 1
n2(1−p)

= O

(√
Kp lnn

n

)

for all n > K(K + 2).

Proof: We start the proof by applying (2), which holds in
general, as well as the fact thatJ∗

n = j only if Tj(n) > n/K,
that is,

ψj,n = I{J∗

n=j} 6 I{Tj(n)>n/K} ,

to get

Ern = E∆J∗

n
6 ε+

∑

j:∆j>ε

∆j P

{
Tj(n) >

n

K

}
.

Applying (4) withaj = 1/K leads to

Ern 6 ε+
∑

j:∆j>ε

∆j

p− 1
K2(p−1) n2(1−p)

whereε is chosen such that for all∆j > ε, the needed con-
dition ℓ = n/K−1 > (4p lnn)/∆2

j is satisfied (n/K−1 >

K + 1 being satisfied by the assumption onn andK). The
conclusion thus follows from taking, for instance,

ε =

√
4pK lnn

n−K
,

and upper bounding all remaining∆j by 1.

Remark 1 We can rephrase the results of [KS06] as using
UCB1 as an allocation strategy and forming a recommen-
dation according to the empirical best arm. In particular,
[KS06, Theorem 5] provides a distribution-dependent bound
on the probability of not picking the best arm with this pro-
cedure. It can be used to derive a bound on the simple regret.
By reproducing their calculations (to have an explicit expres-
sion of the leading constant in terms of the∆j), we got

Ern 6
∑

j:∆j>0

4

∆j

(
1

n

)ρ∆2
j/2

for all n > 1. This bound, in particular because of the lead-
ing constants1/∆j and of the distribution-dependant expo-
nent, is not as nice as the bound presented in Theorem 6. The
best distribution-free bound we could get from this bound
was of the order of1/

√
lnn, a rate by far slower than the

optimal1/
√
n rate stated in Theorem 7.

3.4 Discussion: Comparison of the bounds

We now explain why, in some cases, the bound provided by
our theoretical analysis in Lemma 5 is better than the bound
stated in Proposition 1. This will be further illustrated inthe
simulation section.

The central point in the argument is that the bound of
Lemma 5 is of the form©n2(1−p), for some distribution-
dependent constant©, that is, it has a distribution-free con-
vergence rate. In comparison, the bound of Proposition 1
involves the gaps∆j in the rate of convergence.

Some care is needed in the comparison, since the bound
for UCB(p) holds only forn large enough, but it is easy to
find situations where for moderate values ofn, the bound
exhibited for the sampling with UCB(p) is better than the
one for the uniform allocation. These situations typicallyin-
volve a rather large numberK of arms; in the latter case, the
uniform allocation strategy only samples⌊n/K⌋ each arm,
whereas the UCB strategy focuses rapidly its exploration on
the best arms.

A general detailed argument to provide such examples
is provided in the appendix. It will be omitted in the final
version, where only the heuristic arguments above will be
kept.

4 A brief simulation study
We propose three simple experiments to illustrate our theo-
retical analysis (each of them was run on104 instances of the
problem and we plotted the average simple regrets). The first
one corresponds in some sense to the worst case alluded at
at the beginning of Section 3. It shows that for small values
of n (e.g.,n 6 80 in Figure 4), the uniform allocation strat-
egy is very competitive. Of course the range of these values
of n can be made arbitrarily large by decreasing the gaps.
The second one corresponds to the discussion in Section 3.4,
while the third one represents a rather typical behavior of the
strategies whenK is large.

The attentive reader may be surprised that we never see
the uniform allocation strategy converging more rapidly than
UCB–based strategies, whereas the combination of the lower
bound of Corollary 3 and the upper bound of Proposition 1
shows that for all distributions over the arms, the uniform al-
location strategy will be better than UCB(p) after some point
n. Actually, thisn is very large, so large that at it, the simple
regrets are already below computers precision. This has an
important impact on the interpretation of the lower bound of
Theorem 1. While its statement is in finite time, it should be
interpreted as providing an asymptotic result.

5 Pure exploration for X–armed bandit
problems (i.e., in topological spaces)

This section is of theoretical interest. We consider theX -
armed bandit problem of, e.g., [Kle04, BMSS09] and (re-
)define the notions of cumulative and simple regrets. We
show that the cumulative regret can be minimized if and only
if the simple regret can be minimized, and use this equiva-
lence to characterize the metric spacesX in which the cu-
mulative regret can be minimized: the separable ones. Here,
in addition of its natural interpretation, the simple regret thus
appears as a tool for proving results on the cumulative regret.
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Figure 4: K = 20 arms with Bernoulli distributions of pa-
rameters0.50 for the first19th of them and0.66 for the last
one.
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Figure 5: Parameters of the numerical application in Sec-
tion B.

