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Abstract

We consider the framework of stochastic multi-armed bapdiblems and study the possibilities
and limitations of strategies that explore sequentialeydahms. The strategies are assessed in terms
of their simple regrets, a new regret notion that capturedatt that exploration is only constrained
by the number of available rounds (not necessarily knowrdirmace), in contrast to the case when
the cumulative regret is considered and when exploitateetds to be performed at the same time.
Our goal is to demonstrate that quite counter-intuitivekploration—exploitation trade-offs are still
valuable in this setting. We do so by first providing an expental study and then aim at explain-
ing theoretically the observed phenomenon. A first negatrgellt is that too small a cumulative
regret prevents the simple regret from decreasing expiatigriowards zero, its optimal distribu-
tion-dependent rate. We solve the paradox by considerstghlition-free bounds and pointing out
two regimes for distribution-dependent bounds.

1 Introduction and motivation

Learning processes usually face an exploration versu®igagon dilemma, since they have to get infor-
mation on the environment (exploration) to be able to takedgactions (exploitation). A key example is
the multi-armed bandit probleh ( |952) a sequledgeision problem where, at each stage, the
forecaster has to pull one & given stochast|c arms and gets a reward drawn at randomdiegdo the
distribution of the chosen arm. The usual assessmentioritef a strategy is given by its cumulative regret,
the difference between the expected reward of the best adrtharaverage obtained rewards. Typical good
strategies, like thecB strategies df Auer et hl[ (2002a), trade off between exfitmmand exploitation.
*Partially supported by the French “Agence Nationale pouRéaherche” under grant JCJC06-137444 “From ap-
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When exploration involves costs not measured in terms cdur@gvbut rather in terms of numerical resources
(e.g., memory ocru), the performances of a strategy have to be assessed ireeediffivay. The forecaster
may then allocate sequentially its resources to exploreathes to his convenience and output the index
of an arm when these resources have been all used. The recamtadharm is assessed on a new one-
shot instance of the same bandit problem, leading to themai simple regret: the (expectation of the)
difference between the reward of the best arm and the oneeakttommended arm. We term this variant
the pure exploration problem, since, at first sight, exploreand exploitation appear in two distinct phases
(a statement we shall however qualify later on).

A concrete example for such a pure exploration problem isrglyy tree search, for which strategies min-
imizing the cumulative regret have been used recently ineaahthical way to guarantee an exploration
making a good use of availab&&u time. Namely, theucT strategy of Kocsis and Szepesyari (2006) and
the BAST strategy of Coquelin and Munog (2007) have shown interggigrformances for solving mini-
max tree search problems with huge trees; they have beeie@dgpiccessfully to the game of go, see, for
instance, the MoGo program pf Gelly ef gl. (2D06) that playa world-class level. The tree exploration
policy resulted in an asymmetric tree expansion in whichrttest promising edges were explored first.
Strategies designed to minimize the simple regret (instédlde cumulative regret) are expected to be the
stone for an improvement of these results.

This pure exploration problem was referred to as “budgeteltiarmed bandit problem” in the open prob-
lem by|Madani et gl.[(2004). Schlag (2006) solves the puréoeation problem in a minmax sense for the
case of two arms only and rewards given by probability distions over{0, 1]. It has also been studied in
related settings] Even-Dar ef d. (2002) and Mannor andiKkg (2004) consider forecasters performing
exploration during a random number of rourddsind aiming at identifying as—best arm. They study the
possibilities and limitations of policies achieving thisay with overwhelming — ¢ probability and indicate
in particular upper and lower bounds on (the expectatiorf¥ofHowever, the algorithms proposed in the
references above do not come with anytime performanceaheth we think would be necessary (but is not
straightforward if done without a doubling trick). If, fanstance, the forecaster is unsure about the available
computational power of, e.g., a shared system he is usimgsagiven a fixed delay to perform exploration
and recommend an arm, he cannot guess the number of avaihaiplés. For non-crucial medical applica-
tions where the regret would be a suitable measure of effigiéng., test of slimming pills), a test phase
may last a given time but one cannot determine in advance hemy atients will be included in the study.
As a consequence, we do not assume the knowledge of avaitalsids in the sequel.

2 Problem setup, notation

We consider a sequential decision problem for multi-armaddits, where a forecaster plays against a
stochastic environmentK > 2 arms, denoted by = 1,..., K, are available and thgth of them is
parameterized by a probability distribution (with finite first moment and expectation); at those rounds
when it is pulled, its associated reward is drawn at randotoraking tov;, independently of all previous
rewards. For each arghand all time rounds > 1, we denote byV; , the number of timeg was pulled
from rounds 1 ta, and by X 1, X2, ..., X; v, , the sequence of associated rewards.

