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Sébastien Bubeck
SequeL Project, INRIA Futurs Lille

40 avenue Halley,
59650 Villeneuve d’Ascq, France

sebastien.bubeck@inria.fr
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Abstract

We consider the framework of stochastic multi-armed banditproblems and study the possibilities
and limitations of strategies that explore sequentially the arms. The strategies are assessed in terms
of their simple regrets, a new regret notion that captures the fact that exploration is only constrained
by the number of available rounds (not necessarily known in advance), in contrast to the case when
the cumulative regret is considered and when exploitation needs to be performed at the same time.
Our goal is to demonstrate that quite counter-intuitively,exploration–exploitation trade-offs are still
valuable in this setting. We do so by first providing an experimental study and then aim at explain-
ing theoretically the observed phenomenon. A first negativeresult is that too small a cumulative
regret prevents the simple regret from decreasing exponentially towards zero, its optimal distribu-
tion-dependent rate. We solve the paradox by considering distribution-free bounds and pointing out
two regimes for distribution-dependent bounds.

1 Introduction and motivation

Learning processes usually face an exploration versus exploitation dilemma, since they have to get infor-
mation on the environment (exploration) to be able to take good actions (exploitation). A key example is
the multi-armed bandit problem Robbins (1952), a sequential decision problem where, at each stage, the
forecaster has to pull one ofK given stochastic arms and gets a reward drawn at random according to the
distribution of the chosen arm. The usual assessment criterion of a strategy is given by its cumulative regret,
the difference between the expected reward of the best arm and the average obtained rewards. Typical good
strategies, like theUCB strategies of Auer et al. (2002a), trade off between exploration and exploitation.

∗Partially supported by the French “Agence Nationale pour laRecherche” under grant JCJC06-137444 “From ap-
plications to theory in learning and adaptive statistics” and by the PASCAL Network of Excellence under EC grant no.
506778.
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When exploration involves costs not measured in terms of rewards but rather in terms of numerical resources
(e.g., memory orCPU), the performances of a strategy have to be assessed in a different way. The forecaster
may then allocate sequentially its resources to explore thearms to his convenience and output the index
of an arm when these resources have been all used. The recommended arm is assessed on a new one-
shot instance of the same bandit problem, leading to the notion of simple regret: the (expectation of the)
difference between the reward of the best arm and the one of the recommended arm. We term this variant
the pure exploration problem, since, at first sight, exploration and exploitation appear in two distinct phases
(a statement we shall however qualify later on).

A concrete example for such a pure exploration problem is given by tree search, for which strategies min-
imizing the cumulative regret have been used recently in a hierarchical way to guarantee an exploration
making a good use of availableCPU time. Namely, theUCT strategy of Kocsis and Szepesvari (2006) and
the BAST strategy of Coquelin and Munos (2007) have shown interesting performances for solving mini-
max tree search problems with huge trees; they have been applied successfully to the game of go, see, for
instance, the MoGo program of Gelly et al. (2006) that plays at a world-class level. The tree exploration
policy resulted in an asymmetric tree expansion in which themost promising edges were explored first.
Strategies designed to minimize the simple regret (insteadof the cumulative regret) are expected to be the
stone for an improvement of these results.

This pure exploration problem was referred to as “budgeted multi-armed bandit problem” in the open prob-
lem by Madani et al. (2004). Schlag (2006) solves the pure exploration problem in a minmax sense for the
case of two arms only and rewards given by probability distributions over[0, 1]. It has also been studied in
related settings. Even-Dar et al. (2002) and Mannor and Tsitsiklis (2004) consider forecasters performing
exploration during a random number of roundsT and aiming at identifying anε–best arm. They study the
possibilities and limitations of policies achieving this goal with overwhelming1− δ probability and indicate
in particular upper and lower bounds on (the expectation of)T . However, the algorithms proposed in the
references above do not come with anytime performances yet,which we think would be necessary (but is not
straightforward if done without a doubling trick). If, for instance, the forecaster is unsure about the available
computational power of, e.g., a shared system he is using, and is given a fixed delay to perform exploration
and recommend an arm, he cannot guess the number of availablerounds. For non-crucial medical applica-
tions where the regret would be a suitable measure of efficiency (e.g., test of slimming pills), a test phase
may last a given time but one cannot determine in advance how many patients will be included in the study.
As a consequence, we do not assume the knowledge of availablerounds in the sequel.

