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Abstract

We consider the framework of stochastic multi-armed
bandit problems and study the possibilities and limita-
tions of strategies that explore sequentially the arms.
The strategies are assessed not in terms of their cumula-
tive regrets, as is usually the case, but through quantities
referred to as simple regrets. The latter are related to
the (expected) gains of the decisions that the strategies
would recommend for a new one-shot instance of the
same multi-armed bandit problem. Here, exploration is
only constrained by the number of available rounds (not
necessarily known in advance), in contrast to the case
when cumulative regrets are considered and when ex-
ploitation needs to be performed at the same time. We
start by indicating the links between simple and cumu-
lative regrets. A small cumulative regret entails a small
simple regret but too small a cumulative regret prevents
the simple regret from decreasing exponentially towards
zero, its optimal distribution-dependent rate. We there-
fore introduce specific strategies, for which we prove
both distribution-dependent and distribution-free bounds.
A concluding experimental study puts these theoretical
bounds in perspective and shows the interest of non-
uniform exploration of the arms.

1 Introduction and motivation

Learning processes usually face an exploration versus ex-
ploitation dilemma, since they have to get information on
the environment (exploration) to be able to take good ac-
tions (exploitation). A key example is the multi-armed bandit
problem, a sequential decision problem where, at each stage,
the forecaster has to pull one ofK given arms and gets a re-
ward. We consider here a stochastic version in which each
arm is parameterized by a probability distribution and pro-
vides, when pulled, a reward drawn at random according to
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this distribution. The problem was first considered by Rob-
bins (1952), who derives strategies that asymptotically attain
a per-round reward equal to the expected reward of the best
arm. See Berry and Fristedt (1985) for a review of the classi-
cal (statistical) results. The problem turned out to be funda-
mental as well in artificial intelligence and machine learning
but it was actually originally motivated by medical statistics,
see Schlag (2006) for more historical details and references
to the rich corresponding literature. The typical case is the
test of a new treatment against the best treatment known so
far. Of course, some exploration is needed, so that the test
samples for each treatment are large enough; this is the only
way to guarantee a correct estimation of their respective ef-
ficiencies. But since human beings are involved, the cost of
picking the wrong treatment is high (the associated reward
would equal a large negative value); therefore, exploration is
potentially risky and exploitation has to be done most of the
time. This is captured by a quantity called the cumulative re-
gret, defined as the difference between the per-round reward
of the best arm (treatment, in the medical case) and the one
of the considered strategy. Among others, theUCB strate-
gies (standing for “upper confidence bounds”) of Auer et al.
(2002a) perform a good exploration–exploitation tradeoffin
terms of this cumulative regret.

When exploration involves costs not measured in terms
of rewards but rather in terms of resources (e.g., memory or
CPU), the performances of a strategy have to be assessed in
a different way. As illustrated below, it is then natural that
the forecaster allocates sequentially its resources to explore
the arms to his convenience and outputs the index of an arm
when these resources have been all used. Finally, the rec-
ommended arm is used on a new one-shot instance of the
same bandit problem. Therefore, a strategy is assessed here
in terms of the performances of the recommended arm on
the problem, leading to the notion of simple regret: the (ex-
pectation of the) difference between the reward of the best
arm and the one of the recommended arm. We term this
variant the pure exploration problem, since, at first sight,ex-
ploration and exploitation appear in two distinct phases (a
statement we shall however qualify later on). This pure ex-
ploration problem was referred to as “budgeted multi-armed
bandit problem” in theCOLT’04 open problem by Madani
et al. (2004). They adress it from a Bayesian and Markov
decision processes point of view, discuss some natural strate-
gies, and point out difficulties.