The forecaster has to deal simultaneously with two tasksnagpy one and an auxiliary one. The auxiliary
task consists in exploration, the forecaster should indiea each round the armI; to be pulled. He
may resort to a randomized strategy, denotedbpy¥ A{1,..., K} (whereA{l,..., K} is the set of all
probability distributions over the indexes of the arms).e Bequencéy;) is referred to as an allocation
strategy. In that casd; is drawn at random according to the probability distribntig and the forecaster
gets to see the associated rewafdalso denoted byy, v,, , with the notation above. The primary task
is to output at the end of each routd policy; € A{1,..., K} to be played in a new one-shot instance
if the environment sends some stopping signal meaninglileagxploration phase is over. The information
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Figure 1: Experimental comparison of the exploration efyas introduced below.

available to the forecaster for choosipg, respectivelyy,, is formed by theX; ; for j = 1,..., K and
s=1,...,N;_1, respectivelys = 1,..., N;,.

As we are only interested in the performances of the sequénge of policies, we call this prob-
lem the pure exploration problem for multi-armed banditshe Bimple regret at round of the policy
Yn = (Yjn)j=1,.. n is defined byr, = p* — Z;il Y;j ity Wherep* denote the expected reward of a
best arm;*. The simple regret is thus the expected regret on a new-aargtance conditionally to the
exploration phase.

A quantity of related interest is the cumulative regret atnn, R, = Z?Zl(u* — ;ut). A popular
treatment of the multi-armed bandit problems is to constfai@casters ensuring th&tR,, = o(n), see,
e.g.,[Lai and Robbing (1985) pr Auer et al. (2402a), and €¥gn= o(n) a.s., as follows, e.g., from Auer
et al. (2002p, Theorem 6.3) together with a martingale agntmThe cumulative regret is the sum of the
instantaneous regrets = 1* — uy,, but the latter can be hardly related to the simple regsets

Goal: In this paper, we study the links between simple and cunwalatgrets and show that, surpris-
ingly enough and perhaps counter-intuitively, the strigtethat are best in practice rely on the exploration—
exploitation dilemma, whereas their assessment critetiom simple regret, is only a matter of efficient
exploration and involves no exploitation.



3 Simulation study

We start by indicating some surprising experimental raswhich motivated the present work. We consid-
ered three different allocation strategies, uniform samgp{pull all arms, one after the othegxpP3 (see
Ruer et al..[2002b), andcBl (see[Auer et I, 2002a) and three associated policiesirieadlistribu-
tion, empirical best arm, and most played arm. We recall ghat3 anducsl perform an exploration—
exploitation tradeoff, while uniform sampling focuses amiform) exploration of the arms. To a given
allocation, we may associate the policy that either is thpigoal distribution of the arms sampled in the ex-
ploration phase, or (the Dirac mass on) the arm with bestgrapmean at the end of the exploration phase,
or (the Dirac mass on) the arm played most often in the exiiorahase. These policies are described in
detail respectively in Lemmig 3, Sectipn]5.2, and Lerfima 4.

The resulting simple regrets are computed oMed00 runs of eachiK—tuple of distributions and we plot
their averages on Figurgs 1, which approximate well the eatiensEr,,. The distributions used for the
simulations are given by Bernoulli distributions, unifodistributions, or Gaussian distributions (which are
almost finitely supported), in number and with parametepedding on the experiment (see the captions of
the different figures for a description of eaéfr+-tuple). In this extended abstract, we only offer a limited
number of graphical illustrations of the performances,rention that the situations illustrated below are
typical.

Only Figure|]l. top—left shows one empirical distributionipgl based orucgl; the one based oBxP3
performs similarly. They are always worse than associatguirical best arm or empirical most played arm
policies and this is why we do not report their performanaesther pictures. Empirical distributions will
thus be of theoretical interest only; they probably suffigpiiactice from being too conservative.

The ranking of the different strategies strongly dependthemumber of arms. Fak = 2 arms, Figureﬂl
top—left shows that the empirical best arm policy is the best, and that its performances are almost inde-
pendent of the underlying exploration strategy (unifotragl, or ExP3). For small values of{ (say, K
between 3 and 10), Figuﬂa 1 bottom-left and bottom—righitate that the best strategies are the ones that
pick the empirical best arm after exploring wigxP3 or ucgl; ucsl combined with the selection of the
most played arm in the exploration phase is also an integestmpetitor. When a large number of arms
is available,ExP3 becomes the unique best exploration strategy, and themalpéissociated policy is the
most played arm for a small number of rounds and the empiiesil arm for a larger number of rounds, as
Figurel]. top—right reveals. This is maybe a surprising fsiageExP3 is not designed for a stochastic, but
an adversarial, environment.