5.1 Description ofX–armed bandit problems

For a (bounded) intervalB of R, say[0, 1] again, we denote
by P([0, 1]) the set of probability distributions over[0, 1].
Similarly, given a topological spaceX , we denote byP(X )
the set of probability distributions overX . We then call en-
vironment onX any mappingE : X → P([0, 1]). We say
thatE is continuous if the mapping that associates to each
x ∈ X the expectationµ(x) of E(x) is continuous.

TheX–armed bandit problem is described in Figures 7
and 8. There, an environmentE on X is fixed by Nature
and we want various notions of regret to be small, given this
environment.

We consider now families of environments and say that
a family F of environments is explorable–exploitable (re-
spectively, explorable) if there exists a strategy such that
for any environmentE ∈ F , the expected cumulative re-
gretERn (expectation taken with respect toE and all aux-
iliary randomizations) iso(n) (respectively,Ern = o(1)).
Of course, explorability ofF is a milder requirement than
explorability–exploitability ofF , as can be seen by consid-
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Figure 6:K = 100 arms with Bernoulli distributions, whose
parameters are chosen independently at random in[0, 1].

Parameters:an environmentE onX
For each roundt = 1, 2, . . . ,

(1) the forecaster chooses a distributionϕt ∈ P(X ) and
pulls an armIt at random according toϕt;

(2) the environment draws the rewardYt for that action, ac-
cording toE(It);

Aim:
Find a pulling strategy(ϕt) such that the cumulative regret

Rn = n sup
x∈X

µ(x) −
n

X

t=1

µ(It)

is small (i.e.,o(n)).

Figure 7: X–armed bandit problems.

ering the recommendationgiven by the empirical distribution
of plays of Figure 3 and applying the same argument as the
one used at the beginning of Section 2.

But surprisingly enough, it can be seen that the two no-
tions are equivalent, and this is why we will henceforth con-
centrate on explorability only, for which characterizations as
the ones of Theorem 9 are simpler to exhibit and prove.
Lemma 8 A family of environmentsF is explorable if and
only if it is explorable–exploitable.

The proof will be omitted from this extended abstract and
can be found in the appendix. It relies essentially on design-
ing a strategy suited for cumulative regret from a strategy
minimizing the simple regret; to do so, exploration and ex-
ploitation occur at fixed rounds in two distinct phases and
only the payoffs obtained during exploitation are fed into the
base allocation strategy.

5.2 A positive result for metric spaces

We denote byP([0, 1])X the family of all possible environ-
mentsE onX , and byC

(
P([0, 1])X

)
the subset ofP([0, 1])X



Parameters:environmentE onX
For each roundt = 1, 2, . . . ,

(1) the forecaster chooses a distributionϕt ∈ P(X ) and
pulls an armIt at random according toϕt;

(2) the environment draws the rewardYt for that action, ac-
cording toE(It);

(3) the forecaster outputs a recommendationψt ∈ P(X );

(4) If the environment sends a stopping signal, then the game
takes an end; otherwise, the next round starts.

Aim:
Find an allocation strategy(ϕt) and a recommendation strat-
egy(ψn) such that the simple regret

rn = sup
x∈X

µ(x) −
Z

X

µ(x) dψn(x)

is small (i.e.,o(1)).

Figure 8: The pure exploration problem forX–armed bandit
problems.

formed by the continuous environments.

Example 1 Previous sections were about the familyP([0, 1])X

of all environments overX = {1, . . . ,K} being explorable.

The main result concerningX–armed bandit problems is
formed by the following equivalences in metric spaces. It
generalizes the result of example 1.

Theorem 9 LetX be a metric space. ThenC
(
P([0, 1])X

)
is

explorable if and only ifX is separable.

Corollary 10 LetX be a set.P([0, 1])X is explorable if and
only if X is countable.

The proofs can be found in the appendix. Their main
technical ingredient is that there exists a probability distribu-
tion over a metric spaceX giving a positive probability mass
to all open sets if and only ifX is separable. Then, whenever
it exists, it allows some uniform exploration.