A concrete example for such a pure exploration problem



is given by tree search, for which strategies minimizing the
cumulative regret have been used recently in a hierarchical
way to guarantee an exploration making a good use of avail-
ableCPU time. Namely, theUCT strategy (standing for “UCB
for trees”) of Kocsis and Szepesvari (2006) and theBAST
strategy (standing for “bandits algorithms for tree search”) of
Coquelin and Munos (2007) have shown interesting perfor-
mances for solving minimax tree search problems with huge
trees; they have been applied successfully to the game of go,
see, for instance, the MoGo program of Gelly et al. (2006)
that plays at a world-class level. The tree exploration policy
resulted in an asymmetric tree expansion in which the most
promising edges were explored first. Strategies designed to
focus on exploration and minimizing the simple regret are
expected to be the stone for an improvement of these re-
sults. Another valuable example is provided by the setting
of so-called computer experiments (see, for instance, Sant-
ner et al., 2003 for a review), e.g., the optimization of some
complex function that can only be evaluated through a (pos-
sibly noisy) black-box at a computational only fixed cost.

Here, the numbern of rounds available to the forecaster
is fixed in advance but may be unknown to the forecaster.
It is determined in the previous examples by the time given
to the forecaster with respect to the computational power of
the computer he is using. Of related interest is the setting of
Even-Dar et al. (2002) and Mannor and Tsitsiklis (2004), in
which the forecaster can perform exploration during a ran-
dom number of roundsT (which he chooses) and aims at
identifying anε–best arm. They study the possibilities and
limitations of policies achieving this goal with overwhelm-
ing 1 − δ probability and indicate in particular upper and
lower bounds on (the expectation of)T . Performances are
therefore not measured by some regret in this case.

Schlag (2006) solves the pure exploration problem for
the case of two arms and rewards given by probability distri-
butions over[0, 1]. He shows that the minimax value of the
simple regret (where the supremum is taken with respect to
all possible pairs of probability distributions and the infimum
is over all possible strategies of the forecaster) is achieved
by a rule called binomial average rule, sampling the two
arms equally often and basically recommending the one with
higher empirical mean. He also computes this minimax value
as a function ofn and proves that it converges to zero at a
(1/

√
n)–rate. The article is concluded by pointing out some

difficulties for the case of three or more arms.
Static allocations of resources (i.e., the use of a strategy

determined before the samplings) were considered in Schlag
(2006) for the case of two probability distributions over com-
pact intervals and in Chen et al. (2000) for an arbitrary num-
ber of Gaussian distributions. In the latter case, arms are
optimally sampled (from the static viewpoint) depending on
their (known) variances.

Structure of the paper: We present formally the model
in Section 2 and define cumulative and simple regrets. Sec-
tion 3 investigates the links between these regrets and indi-
cates that upper bounds on the cumulative regrets lead not
only to upper bounds on the simple regrets (Section 3.1), but
also to lower bounds on them. Actually, Section 3.2 states

the main result of the paper; strategies with too good (e.g.,
logarithmically only increasing) distribution-dependentbounds
on their cumulative regrets lead to strategies with simple re-
grets decreasing at best at a polynomial rate. This is in con-
trast with the results of Section 4, which introduces specific
forecasters and shows an exponentially fast decrease of the
simple regrets of some of these strategies. For the cumulative
regrets to be minimized, exploitation is needed and the price
to pay for that is a worse control on the simple regrets, as
captured by Theorem 4. Section 5 qualifies however some of
the gaps in the orders of magnitude of distribution-dependent
bounds exhibited in the previous sections and explains that,
as far as distribution-free bounds are considered, most of
the previous forecasters have simple regrets decreasing at
the optimal1/

√
n–rate (up to logarithmic factors). This is

similar to what can be said for distribution-dependent versus
distribution-free bounds for the cumulative regret. (By pass-
ing, we also exhibit distribution-free bounds for theUCB1
strategy of Auer et al., 2002a.) The simulation study of Sec-
tion 6 puts these theoretical results in perspective and shows
the interest of non-uniform exploration of the arms.