In total, maintaining some exploration—exploitation &aaff even in the exploration phase seems worth-
while. A heuristic explanation would be that uniform sampglgives the same attention to all arms whereas
forecasters designed to minimize the cumulative regret tefocus on a much smaller sub-sample of arms,
playing almost only the ones that are likely to be optimal.

Goal (continued) and structure of the paper: We aim at giving some (partial but more mathematical)
explanations of these surprising facts in the rest of thepape first account for the intuition that it should
not be the case that strategies trading off between exaranhd exploitation can be efficient in such a full
exploration problem (Secticﬁh 4). We do so by studying distibn-dependent bounds. We then are able to
qualify this statement by indicating some distributioreflbounds (Secticﬁh 5).

4 Too small the cumulative regret is bad for the simple regret

Lemma[f% states in the next section tliat, = ER,,/n for the empirical distribution policy, and therefore,
upper bounds oft R,, lead to upper bounds d&r,,. We show here that upper boundsBR,, also lead to



lower bounds orfiitr,, : the better the guaranteed boundiR,,, the worst the bound dfir,,, no matter what
the policies(v,,) are. This is interpreted as a consequence of the classada-tff between exploration and
exploitation. The design af/,,) relies on an efficient exploration only, whereas the mination of ER,,
requires exploitation of the results of exploration corsédl as a side-task.

Theorem 1 (Main theorem) For all allocation strategieg ;) and all functions: : {1,2,...} — R such
that for all (Bernoulli) distributions/y, .. ., vk on the rewards, there exists a constaht> 0 with ER,, <
Ce(n), the simple regret of any polidy),,) based on the allocatiofi;) is such that for all sets ok” > 3
(distinct, Bernoulli) distributions on the rewards, thexeist a constanD > 0 with

1
Er, > - min Aj; e~ De(n)
2 J:A; >0

(up to a relabelingy, . .., vk of the considered distributions inta, (), . .., vx(x) for some permutation

).

To get the point of this result, one should keep in mind thatypical rate of growth of the cumulative regrets
of good algorithms, e.gscB1 of [Auer et g. [2003a), is(n) = Inn. This, as asserted ins
), is the optimal rate. The policies based on such diloe strategies are bound to suffer a simple
regret that decreases at best polynomially fast. For instanfollows from[Kocsis and Szepesydri (206,
Theorem 5) that the simple regret of the empirical best arlicypbased on aJcB1 allocation decreases at
a polynomial rate, and this is no accident. On the contrbeyempirical best arm policy based on a uniform
exploration has a simple regret decreasing exponentasly &s shown by Theorgin 7. In addition, it follows
from the theorem above and the trivial inequality®,, < n that this latter exponential decrease is the best
achievable rate for the simple regret.

Proof: The basic idea of the proof is to consider a tie case when thteainel worst arms have zero empirical
means; it happens often enough (with a probability at leggbeential in the number of times we pulled
these arms) and results in the forecaster basically hawimdck another arm. Permutations are used to
control the case of untypical or naive forecasters that daldspite all pull an arm with zero empirical
mean, since they force a situation where those forecasdt@ase the worst arm instead of the best one.
We consider now a set of > 3 (distinct) Bernoulli distributions; actually, we only uselow that their
parameters are (up to a first relabeling) such that> ps > ps > ... > ux andus > pg, and thus,

wa > 0.

Another layer of notation is needed. Fix a permutatiaf {1, ..., K}. Fori = 1 (respectively; = K), we
denote byP; , andE; , the probability and expectation with respect to fkiduple formed by the/, -1 (;),
where we replaced the best of them, indexed-by), by a Dirac measure on O (respectively, the best and
worst of them, indexed by (1) ando(K'), by Dirac measures on 0). We provide a proof in five steps.

Step llower bounds the maximum by an average,

1 —
max Eyry, > &l Z Eory > % ZEU [1 - ¢a(1),n] .