2 Problem setup, notation

We consider a sequential decision problem for multi-armed bandits, where a forecaster plays against a
stochastic environment.K ≥ 2 arms, denoted byj = 1, . . . ,K, are available and thej-th of them is
parameterized by a probability distributionνj (with finite first moment and expectationµj ); at those rounds
when it is pulled, its associated reward is drawn at random according toνj , independently of all previous
rewards. For each armj and all time roundst ≥ 1, we denote byNj,t the number of timesj was pulled
from rounds 1 tot, and byXj,1, Xj,2, . . . , Xj,Nj,t

the sequence of associated rewards.

The forecaster has to deal simultaneously with two tasks, a primary one and an auxiliary one. The auxiliary
task consists in exploration, the forecaster should indicate at each roundt the armIt to be pulled. He
may resort to a randomized strategy, denoted byϕt ∈ ∆{1, . . . ,K} (where∆{1, . . . ,K} is the set of all
probability distributions over the indexes of the arms). The sequence(ϕt) is referred to as an allocation
strategy. In that case,It is drawn at random according to the probability distribution ϕt and the forecaster
gets to see the associated rewardYt, also denoted byXIt,NIt,t

with the notation above. The primary task
is to output at the end of each roundt a policyψt ∈ ∆{1, . . . ,K} to be played in a new one-shot instance
if the environment sends some stopping signal meaning that the exploration phase is over. The information
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Figure 1: Experimental comparison of the exploration strategies introduced below.

available to the forecaster for choosingϕt, respectivelyψt, is formed by theXj,s for j = 1, . . . ,K and
s = 1, . . . , Nj,t−1, respectively,s = 1, . . . , Nj,t.

As we are only interested in the performances of the sequence(ψt) of policies, we call this prob-
lem the pure exploration problem for multi-armed bandits. The simple regret at roundn of the policy
ψn = (ψj,n)j=1,...,N is defined byrn = µ∗ − ∑K

j=1 ψj,nµj whereµ∗ denote the expected reward of a
best armj∗. The simple regret is thus the expected regret on a new-one shot instance conditionally to the
exploration phase.

A quantity of related interest is the cumulative regret at round n, Rn =
∑n

t=1

(
µ∗ − µIt

)
. A popular

treatment of the multi-armed bandit problems is to construct forecasters ensuring thatERn = o(n), see,
e.g., Lai and Robbins (1985) or Auer et al. (2002a), and evenRn = o(n) a.s., as follows, e.g., from Auer
et al. (2002b, Theorem 6.3) together with a martingale argument. The cumulative regret is the sum of the
instantaneous regretsr′t = µ∗ − µIt

, but the latter can be hardly related to the simple regretsrt.

Goal: In this paper, we study the links between simple and cumulative regrets and show that, surpris-
ingly enough and perhaps counter-intuitively, the strategies that are best in practice rely on the exploration–
exploitation dilemma, whereas their assessment criterion, the simple regret, is only a matter of efficient
exploration and involves no exploitation.
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3 Simulation study

We start by indicating some surprising experimental results, which motivated the present work. We consid-
ered three different allocation strategies, uniform sampling (pull all arms, one after the other),EXP3 (see
Auer et al., 2002b), andUCB1 (see Auer et al., 2002a) and three associated policies, empirical distribu-
tion, empirical best arm, and most played arm. We recall thatEXP3 andUCB1 perform an exploration–
exploitation tradeoff, while uniform sampling focuses on (uniform) exploration of the arms. To a given
allocation, we may associate the policy that either is the empirical distribution of the arms sampled in the ex-
ploration phase, or (the Dirac mass on) the arm with best empirical mean at the end of the exploration phase,
or (the Dirac mass on) the arm played most often in the exploration phase. These policies are described in
detail respectively in Lemma 3, Section 5.2, and Lemma 4.