6 Conclusions and future work

We introduced a notion of simple regret, that models the
situations where a forecaster is given an exploration phase
before outputting a recommendation. We showed that the
exploration–exploitation trade-off needed to minimize the sim-
ple regret is quantitatively different from the one to be used
when minimizing the cumulative regret. We provided distribu-
tion-dependent and distribution-free bounds on the simple
regret. As long as distribution-dependent upper bounds are
concerned, asymptotic behaviors are in favor of the uniform
(or linear) exploration of each arm. However, as illustrated
by the simulations, this asymptotic phase seems to occur
when computer precision limits are reached and UCB–based

strategies perform better than the uniform allocation for mod-
erate values ofn. We provided situations where the superi-
ority of UCB–based strategies over the uniform allocation is
reflected in the bounds, and we believe this line of analysis
may be extended. Possible directions include improving the
analysis of the performance of UCB–based strategies strate-
gies both for the simple and cumulative regrets.
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A Proofs and discussion to be omitted from
the final version

A.1 Proof of the second statement of Proposition 1

Proof: We start by writing

Ern =
∑

j:∆j>0

∆j EΦj,n

6

(
max

j=1,...,K
∆j

)
P

{
max
j:∆j>0

µ̂j,n > µ̂j∗,n

}

where the inequality follows from the fact that regret is suf-
fered only when an arm with suboptimal expectation has the
best empirical performances. Now, the quantity of interest
can be rewritten as
⌊ n
K

⌋(
max
j:∆j>0

µ̂j,n − µ̂j∗,n

)
= f

(
~X1, . . . , ~X⌊ n

K ⌋
)

for some functionf , where for alls = 1, . . . , ⌊n/K⌋, we
denote by~Xs the vector(X1,s, . . . , XK,s). (f is defined as a
maximum of at mostK − 1 sums of differences.) We apply
the method of bounded differences, see [McD89], see also
[DL01, Chapter 2]. It is straightforward that since all ran-
dom variables of interest take values in[0, 1], the bounded
differences condition is satisfied with ranges all equal to 2.
Therefore, the indicated concentration inequality statesthat

P

{(
max
j:∆j>0

µ̂j,n − µ̂j∗,n

)
− E

[
max
j:∆j>0

µ̂j,n − µ̂j∗,n

]
> ε

}

6 exp

(
−2
⌊
n
K

⌋
ε2

4

)

for all ε > 0. We choose

ε = −E

[
max
j:∆j>0

µ̂j,n − µ̂j∗,n

]

> min
j:∆j>0

∆j − E

[
max
j:∆j>0

{
µ̂j,n − µ̂j∗,n + ∆j

}]

(where we used that the maximum ofK first quantities plus
the minimum ofK other quantities is less than the maximum
of theK sums). We now argue that

E

[
max
j:∆j>0

{
µ̂j,n − µ̂j∗,n + ∆j

}]
6

√
2 lnK

⌊n/K⌋ ;

this is done by a classical argument, using bounds on the
moment generating function of the random variables of in-
terest. ConsiderZj = ⌊n/K⌋

(
µ̂j,n − µ̂j∗,n + ∆j

)
for all

j = 1, . . . ,K. Independence and Hoeffding’s lemma (see,
e.g., [DL01, Chapter 2]) imply that for allλ > 0,

E
[
eλZj

]
6 exp

(
−1

2
λ2⌊n/K⌋

)

(where we used again thatZj is given by a sum of random
variables bounded between−1 and 1). A well-known in-
equality for maxima of subgaussian random variables (see,
again, [DL01, Chapter 2]) then yields

E

[
max

j=1,...,K
Zj

]
6
√

2⌊n/K⌋ lnK ,

which leads to the claimed upper bound. Putting things to-
gether, we get that for the choice

ε = −E

[
max
j:∆j>0

µ̂j,n − µ̂j∗,n

]

> min
j:∆j>0

∆j −
√

2 lnK

⌊n/K⌋ > 0

(for n sufficiently large, a statement made precise below),
one has

P

{
max
j:∆j>0

µ̂j,n > µ̂j∗,n

}

6 exp

(
−2
⌊
n
K

⌋
ε2

4

)

6 exp



−1

2

⌊ n
K

⌋(
min
j:∆j>0

∆j −
√

2 lnK

⌊n/K⌋

)2


 .

The result follows forn such that

min
j:∆j>0

∆j −
√

2 lnK

⌊n/K⌋ >
1

2
min
j:∆j>0

∆j ;

the second part of the theorem indeed only considers suchn.