Step 2rewrites each term of the sum ovens the product of three simple terms. First, usingBhat is the
same a®,, except that it ensures that arl) has zero reward throughout,

Eo [1 = %o1)n] 2 Eq {(1 ~ Yo (1),n) H{ﬁ(,(]m:o}} =E, {(1 ~Yo)n) | Fo(i)n = 0} XPo { i (1), = 0}

= El,a [(1 - wa(l),n) } Pa {ﬁa’(l),n = O} .
Second, iterating the argument frdf , to P ., we get

E, [1 - dja(l),n] > EK,U [(1 - dja(l),n)} ]P)l,a {ZZU(K),’R = O} P, {ﬁa’(l),n = O} . (1)



Step 3deals with the second term in the right-hand side[bf (),

Pis (fio()n = 0) = Bap [(1— puse) Y00 | > (1= puge) oo

where the equality can be seen by first conditioning Ign..., I, and then taking the expectation,
whereas the inequality is a consequence of Jensen’s ingguidbw, the expected number of times the
sub-optimal armp(K) is pulled underP; , is bounded by the regret (by very definition of the latter),
(ne — pr)E1oNo(xyn < Ei1,R,; since by hypothesis, there exists a consté@nguch that for allo,

Ei o R, < C4(n), we finally get

]P)LO'{//IO’(K),n = O} Z (1 _ ,UK)CE(n)/(N‘z_NK) .
Step 4proves that the third term in the right-hand side[df (1) is entian

]P)a'{ﬁa(l),n = 0} > (1 - lul)CE(n)/uz .
We denote by, = (I1, X, 1,....1,, X7 n, ) the history up to time:. What follows is reminis-
cent of the techniques used in_Mannor and Tsitgiklis (POOWe are interested in realizations, =
(i1, %15 - - -+ %n, Ti, n;, ) Of the history such that wheneve(1) was played, it got a null reward. (We
denote above by, ; is the realization ofV; ; corresponding tav,,, for all j andt.) The likelihood of such
aw, underP, is (1 — up)"®.~ times the one undét, .. Thus,

Pof{fia)n =0} =Y Po (Wn=wn) =3 (1— )" 0" Py (Wy =wyn) =Ey o |(1—py) V7O
where the sums are over those historigssuch thatr, 1), = Oforallt = 1,...,n,(1),. The argumentis

concluded as before, first by Jensen’s inequality and theasing thatusEi o Ny1),n < E1 0 Rp < Ce(n)
by definition of the regret and the hypothesis put on its aintr

Step 5concludes the proof by resorting to a symmetry argumentaaghat as far as the first terms of the
right-hand side ofl]l) are concerned,
!

XU:EK,U {1 - wa'(l),n:| > K7

SincePx , only depends o (2),...,o(K — 1), we denote byp? () (K=1) the common value of these
probability distributions whewm (1) ando(K) vary (and a similar notation for the associated expectation
We can thus group the permutatianswvo by two according to thesd( — 2)-tuples, one of the two permu-
tations is defined by (1) equal to one of the two elements{f, . . ., K'} not present in thé X' — 2)-tuple,
and the other one is such thafl) equals the other such element. Formally,

ZEK,G¢U(1),W, = Z Ej2"'"’jK71 Z wj-,n < Z Ej2 7777 Jr [1} = K7| P

J25 s JK—1 JE{L,... . K\ {j2, -1} J25edK -1

where the summations oves, ..., jx—1 are over all possiblé K — 2)-tuples of distinct elements in
{1,...,K}. |

A paradox? At this point there seems to be a contradiction between tper@xental observations and the
theory, since according to the rates of convergence the simple regrets of the policies based on uniform
allocation (decreasing exponentially fast, see Thecﬂestnd’mld be below the ones basedmotrP3 orucsl
allocations (that can be decreasing at best polynomiasly &es Theorelﬂ 1 indicates). But the distribution-
dependent multiplicative constants play a role: in practie observed this ranking only for simple regrets
smaller thari0~1°, a precision for which little can be guaranteed in terms ofexci numerical computations.
Thus we believe that there are two regimes, a first one forlsmaibers of rounds (this is the one observed
in the simulations) and a second one for very large numbesuofds. In the next section, distribution-free
bounds turn out to be a good way to capture the good behavitbreasimple regrets aficsl andexp3
based strategies in the smaldlregime.



5 Consideration of distribution-free bounds solve (partidly) the paradox

Theorenﬂl shows in particular that as long as distributiepethdent bounds are considered, no faster than
exponential rates of decrease can be achieved for simpietsegFor distribution-free bounds, the rate
worsens tal /y/n. We start by indicating a general lower bound (a simple Waricon the proof provided in
Puer etal. b, Appendix A), and then present some Higian-free upper bounds on the simple regret,
which are almost optimal in the sense that they match ther afdeagnitudes of the lower bound up to log
factors. While it was expected that uniform sampling as#eci to the empirical best arm policy was almost
optimal, it is surprising that allocations wittkP3 or ucB1 can be almost optimal as well, whereas they are
designed to minimize the cumulative regret.