The resulting simple regrets are computed over10 000 runs of eachK–tuple of distributions and we plot
their averages on Figures 1, which approximate well the expectationsErn. The distributions used for the
simulations are given by Bernoulli distributions, uniformdistributions, or Gaussian distributions (which are
almost finitely supported), in number and with parameters depending on the experiment (see the captions of
the different figures for a description of eachK–tuple). In this extended abstract, we only offer a limited
number of graphical illustrations of the performances, butmention that the situations illustrated below are
typical.

Only Figure 1 top–left shows one empirical distribution policy, based onUCB1; the one based onEXP3
performs similarly. They are always worse than associated empirical best arm or empirical most played arm
policies and this is why we do not report their performances on other pictures. Empirical distributions will
thus be of theoretical interest only; they probably suffer in practice from being too conservative.

The ranking of the different strategies strongly depends onthe number of arms. ForK = 2 arms, Figure 1
top–left shows that the empirical best arm policy is the bestone, and that its performances are almost inde-
pendent of the underlying exploration strategy (uniform,UCB1, or EXP3). For small values ofK (say,K
between 3 and 10), Figure 1 bottom–left and bottom–right indicate that the best strategies are the ones that
pick the empirical best arm after exploring withEXP3 or UCB1; UCB1 combined with the selection of the
most played arm in the exploration phase is also an interesting competitor. When a large number of arms
is available,EXP3 becomes the unique best exploration strategy, and the optimal associated policy is the
most played arm for a small number of rounds and the empiricalbest arm for a larger number of rounds, as
Figure 1 top–right reveals. This is maybe a surprising fact,sinceEXP3 is not designed for a stochastic, but
an adversarial, environment.

In total, maintaining some exploration–exploitation trade-off even in the exploration phase seems worth-
while. A heuristic explanation would be that uniform sampling gives the same attention to all arms whereas
forecasters designed to minimize the cumulative regret tend to focus on a much smaller sub-sample of arms,
playing almost only the ones that are likely to be optimal.

Goal (continued) and structure of the paper: We aim at giving some (partial but more mathematical)
explanations of these surprising facts in the rest of the paper. We first account for the intuition that it should
not be the case that strategies trading off between exploration and exploitation can be efficient in such a full
exploration problem (Section 4). We do so by studying distribution-dependent bounds. We then are able to
qualify this statement by indicating some distribution-free bounds (Section 5).

4 Too small the cumulative regret is bad for the simple regret

Lemma 3 states in the next section thatErn = ERn/n for the empirical distribution policy, and therefore,
upper bounds onERn lead to upper bounds onErn. We show here that upper bounds onERn also lead to
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lower bounds onErn: the better the guaranteed bound onERn, the worst the bound onErn, no matter what
the policies(ψn) are. This is interpreted as a consequence of the classical trade-off between exploration and
exploitation. The design of(ψn) relies on an efficient exploration only, whereas the minimization ofERn

requires exploitation of the results of exploration considered as a side-task.

Theorem 1 (Main theorem) For all allocation strategies(ϕt) and all functionsε : {1, 2, . . .} → R such
that for all (Bernoulli) distributionsν1, . . . , νK on the rewards, there exists a constantC ≥ 0 with ERn ≤
Cε(n), the simple regret of any policy(ψn) based on the allocation(ϕt) is such that for all sets ofK ≥ 3
(distinct, Bernoulli) distributions on the rewards, thereexist a constantD ≥ 0 with

Ern ≥ 1

2

(
min

j:∆j>0
∆j

)
e−Dε(n)

(up to a relabelingν1, . . . , νK of the considered distributions intoνπ(1), . . . , νπ(K) for some permutation
π).

To get the point of this result, one should keep in mind that the typical rate of growth of the cumulative regrets
of good algorithms, e.g.UCB1 of Auer et al. (2002a), isε(n) = lnn. This, as asserted in Lai and Robbins
(1985), is the optimal rate. The policies based on such allocation strategies are bound to suffer a simple
regret that decreases at best polynomially fast. For instance, it follows from Kocsis and Szepesvari (2006,
Theorem 5) that the simple regret of the empirical best arm policy based on aUCB1 allocation decreases at
a polynomial rate, and this is no accident. On the contrary, the empirical best arm policy based on a uniform
exploration has a simple regret decreasing exponentially fast, as shown by Theorem 7. In addition, it follows
from the theorem above and the trivial inequalityERn ≤ n that this latter exponential decrease is the best
achievable rate for the simple regret.