B Detailed discussion of the heuristic
arguments presented in Section 3.4

We first state the following corollary to Lemma 5.

Theorem 11 The allocation strategy given by UCB(p) (where
p > 1) associated to the recommendation given by the most
played arm ensures that the simple regrets are bounded in a
distribution-dependent sense by

Ern 6
n2(1−p)

p− 1

∑

j 6=j∗

(
∆2
j

β

)2(p−1)

for all n sufficiently large, e.g., such that

n

lnn
>

4p+ 1

β
and n >

K + 2

β
(∆′)2 ,

where∆′ = maxj ∆j and we denote byK∗ the number of
optimal arms and

β =
1

K∗

∆2
+
∑

j 6=j∗

1

∆2
j

.

Proof: We apply Lemma 5 with the choiceaj = β/∆2
j for

all suboptimal armsj andaj∗ = β/∆2 for all optimal arms
j∗, whereβ denotes the renormalization constant.

For illustration, consider the case when there is one op-
timal arm, one∆–suboptimal arm andK − 2 arms that are
2∆–suboptimal. Then

1

β
=

2

∆2
+
K − 2

(2∆)2
=

6 +K

4∆2
,



and the previous bound of Theorem 11 implies that

Ern 6
K − 1

p− 1

(
6 +K

n

)2(p−1)

(5)

for all n sufficiently large, e.g.,

n > max

{
(K + 2)(6 +K), (4p+ 1)

(
6 +K

4∆2

)
lnn

}
.

Now, the upper bound onErn for the uniform allocation
given in Proposition 1 is larger than

∆e−∆2⌊n/K⌋/2 , for all n > K.

Thus forn such that

⌊n/K⌋ =

⌊
(4p+ 1)

(
6 +K

4∆2

)
lnn

K

⌋
+ 1 , (6)

and(4p+ 1) lnn > (K + 2)4∆2, the bound for the uniform
allocation is at least

∆exp

(
−∆2(4p+ 1)

(
6 +K

4∆2

)
lnn

2K

)
= ∆n−(4p+1)(6+K)/8K ,

which may be much worse than the upper bound (5) for the
UCB(p) strategy, wheneverK is large, as can be seen by
comparing the exponents−2(p − 1) versus−(4p + 1)(6 +
K)/8K.

To illustrate this numerically (though this is probably not
the most convincing choice of the parameters), consider the
case when∆ = 0.4, K = 20, andp = 4. Thenn = 6020
satisfies (6) and the upper bound (5) for the UCB(p) strategy
is 4.11 × 10−14, which is much smaller than the one for the
uniform allocation, which is larger than1.45 × 10−11.

The reason is that the uniform allocation strategy only
samples⌊n/K⌋ each arm, whereas the UCB strategy focuses
rapidly its exploration on the better arms.

C Proof of Lemma 8

Proof: In view of the comments before the statement of
Lemma 8, we need only to prove that an explorable familyF
is also explorable–exploitable. We consider a pair of alloca-
tion (ϕt) and recommendation(ψn) strategies such that for
all environmentsE ∈ F , the simple regretsErn = o(1), and
provide a new strategy(ϕ′

t) such that its cumulative regret
ER′

n = o(n) for all environmentsE.
It is defined informally as follows. At roundt = 1, it uses

ϕ′
1 = ϕ1 and gets a rewardY ′

1 = Y1. Based on this reward,
the recommendationψ1 is formed and at roundt = 2, the
new strategy playsϕ′

2 = ψ1. It gets a reward but does not
take it into account. It bases its choiceϕ′

3 = ϕ2 only on
Y ′

1 , and gets a rewardY ′
2 = Y3. Based onY ′

1 andY ′
2 , the

recommendationψ2 is formed and played at roundst = 4
andt = 5, i.e.,ϕ′

4 = ϕ′
5 = ψ2. And so on: the sequence of

distributions chosen by the new strategy is given by

ϕ1, ψ1,

ϕ2, ψ2, ψ2,

ϕ3, ψ3, ψ3, ψ3,

ϕ4, ψ4, ψ4, ψ4, ψ4,

ϕ5, ψ5, ψ5, ψ5, ψ5, ψ5,

. . .

Formally, we consider regimes indexed by integerst > 1
and of length1 + t. Thet–th regime starts at round

1 +

t−1∑

s=1

(1 + s) = t+
t(t− 1)

2
=
t(t+ 1)

2
.