2 Problem setup, notation

We consider a sequential decision problem for multi-armed
bandits, where a forecaster plays against a stochastic envi-
ronment.K ≥ 2 arms, denoted byj = 1, . . . ,K, are avail-
able and thej-th of them is parameterized by a probability
distributionνj (with finite first moment and expectationµj);
at those rounds when it is pulled, its associated reward is
drawn at random according toνj , independently of all pre-
vious rewards. For each armj and all time roundsn ≥ 1,
we denote byNj,n the number of timesj was pulled from
rounds 1 ton, and byXj,1, Xj,2, . . . , Xj,Nj,n

the sequence
of associated rewards.

The forecaster has to deal simultaneously with two tasks,
a primary one and an auxiliary one. The auxiliary task con-
sists in exploration, the forecaster should indicate at each
round t the armIt to be pulled. He may resort to a ran-
domized strategy, denoted byϕt ∈ ∆{1, . . . ,K} (where
∆{1, . . . ,K} is the set of all probability distributions over
the indexes of the arms). The sequence(ϕt) is referred to
as an allocation strategy. In that case,It is drawn at ran-
dom according to the probability distributionϕt and the fore-
caster gets to see the associated rewardYt, also denoted by
XIt,NIt,t

with the notation above. The primary task is to out-
put at the end of each roundt a policyΦt ∈ ∆{1, . . . ,K}
to be played in a new one-shot instance if the environment
sends some stopping signal meaning that the exploration phase
is over.

As we are only interested in the performances of the se-
quence(Φn) of policies, we call this problem the pure ex-
ploration problem for multi-armed bandits. Figure 1 sum-
marizes the description of the sequential game and points out
that the information available to the forecaster for choosing
ϕt, respectivelyΦt, is formed by theXj,s for j = 1, . . . ,K
ands = 1, . . . , Nj,t−1, respectively,s = 1, . . . , Nj,t. For-
mally, we define the simple regret at roundn (of the policy



Parameters:K probability distributions for the rewards
of the arms,ν1, . . . , νK

For each roundt = 1, 2, . . . ,

(1) the forecaster choosesϕt ∈ ∆{1, . . . ,K} and
pulls an armIt at random according toϕt;

(2) the environment draws the rewardYt for that action
(denoted byXIt,NIt,t

with the notation introduced
in the text);

(3) the forecaster outputs a policyΦt ∈ ∆{1, . . . ,K};

(4) If the environment sends a stopping signal, then the
game takes an end; otherwise, the next round starts.

Figure 1: The pure exploration problem for multi-armed ban-
dits

Φn) by

rn = r
(
Φn
)

= µ∗ − µΦn

whereµ∗ = µj∗ = max
j=1,...,K

µj andµΦn
=

∑

j=1,...,K

Φj,n µj

denote respectively the expectations of the rewards of the
best armj∗ (a best arm, if there are several of them with same
maximal expectation) and of the policyΦn = (Φj,n)j=1,...,N .

A quantity of related interest is the cumulative regret at
roundn,

Rn =
n∑

t=1

µ∗ − µIt

A popular treatment of the multi-armed bandit problems is
to construct forecasters ensuring thatERn = o(n), see, e.g.,
Lai and Robbins (1985) or Auer et al. (2002a), and even
Rn = o(n) a.s., as follows, e.g., from Auer et al. (2002b,
Theorem 6.3) together with a martingale argument. The quan-
tities r′t = µ∗ − µIt

are sometimes called instantaneous re-
grets. They differ from simple regretsrt and in particular,
Rn = r′1 + . . .+ r′n is in general not equal tor1 + . . .+ rn.
Lemma 1 and Theorem 4 will however indicate some con-
nections betweenrn andRn.

Goal: We focus here on simple regretsrn and ask for
strategies ensuring thatErn = o(1).

3 Links between cumulative and simple
regrets

In this section, we show howRn andrn are related. We first
state the straightforward upper boundErn ≤ ERn/n, which
holds for suitable choices of(Φn) and shows that it is indeed
possible to guaranteeErn = o(1).

More interestingly, we then prove that upper bounds on
ERn lead to lower bounds onErn; the better the guaranteed
bound onERn, the worst the bound onErn. This is inter-
preted as a consequence of the classical trade-off between

exploration and exploitation. The design of(Φn) relies on
an efficient exploration only, whereas the minimization of
ERn requires exploitation of the results of the exploration
considered as a side-task.