Proof: The basic idea of the proof is to consider a tie case when the best and worst arms have zero empirical
means; it happens often enough (with a probability at least exponential in the number of times we pulled
these arms) and results in the forecaster basically having to pick another arm. Permutations are used to
control the case of untypical or naive forecasters that would despite all pull an arm with zero empirical
mean, since they force a situation where those forecasters choose the worst arm instead of the best one.
We consider now a set ofK ≥ 3 (distinct) Bernoulli distributions; actually, we only usebelow that their
parameters are (up to a first relabeling) such thatµ1 > µ2 ≥ µ3 ≥ . . . ≥ µK andµ2 > µK , and thus,
µ2 > 0.

Another layer of notation is needed. Fix a permutationσ of {1, . . . , K}. Fori = 1 (respectively,i = K), we
denote byPi,σ andEi,σ the probability and expectation with respect to theK-tuple formed by theνσ−1(j),
where we replaced the best of them, indexed byσ(1), by a Dirac measure on 0 (respectively, the best and
worst of them, indexed byσ(1) andσ(K), by Dirac measures on 0). We provide a proof in five steps.

Step 1lower bounds the maximum by an average,

max
σ

Eσrn ≥ 1

K!

∑

σ

Eσrn ≥ µ1 − µ2

K!

∑

σ

Eσ

[
1 − ψσ(1),n

]
.

Step 2rewrites each term of the sum overσ as the product of three simple terms. First, using thatP1,σ is the
same asPσ, except that it ensures that armσ(1) has zero reward throughout,

Eσ

[
1 − ψσ(1),n

]
≥ Eσ

[(
1 − ψσ(1),n

)
I{µ̂σ(1),n=0}

]
= Eσ

[(
1 − ψσ(1),n

) ∣∣ µ̂σ(1),n = 0
]
×Pσ

{
µ̂σ(1),n = 0

}

= E1,σ

[(
1 − ψσ(1),n

) ]
Pσ

{
µ̂σ(1),n = 0

}
.

Second, iterating the argument fromP1,σ to PK,σ, we get

Eσ

[
1 − ψσ(1),n

]
≥ EK,σ

[(
1 − ψσ(1),n

) ]
P1,σ

{
µ̂σ(K),n = 0

}
Pσ

{
µ̂σ(1),n = 0

}
. (1)
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Step 3deals with the second term in the right-hand side of (1),

P1,σ

(
µ̂σ(K),n = 0

)
= E1,σ

[
(1 − µK)

Nσ(K),n

]
≥ (1 − µK)

E1,σNσ(K),n ,

where the equality can be seen by first conditioning onI1, . . . , In and then taking the expectation,
whereas the inequality is a consequence of Jensen’s inequality. Now, the expected number of times the
sub-optimal armσ(K) is pulled underP1,σ is bounded by the regret (by very definition of the latter),
(µ2 − µK) E1,σNσ(K),n ≤ E1,σRn; since by hypothesis, there exists a constantC such that for allσ,
E1,σRn ≤ C ψ(n), we finally get

P1,σ

{
µ̂σ(K),n = 0

}
≥ (1 − µK)

Cε(n)/(µ2−µK)
.

Step 4proves that the third term in the right-hand side of (1) is more than

Pσ

{
µ̂σ(1),n = 0

}
≥ (1 − µ1)

Cε(n)/µ2 .