During this regime, the following distributions are used,

ϕ′
t(t+1)/2+k =






ϕt

((
Ys(s+1)/2

)
s=1,...,t−1

)
if k = 0;

ψt

((
Ys(s+1)/2

)
s=1,...,t−1

)
if 1 6 k 6 t.

Note that we only keep track of the payoffs obtained when
k = 0 in a regime.

The regretR′
n at roundn of this strategy is as follows.

We decomposen in a unique manner as

n =
t(n)

(
t(n) + 1

)

2
+ k(n)

where k(n) ∈
{
0, . . . , t(n)

}
. (7)

Then,

R′
n 6 t(n)+

(
r1+2r2+. . .+

(
t(n)−1

)
rt(n)−1+k(n)rt(n)

)

where the first term comes from the time rounds when the
new strategy used the base allocation strategy to explore and
where the other terms come from the ones when it exploited,
i.e.,

rs = sup
x∈X

µ(x) −
∫

X

µ(x) dψs(x) .

Taking expectations with respect to any fixed environment,
we get

ER′
n

n
6
t(n)

n
+

∑t(n)−1
s=1 sErs + k(n)Ert(n)

n
;

the first term in the right-hand side is of the order of1/
√
n

and the second one is a Cesaro average and thus converges
to 0. This concludes that the exhibited strategy has a small
cumulative regret for all environments of the family, which
is thus explorable–exploitable.

D Proof of Theorem 9 and its corollary

The key ingredient is the following characterization of sep-
arability (which relies on an application of Zorn’s lemma);
see, e.g., [Bil68, Appendix I, page 216].

Lemma 12 LetX be a metric space, with distance denoted
byd. X is separable if and only if it contains no uncountable
subsetA such that

ρ = inf
{
d(x, y) : x, y ∈ A

}
> 0 .

A nice application (which we do however not fully need
in the proof of Theorem 9, we only use the straightforward
direct part) is the following characterization of separability
in terms of the existence of a probability distribution with
full support. Though it seems natural, we did not see any
reference to it in the literature and this is why we state it.



Lemma 13 LetX be a metric space. There exists a proba-
bility distributionλ onX with λ(V ) > 0 for all open setsV
if and only ifX is separable.

Proof: We prove the converse implication first. IfX is sep-
arable, we denote byx1, x2, . . . a dense sequence. If it is
finite with lengthN , we let

λ =
1

N

N∑

j=1

δxj

and otherwise,

λ =
∑

j>1

1

2j
δxj .

The result follows, since each open setV contains at least
somexj .

For the direct implication, we use Lemma 12 (and its
notations). IfX is not separable, then it contains uncount-
ably many disjoint open balls, formed by theB(a, ρ/2), for
a ∈ A. If there existed a probability distributionλ with full
support onX , it would in particular give a positive probabil-
ity to all these balls; but this is impossible, since there are
uncountably many of them.

D.1 Separability ofX implies explorability of the
family C

(
P([0, 1])X

)

The proof relies on a somewhat uniform exploration. We
reach each open set ofX in a geometric time.

Proof: SinceX is separable, there exists a probability distri-
butionλ onX with λ(V ) > 0 for all open setsV , as asserted
by Lemma 13.

The proposed strategy is then constructed in a way sim-
ilar to the one exhibited in Section C, in the sense that we
also consider successives regimes, where thet–th of them
has also length1 + t. They use the following allocations,

ϕt(t+1)/2+k =

{
λ if k = 0;

δIk(k+1)/2
if 1 6 k 6 t.

Put in words, at the beginning of each regime, a new point
It(t+1)/2 is drawn at random inX according toλ, and then,
all previously drawn pointsIs(s+1)/2, for 1 6 s 6 t−1, and
the new pointIt(t+1)/2 are pulled again, one after the other.

The recommendationsψn are deterministic and put all
probability mass on the best empirical arm among the first
playedg(n) arms (where the functiong will be determined
by the analysis). Formally, for allx ∈ X such that

Tn(x) =

n∑

t=1

I{It=x} > 1 ,

one defines

µ̂n(x) =
1

Tn(x)

n∑

t=1

Yt I{It=x} .

Then,

ψn = δX∗

n
where X∗

n ∈ argmax
16s6g(n)

µ̂n
(
Is(s+1)/2

)

(ties broken in some way, as usual). Note that exploration
and exploitation appear in two distinct phases, as was the
case already, for instance, in Section 3.2.