3.1 A small cumulative regret entails a small simple
regret...

Classical strategies for multi-armed bandits minimize thecu-
mulative regret. We consider below theUCB family of strate-
gies introduced in Auer et al. (2002a) for a stochastic envi-
ronment and theEXP3 family suited for an adversarial en-
vironment, see Auer et al. (2002b). Other strategies have
been studied like, e.g., theGREENstrategy of Allenberg et al.
(2006), but for simplicity we focus on the two families men-
tioned above.

These strategies consist only in a sequence of allocation
strategies(ϕt). We construct the associated sequences of
policies(Φn) and(Φn) as either the sequence of the empiri-
cal distributions of theIt or the sequence of moving averages
of theϕt; for all n = 1, 2, . . .,

Φn =
1

n

n∑

t=1

δIt
and Φn =

1

n

n∑

t=1

ϕt (1)

whereδj denotes the Dirac mass on armj.
The next lemma is almost a triviality and follows from

the linearity ofrn in the policyΦn and from the rewriting of
ERn as

ERn = nµ∗ − E

[
n∑

t=1

µIt

]
= nµ∗ − E




n∑

t=1

K∑

j=1

ϕj,tµj





(as can be seen by taking expectations of conditional expec-
tations).

Lemma 1 For all allocation strategies(ϕt), the sequences
(Φn) and(Φn) of policies obtained by taking the empirical
distributions and the moving averages (1) are such that for
all n = 1, 2, . . .,

rn
(
Φn
)

=
Rn
n

and E
[
rn
(
Φn
)]

=
ERn
n

.

In particular, for both sequences of policies, ifERn = o(n),
thenErn = o(1).

For further reference, we illustrate this lemma with the
strategiesUCB1 of Auer et al. (2002a) and a simple modi-
fication of EXP3 (without the mixing step). There is a fun-
damental difference between these two types of bounds, that
will be further illustrated in Sections 4 and 5. The bound for
UCB1 depends on the distributionsν1, . . . , νK of the arms
whereas the one ofEXP3 holds for all possible distributions
over a given interval, say[0, 1] for simplicity.

For the sake of completeness, we recall the statement of
UCB1. In the firstK rounds, each arm is played once, that
is, ϕt = δt is the Dirac mass ont for t = 1, . . . ,K. Then,
for t ≥ K andj = 1, . . . ,K, we denote by

Nj,t =

t∑

s=1

I{Is=j} and µ̂j,t =
1

Nj,t

Nj,t∑

s=1

Xj,s



the number of rounds armj was pulled before roundt and
the mean reward ofj on these rounds. Now,ϕt+1 = δj∗t ,
where

j∗t ∈ argmax
j=1,...,K

µ̂j,t +

√
2 ln t

Nj,t
(2)

(ties broken by choosing, for instance, the arm with small-
est index).UCB1 has a deterministic allocation strategy, the
associated averages(Φn) = (Φn) are however given by non-
degenerated probability distributions. Auer et al. (2002a,
Theorem 1) together with Lemma 1 (and the bound∆j ≤ 1)
implies the following. We denote in the sequel∆j = µ∗−µj
the gap between the expected reward of the best arm and the
one of armj.

Theorem 2 (Auer et al., 2002a)For all probability distribu-
tions ν1, . . . , νK on [0, 1], UCB1 ensures that its expected
regret is bounded as

ERn ≤ 8




∑

j:µj<µ∗

1

∆j



 lnn+

(
1 +

π2

3

)


∑

j=1,...,K

∆j





for all n ≥ 1. Thus the expected simple regrets of the se-
quence of empirical distributions and moving averages (1)
are bounded as

Ern ≤ 8




∑

j:µj<µ∗

1

∆j



 lnn

n
+

(
1 +

π2

3

)
K

n

for all n ≥ 1.