We denote byWn = (I1, XI1,1, . . . , In, XIn,NIn,n
) the history up to timen. What follows is reminis-

cent of the techniques used in Mannor and Tsitsiklis (2004).We are interested in realizationswn =
(i1, xi1,1, . . . , in, xin,nin,n

) of the history such that wheneverσ(1) was played, it got a null reward. (We
denote above bynj,t is the realization ofNj,t corresponding town, for all j andt.) The likelihood of such
awn underPσ is (1 − µ1)

nσ(1),n times the one underP1,σ. Thus,

Pσ

{
µ̂σ(1),n = 0

}
=

∑
Pσ (Wn = wn) =

∑
(1 − µ1)

nσ(1),n
P1,σ (Wn = wn) = E1,σ

[
(1 − µ1)

Nσ(1),n

]

where the sums are over those historieswn such thatxσ(1),t = 0 for all t = 1, . . . , nσ(1),n. The argument is
concluded as before, first by Jensen’s inequality and then, by using thatµ2E1,σNσ(1),n ≤ E1,σRn ≤ C ε(n)
by definition of the regret and the hypothesis put on its control.

Step 5concludes the proof by resorting to a symmetry argument to show that as far as the first terms of the
right-hand side of (1) are concerned,

∑

σ

EK,σ

[
1 − ψσ(1),n

]
≥ K!

2
.

SincePK,σ only depends onσ(2), . . . , σ(K − 1), we denote byPσ(2),...,σ(K−1) the common value of these
probability distributions whenσ(1) andσ(K) vary (and a similar notation for the associated expectation).
We can thus group the permutationsσ two by two according to these(K − 2)-tuples, one of the two permu-
tations is defined byσ(1) equal to one of the two elements of{1, . . . ,K} not present in the(K − 2)-tuple,
and the other one is such thatσ(1) equals the other such element. Formally,

∑

σ

EK,σψσ(1),n =
∑

j2,...,jK−1

E
j2,...,jK−1




∑

j∈{1,...,K}\{j2,...,jK−1}

ψj,n



 ≤
∑

j2,...,jK−1

E
j2,...,jK−1

[
1
]

=
K!

2
,

where the summations overj2, . . . , jK−1 are over all possible(K − 2)-tuples of distinct elements in
{1, . . . ,K}.

A paradox? At this point there seems to be a contradiction between the experimental observations and the
theory, since according to the rates of convergence inn, the simple regrets of the policies based on uniform
allocation (decreasing exponentially fast, see Theorem 7)should be below the ones based onEXP3 or UCB1
allocations (that can be decreasing at best polynomially fast, as Theorem 1 indicates). But the distribution-
dependent multiplicative constants play a role: in practice we observed this ranking only for simple regrets
smaller than10−10, a precision for which little can be guaranteed in terms of correct numerical computations.
Thus we believe that there are two regimes, a first one for small numbers of roundsn (this is the one observed
in the simulations) and a second one for very large numbers ofrounds. In the next section, distribution-free
bounds turn out to be a good way to capture the good behavior ofthe simple regrets ofUCB1 andEXP3
based strategies in the small–n regime.
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5 Consideration of distribution-free bounds solve (partially) the paradox

Theorem 1 shows in particular that as long as distribution-dependent bounds are considered, no faster than
exponential rates of decrease can be achieved for simple regrets. For distribution-free bounds, the rate
worsens to1/

√
n. We start by indicating a general lower bound (a simple variation on the proof provided in

Auer et al., 2002b, Appendix A), and then present some distribution-free upper bounds on the simple regret,
which are almost optimal in the sense that they match the order of magnitudes of the lower bound up to log
factors. While it was expected that uniform sampling associated to the empirical best arm policy was almost
optimal, it is surprising that allocations withEXP3 or UCB1 can be almost optimal as well, whereas they are
designed to minimize the cumulative regret.

Proposition 2 (simple variation on Auer et al., 2002b)For all n ≥ 1 and K ≥ 2 such thatn >
K/(4 ln(4/3)), the simple regrets of any allocation strategy and any policy based on this allocation are
bounded in a minimax sense as

inf sup
ν1,...,νK

Ern ≥ 1

32
√

ln(4/3)

√
K

n

where the infimum is taken over all (randomized) allocation strategies and all associated policies and the
supremum over allK-tuples of probability distributions with support in[0, 1].