We now denote by

µ∗ = sup
x∈X

µ(x) and µ∗
g(n) = max

16s6g(n)
µ
(
Is(s+1)/2

)
;

the simple regret can then be decomposed as

Ern = µ∗ − E

[
µ
(
X∗
n

)]

=
(
µ∗ − E

[
µ∗
g(n)

])
+
(

E

[
µ∗
g(n)

]
− E

[
µ
(
X∗
n

)])
,

where the first difference can be thought of as an approxima-
tion error, and the second one, as resulting from an estima-
tion error. We now show that both differences vanish in the
limit.

We first deal with the approximation error. We fixε > 0.
Sinceµ is continuous onX , there exists an open setV such
that

∀x ∈ V, µ∗ − µ(x) 6 ε .

It follows that

P

{
µ∗−µ∗

g(n) > ε
}

6 P

{
∀ 1 6 s 6 g(n), Is(s+1)/2 6∈ V

}

6
(
1 − λ(V )

)g(n) −→ 0

provided thatg(n) → ∞ (a condition that will be satisfied,
see below). Since in addition,µ∗

g(n) 6 µ∗, we get

lim sup E

[
µ∗
g(n)

]
> µ∗ − ε ;

since this holds for allε > 0, we have the desired conver-
gence

µ∗ − E

[
µ∗
g(n)

]
−→ 0 .

For the difference resulting from the estimation error, we
denote

I∗n ∈ argmax
16s6g(n)

µ
(
Is(s+1)/2

)

(ties broken in some way). Fix an arbitraryε > 0. We note
that if for all 1 6 s 6 g(n),

∣∣∣µ̂n
(
Is(s+1)/2

)
− µ

(
Is(s+1)/2

)∣∣∣ 6 ε ,

then (together with the definition ofX∗
n)

µ
(
X∗
n

)
> µ̂n

(
X∗
n

)
− ε > µ̂n

(
I∗n
)
− ε > µ

(
I∗n
)
− 2ε .

Thus, we have proved the inequality

E

[
µ∗
g(n)

]
− E

[
µ
(
X∗
n

)]
(8)

6 2ε

+P

{
∃ s 6 g(n),

∣∣∣µ̂n
(
Is(s+1)/2

)
− µ

(
Is(s+1)/2

)∣∣∣ > ε

}
.

We use a union bound and control each (conditional) proba-
bility

P

{∣∣∣µ̂n
(
Is(s+1)/2

)
− µ

(
Is(s+1)/2

)∣∣∣ > ε

∣∣∣∣ An

}
(9)



for 1 6 s 6 g(n), whereAn is theσ–algebra generated
by randomly drawn pointsIk(k+1)/2 for thosek with k(k +

1)/2 6 n. Conditionnally to them,̂µn
(
Is(s+1)/2

)
is an aver-

age of a deterministic number of summands, which only de-
pends ons, and thus, classical concentration-of-the-measure
arguments can be used. For instance, the quantities (9) are
bounded, via an application of Hoeffding’s inequality (for
i.i.d. random variables, see [Hoe63]), by

2 exp
(
−2Tn

(
Is(s+1)/2

)
ε2
)
.

We lower boundTn
(
Is(s+1)/2

)
. The pointIs(s+1)/2 was

pulled twice in regimes, once in each regimes+1, . . . , t(n)−
1, and maybe int(n), wheren is decomposed again as in (7).
That is,

Tn
(
Is(s+1)/2

)
> t(n) − s+ 1 >

√
2n− 1 − g(n) ,

since we only considers 6 g(n) and (7) implies

n 6
(
t(n) + 2

)2
/2 , that is, t(n) >

√
2n− 2 .

Substituting this in the Hoeffding’s bound, integrating, tak-
ing a union bound leads from (8) to

E

[
µ∗
g(n)

]
− E

[
µ
(
X∗
n

)]

6 2ε+ 2g(n) exp
(
−2
(√

2n− 1 − g(n)
)
ε2
)
.

Choosing for instanceg(n) =
√
n/2 ensures that

lim sup E

[
µ∗
g(n)

]
− E

[
µ
(
X∗
n

)]
6 2ε ;

since this is true for all arbitraryε > 0, the proof is con-
cluded.

D.2 Separability ofX is a necessary condition

This basically follows from the impossibility of a uniform
exploration, as asserted by Lemma 13.