We state this result mostly to point out in Section 4 that
the rate(lnn)/n is not the optimal order of magnitude of
the expected simple regret as far as distribution-dependent
bounds are considered, and that specific algorithms need there-
fore to be constructed.

We now turn toEXP3-type forecasters. It has been noted
since Auer et al. (2002b) that to obtain bounds on the (ex-
pectation of the) cumulative regret,EXP3 does not need the
mixing step. We describe the version recalled, e.g., in the
introduction of Stoltz (2005), see also Juditsky et al. (2008).
ϕ1 is the uniform distribution and fort ≥ 2, we defineϕt
component-wise as

ϕj,t =
exp

(
−ηt

∑t−1
s=1 ℓ̂j,s

)

∑K
k=1 exp

(
−ηt

∑t−1
s=1 ℓ̂k,s

)

for all j = 1, . . . ,K, where

ηt =

√
2 lnK

K t
and ℓ̂k,s =

1 −Xk,Nk,s

ϕk,s
I{Is=k}

are the estimated losses associated to the rewards. The bounds
of Stoltz (2005, Theorem 2.7) and Lemma 1 imply the fol-
lowing.

Theorem 3 (variation of Auer et al., 2002b) For all prob-
ability distributionsν1, . . . , νK on [0, 1], the variant ofEXP3
recalled above ensures that its expected regret is bounded as

ERn ≤
√

8(n+ 1)K lnK

for all n ≥ 1. Thus the expected simple regrets of either
of the sequences of empirical distributions and moving aver-
ages (1) are bounded as

Ern ≤ 4

√
K lnK

n

for all n ≥ 1.

3.2 ... but too small a cumulative regret forces too large
a simple regret

The main result in this section indicates that the better the
upper bound on the cumulative regret of a strategy, the larger
the lower bound on its simple regret. Like in Mannor and
Tsitsiklis (2004), since we are interested in lower bounds in
this section, we mostly consider Bernoulli distributions.The
functionψ of interest has to be thought of as the distribution-
dependent upper bound on the order of magnitude of the re-
gret, e.g.,ψ(n) = lnn in Theorem 2.

Theorem 4 (Main theorem) For all allocation strategies(ϕt)
and all functionsψ : {1, 2, . . .} → R such that

for all (Bernoulli) distributionsν1, . . . , νK on the re-
wards, there exists a constantC ∈ R

+ with ERn ≤

Cψ(n),

the simple regret of any policy(Φn) based on the allocation
(ϕt) is such that

for all sets ofK ≥ 3 (distinct) Bernoulli distributions
on the rewards, there exist a constantD ≥ 0 with

Ern ≥
1

2

(
min
j:∆j>0

∆j

)
e
−Dψ(n)

(up to a relabellingν1, . . . , νK of the considered distri-
butions intoνπ(1), . . . , νπ(K) for some permutationπ).

In particular, the polynomial decrease of the simple re-
gret in Theorem 2 is not an accident, our main theorem shows
that this needs to be the case in view of the good (logarithmic
bound) performances ofUCB1 in terms of the cumulative re-
gretERn. This is why a specific strategy is constructed and
studied in Section 4, with exponential convergence rate to
0. Its allocation strategy relies on a heavy exploration and
no exploitation. For the cumulative regretERn to be mini-
mized, exploitation is needed and the price to pay for that is,
at least from a theoretical viewpoint, a worse control on the
simple regret, as captured by Theorem 4. (This statement is
however qualified in practice for large numbers of roundsn,
in Section 6.) This may be worth noticing in all applications
where controlling the cumulative regret is crucial (one can
think of the evaluation of new medical treatments) and thus
no efficient exploration can be performed.

As a warm-up and to illustrate some of the techniques
needed in the proof of Theorem 4, we start with two distri-
bution-dependent lower bounds on the simple regret, first,
one for specific policies and second, one for the general case
of all policies. The bound of Theorem 6 is of independent
interest, since it shows that the distribution-dependent rate
(lnn)/n of Theorem 2 is suboptimal. Only then we prove
Theorem 4.