Proposition 2 (simple variation on[Auer et al],[2002b)For all n > 1 and K > 2 such thatn >
K/(41n(4/3)), the simple regrets of any allocation strategy and any gobiased on this allocation are
bounded in a minimax sense as

inf su Er, > ; E
v "7 39 n(a3) V n
where the infimum is taken over all (randomized) allocatitvategies and all associated policies and the
supremum over alK -tuples of probability distributions with support [f, 1].

5.1 Bounds on the simple regrets oficsl and EXP3

Some of the bounds can be obtained in an automatic way frotmathieds on the cumulative regrets via the
following two lemmas. Only the proof of the second one deser word; it uses that if is the random
index of the most played arm (ties broken in some way), them/K < Ay Ny, < Zj AjNjn =R,
and the simple regret 8r,, = EA ;. Our current bounds for the empirical best arm policy basedesl

or ExP3 allocations rely on concentration-of-the-measure nettamd do not reach the//n rate yet; for
this reason, we do not report them here.

Lemma 3 For all allocation strategies$y,, ), the sequence of polici¢s,, ), called the empirical distribution
policies and defined, forah = 1,2,..., by, = (1/n)>;—, 1, (Whered; denotes the Dirac mass on
arm j), is such that for all, its simple regret satisfies, = R,,/n.

Lemma 4 For all allocation strategiesy,, ), the sequence of policiés,, ), called the empirical most played
arm, and defined, for alh = 1,2,..., by, = §; whereJ € argmax; Nj,, is such that for alln, its
simple regret satisfieBr,, < K ER,,/n.

Corollary 5 The simple regrets of the allocation strategiese3 of [Auer et a). [2009b) andcs1 of Auer
et al. (2002p), combined with the empirical distributiorlipes, are respectively bounded by
2
inf sup Er, <4 Kln K and inf sup Erng\/K(Slnn—i_l—i—ﬂ /3)

V1., VK n V1. VK

n

Proof: The bounds follows from the distribution-free bounds ondhenulative regrets via Lemnjh 3. We
provide here such a bound focs1, the one foExP3 being given iff Auer et al[ (200Pb). It can be extracted
from the proof of Auer et al|(200Ra, Theorem 1) that for abeptimal army,

8Inn w2 w2
EN;, < A—§+1+§ hence ER,= » AEN;, <y/8mn+1+ =3 > VEN;..

J:A; >0 J:A;>0

The conclusion follows by the concavity of the square rodticl entails) . \/EN; ,, < vV Kn. |



Corollary 6 The simple regrets of the allocation strategiose3 of [Auer et a). [2009b) andcs1 of Auer
et al. (2002h), combined with the policy given by the chofc® empirical most played arm, are respec-
tively bounded by

KhnhK 81 1 2/3
inf sup Er, <4K n and inf  sup ErnSK\/( nn+1+7/3)

Vi VK n VLo VK n

Proof: The first bound is obtained via Lemrﬁ|a 4. For the second oneagshargument uses, as in the
proof of Lemmd}4, thaEN; ,, > P{J = j} n/K and the same upper bound BiV; ,, as above to get

A FTT=T] < \/K(8lnn—;1+ﬁ2/3) ;

the proof is concluded by concavity again. |

5.2 Bounds on the simple regret of uniform sampling

Formally, uniform sampling consists in choosing the altmwes ¢; = 0f; o4 x] Where[t mod K| denotes
the value oft moduloK . Thus, armyj is played atroundg j + K, j + 2K .... We now denote, fon > K
andj=1,..., K,
LAY

7, n =7 _ 7 X; s

i = Ty 22 %
the mean reward of on the firstK |n/K | rounds. (n/K | denotes the lower integer part of K. We
discard here some final rounds for all arms to have been plegedlly often whenever a new decision is
made.) The associated empirical best arm policy is defined,by- ... = ¢ equal to the uniform
distribution andy,, = d,- wherej; € argmax;_;  y fi;, forn > K (ties broken in some way). The
proof of the following theorem can be found in the appendix.

Theorem 7 The uniform sampling allocation associated to the empifiest arm policy ensures that simple
regrets are bounded, respectively in a distribution-degmt and in a distribution-free sense, by

[2KIn K
Er, < Z AY e~ A3 In/K]/2 and sup Er, <2 s
Vl,...,VK n

J:A;>0
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