Proof: LetX be a non-separable metric space (with distance
denoted byd). LetA be an uncountable set andρ > 0 de-
fined as in Lemma 12; in particular, the ballsB(a, ρ/2) are
disjoint, fora ∈ A.

We now consider the subset ofC
(
P([0, 1])X

)
formed by

the environmentsEa defined as follows. They are indexed
by a ∈ A and their corresponding expectations are given by

µa : x ∈ X 7→
(

1 − d(x, a)

ρ/2

)+

.

Note thatµa is continuous, thatµa(x) > 0 for all x ∈
B(a, ρ/2) but µa(x) = 0 for all x ∈ X \ B(a, ρ/2), and
that the best arm isa and gets a rewardµ∗

a = µa(a) = 1.
The associated environmentEa is deterministic, in the sense
that it is defined asEa(x) = δµa(x).

We fix a forecaster and denote byEa the expectation un-
der environmentEa with respect with the auxiliary random-
izations used by the forecaster. By construction ofµa,

Earn = 1 − Ea

[∫

X

µa(x) dψn(x)

]

> 1 − Ea

[
ψn
(
B(a, ρ/2)

)]
.

We now show the existence of a non empty setA′ such that
for all a ∈ A′ andn > 1,

Ea

[
ψn
(
B(a, ρ/2)

)]
= 0 ;

this indicates thatEarn = 1 for all n > 1 anda ∈ A′,
thus preventing in particularC

(
P([0, 1])X

)
from being ex-

plorable by the fixed forecaster.
The setA′ is constructed by studying the behavior of

the forecaster under the environmentE0 yielding null re-
wards throughout the space, i.e., associated to the expecta-
tions x ∈ X 7→ µ0(x) = 0. In the first round, the fore-
caster chooses a deterministic distributionϕ1 = ϕ0

1 overX ,
picksI1 at random according toϕ0

1, gets a deterministic pay-
off Y1 = 0, and finally recommendsψ0

1(I1) = ψ1(I1, Y1)
(which depends onI1 only, since the obtained payoffs are all
null). In the second round, it chooses an allocationψ0

2(I1)
(that depends only onI1, for the same reasons as before),
picksI2 at random according toψ0

2(I1), gets a null reward,
and recommendsψ0

2(I1, I2); and so on. We denote byA the
probability distribution giving the auxiliary randomizations
used to draw theIt at random, and for all measurable appli-
cations

ν : (x1, . . . , xt) ∈ X t 7→ ν(x1, . . . , xt) ∈ P(X )

we introduce the distributionA · ν ∈ P(X ) defined as fol-
lows. For all measurable setsV ⊆ X ,

A · ν(V ) = EA

[∫

X

IV dν(I1, . . . , It)

]
.

Now, letBn andCn be defined as the at most countable sets
of a such that, respectively,A · ϕ0

t andA · ψ0
t give a positive

probability mass toB(a, ρ/2); and let

A′ = A \




⋃

n>1

Bn ∪
⋃

n>1

Cn





be the uncountable, thus non empty, set of those elements of
A which are in noBn orCn.

By construction, for alla ∈ A′, the forecaster then be-
haves similarly under the environmentsEa andE0, since it
only gets null rewards (a is in noBn); this similar behavior
means formally that for all measurable setsV ⊆ X and all
n > 1,

Ea

[
ϕn(V )

]
= A ·ϕ0

n(V ) and Ea

[
ψn(V )

]
= A ·ψ0

n(V ) .

In particular, sincea is in noCn, it hits in no recommenda-
tion ψn the ballB(a, ρ/2), which is exactly what had to be
proved.

D.3 The countable case of Corollary 10

We adopt an “à la Bourbaki” approach and derive this special
case from the general theory.

Proof: We endowX with the discrete topology, i.e., choose
the distance

d(x, y) = I{x 6=y} .

Then, all applications defined onX are continuous; in par-
ticular,C

(
P([0, 1])X

)
= P([0, 1])X . In addition,X is then

separable if and only if it is countable. The result thus fol-
lows immediately from Theorem 9.



D.4 An additional remark

Remark 2 In this extended abstract, we only consider non-
uniform bounds. Uniform bounds, i.e., bounds for

sup
E∈F

ERn or sup
E∈F

Ern ,

can be exhibited in some specific scenarios; for instance,
whenX is totally bounded andF is formed by continuous
functions with a common bounded Lipschitz constant.