For a givenn ≥ 1, we say that a policyΦn never plays
an arm with zero empirical mean whenever it puts no prob-
ability mass (Φj,n = 0) on armsj with empirical means
µ̂j,n = 0, provided there is at least another arm with non-
zero empirical mean. (In case all arms have zero empirical
mean, then we impose, for the time being, thatΦn puts equal
weights on all arms.)

Lemma 5 For all n ≥ 1 and all policiesΦn that never
play an arm with zero empirical mean, for all distributions
ν1, . . . , νK of the rewards such that there is a single best dis-
tribution ν∗ given by a Bernoulli distribution, the expected
simple regret is lower bounded by

Ern ≥ K − 1

K

(
min
j:∆j>0

∆j

)
en ln(1−µ∗) .

Proof: The simple regret is lower bounded in terms of the
probability of not choosing the (unique) optimal armj∗, which
is in turn bounded by the probability that the best arm has a
zero empirical mean (up to a factor of(K−1)/K, that takes
into account the case of a tie between all arms),

Ern =
∑

j:∆j>0

∆j EΦj,n

≥
(

min
j:∆j>0

∆j

)
E [1 − Φj∗,n]

≥
(

min
j:∆j>0

∆j

)
E

[
(1 − Φj∗,n) I{µ̂j∗ ,n=0}

]

≥ K − 1

K

(
min
j:∆j>0

∆j

)
P {µ̂j∗,n = 0}

where we used that whenj∗ has an average reward̂µj∗,n =
0, it is not played with probability at least1 − 1/K (it could
only be played in the case when all arms would have zero
empirical average rewards). Now, conditionally to the drawn
actionsI1, . . . , In, and using the fact thatν∗ is a Bernoulli
distribution,

P
{
µ̂j∗,n = 0

∣∣ I1, . . . , In
}

= (1 − µ∗)
Nj∗,n ≥ (1 − µ∗)

n
,

which concludes the proof by integration with respect to the
conditioning.

We now turn to the general case, for which we are not
willing to put any restriction on the policiesΦn. Note that
distribution-dependent lower bounds suffer from the general
drawback that we can never prevent naive strategies like “play
always the first arm” to be efficient despite all against some
particularK-tuples of distributions of the arms. Symmetry
is a way to deal with that. We therefore consider sets of dis-
tributions over the arms withK elements and run the fore-
caster over all possibleK-tuples obtained from this set. In
the sequel, we thus fix a set ofK distributions,{ν1, . . . , νK},
and, with no loss of generality, we index them so thatµ1 ≥
µ2 ≥ . . . ≥ µK . For all permutationsσ over{1, . . . ,K},
we denote byPσ and Eσ the probability and expectation
when the distributions of the arms are given by theK-tuple
νσ−1(1), . . . , νσ−1(K). In thisK-tuple, the best arm has in-
dexσ(1), the second best isσ(2), and so on. We are now
ready to state our policy-independent lower bound.

Theorem 6 For all n ≥ 1 and policiesΦn, for all sets of dis-
tributions of rewards given byK ≥ 3 Bernoulli distributions
with parametersµ1 > µ2 ≥ µ3 . . . ≥ µK , the expected sim-
ple regret is lower bounded (up to a permutation of the arms)
by

max
σ

Eσrn ≥ 1

2
(µ1 − µ2) e

n(ln(1−µ1)+ln(1−µK))

where the maximum is taken with respect to all permutations
σ over{1, . . . ,K}.

Proof: The basic idea of the proof is to consider a tie case
when the best and worst arms have zero empirical means; it
happens often enough (with a probability at least exponential
in n) and results in the forecaster basically having to pick
another arm. Permutations are used to control the case of
untypical or naive forecasters that would despite all pull an
arm with zero empirical mean, since they force a situation
where those forecasters choose the worst instead of the best
arm.