5.1 Bounds on the simple regrets ofUCB1 and EXP3

Some of the bounds can be obtained in an automatic way from thebounds on the cumulative regrets via the
following two lemmas. Only the proof of the second one deserves a word; it uses that ifJ is the random
index of the most played arm (ties broken in some way), then∆J n/K ≤ ∆J NJ,n ≤ ∑

j ∆j Nj,n = Rn

and the simple regret isErn = E∆J . Our current bounds for the empirical best arm policy based on UCB1
or EXP3 allocations rely on concentration-of-the-measure methods and do not reach the1/

√
n rate yet; for

this reason, we do not report them here.

Lemma 3 For all allocation strategies(ϕn), the sequence of policies(ψn), called the empirical distribution
policies and defined, for alln = 1, 2, . . ., byψn = (1/n)

∑n
t=1 δIt

(whereδj denotes the Dirac mass on
arm j), is such that for alln, its simple regret satisfiesrn = Rn/n.

Lemma 4 For all allocation strategies(ϕn), the sequence of policies(ψn), called the empirical most played
arm, and defined, for alln = 1, 2, . . ., byψn = δJ whereJ ∈ argmaxj Nj,n, is such that for alln, its
simple regret satisfiesErn ≤ K ERn/n.

Corollary 5 The simple regrets of the allocation strategiesEXP3 of Auer et al. (2002b) andUCB1 of Auer
et al. (2002a), combined with the empirical distribution policies, are respectively bounded by

inf sup
ν1,...,νK

Ern ≤ 4

√
K lnK

n
and inf sup

ν1,...,νK

Ern ≤
√
K (8 lnn+ 1 + π2/3)

n
.

Proof: The bounds follows from the distribution-free bounds on thecumulative regrets via Lemma 3. We
provide here such a bound forUCB1, the one forEXP3 being given in Auer et al. (2002b). It can be extracted
from the proof of Auer et al. (2002a, Theorem 1) that for all suboptimal armj,

ENj,n ≤ 8 lnn

∆2
j

+1+
π2

3
hence ERn =

∑

j:∆j>0

∆j ENj,n ≤
√

8 lnn+ 1 +
π2

3

∑

j:∆j>0

√
ENj,n .

The conclusion follows by the concavity of the square root, which entails
∑√

ENj,n ≤
√
Kn.
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Corollary 6 The simple regrets of the allocation strategiesEXP3 of Auer et al. (2002b) andUCB1 of Auer
et al. (2002a), combined with the policy given by the choice of the empirical most played arm, are respec-
tively bounded by

inf sup
ν1,...,νK

Ern ≤ 4K

√
K lnK

n
and inf sup

ν1,...,νK

Ern ≤ K

√
(8 lnn+ 1 + π2/3)

n
.

Proof: The first bound is obtained via Lemma 4. For the second one, a sharper argument uses, as in the
proof of Lemma 4, thatENj,n ≥ P{J = j}n/K and the same upper bound onENj,n as above to get

∆j

√
P{J = j} ≤

√
K (8 lnn+ 1 + π2/3)

n
;

the proof is concluded by concavity again.

5.2 Bounds on the simple regret of uniform sampling

Formally, uniform sampling consists in choosing the allocationsϕt = δ[t mod K] where[t mod K] denotes
the value oft moduloK. Thus, armj is played at roundsj, j+K, j+ 2K . . .. We now denote, forn ≥ K
andj = 1, . . . ,K,

µ̂j,n =
1

⌊n/K⌋

⌊n/K⌋∑

s=1

Xj,s

the mean reward ofj on the firstK ⌊n/K⌋ rounds. (⌊n/K⌋ denotes the lower integer part ofn/K. We
discard here some final rounds for all arms to have been playedequally often whenever a new decision is
made.) The associated empirical best arm policy is defined byψ1 = . . . = ψK−1 equal to the uniform
distribution andψn = δj∗n wherej∗n ∈ argmaxj=1,...,N µ̂j,n for n ≥ K (ties broken in some way). The
proof of the following theorem can be found in the appendix.

Theorem 7 The uniform sampling allocation associated to the empirical best arm policy ensures that simple
regrets are bounded, respectively in a distribution-dependent and in a distribution-free sense, by

Ern ≤
∑

j:∆j>0

∆j e
−∆2

j⌊n/K⌋/2 and sup
ν1,...,νK

Ern ≤ 2

√
2K lnK

n
.
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