Another layer of notation will be used in the proof. It
could still be avoided here, but will be necessary for the proof
of Theorem 4. Fori = 1 (respectively,i = K), we denote
by Pi,σ andEi,σ the probability and expectation with respect
to theK-tuple formed by theνσ−1(j), where we replaced
the best of them, indexed byσ(1), by a Dirac measure on 0
(respectively, the best and worst of them, indexed byσ(1)
andσ(K), by Dirac measures on 0).

We first use that a maximum is larger than a mean and ex-
tract from the previous proof a lower bound on simple regret
in terms of incorrect selection of a best arm,

max
σ

Eσrn ≥ 1

K!

∑

σ

Eσrn ≥ ∆

K!

∑

σ

Eσ

[
1 − Φσ(1),n

]
(3)

where we denoted∆ = min
j:∆j>0

∆j = µ1 − µ2. For allσ,

Eσ

[
1 − Φσ(1),n

]

≥ Eσ

[(
1 − Φσ(1),n

)
I{µ̂σ(1),n=0}

]

= Eσ

[(
1 − Φσ(1),n

) ∣∣ µ̂σ(1),n = 0
]
× Pσ

{
µ̂σ(1),n = 0

}

= E1,σ

[(
1 − Φσ(1),n

) ]
Pσ

{
µ̂σ(1),n = 0

}

= E1,σ

[(
1 − Φσ(1),n

) ]
Eσ

[
(1 − µ1)

Nσ(1),n

]

≥ E1,σ

[(
1 − Φσ(1),n

) ]
(1 − µ1)

n
,

where we used for the third step the fact thatP1,σ is the same
asPσ, except that it ensures that armσ(1) has zero reward
throughout, and subsequent steps are similar to the end of the
proof of Lemma 5. We can obviously iterate the argument,
and get, by considering the worst arm,

E1,σ

[
1 − Φσ(1),n

]

≥ E1,σ

[(
1 − Φσ(1),n

) ∣∣ µ̂σ(K),n = 0
]
× P1,σ

{
µ̂σ(K),n = 0

}

≥ EK,σ

[(
1 − Φσ(1),n

) ]
(1 − µK)n .

Putting things together, we have proved
∑

σ

Eσ

[
1 − Φσ(1),n

]

≥ (1 − µ1)
n

(1 − µK)
n
∑

σ

EK,σ

[
1 − Φσ(1),n

]
.



The proof is concluded by showing that by symmetry

∑

σ

EK,σ

[
1 − Φσ(1),n

]
≥ K!

2

and substituting this result in (3).
SincePK,σ only depends onσ(2), . . . , σ(K−1), we de-

note byP
σ(2),...,σ(K−1) the common value of these proba-

bility distributions whenσ(1) andσ(K) vary (and a similar
notation for the associated expectation). We can thus group
the permutationsσ two by two according to these(K − 2)-
tuples, one of the two permutations is defined byσ(1) equal
to one of the two elements of{1, . . . ,K} not present in the
(K − 2)-tuple, and the other one is such thatσ(1) equals the
other such element. Formally,
∑

σ

EK,σΦσ(1),n

=
∑

j2,...,jK−1

E
j2,...,jK−1




∑

j∈{1,...,K}\{j2,...,jK−1}

Φj,n





≤
∑

j2,...,jK−1

E
j2,...,jK−1

[
1
]

=
K!

2
,

where the summations overj2, . . . , jK−1 are over all possi-
ble (K − 2)-tuples of distinct elements in{1, . . . ,K}.

We are now ready to prove Theorem 4.
Proof: We consider here a set ofK ≥ 3 (distinct) Bernoulli
distributions; actually, we only use below that their param-
eters are (up to a first relabelling) such thatµ1 > µ2 ≥
µ3 . . . ≥ µK , µ2 > µK , and thus,µ2 > 0. We start with
the following inequality, extracted from the proof of Theo-
rem 6,

max
σ

Eσrn ≥ µ1 − µ2

K!

∑

σ

EK,σ

[
1 − Φσ(1),n

]

×Pσ

{
µ̂σ(1),n = 0

}
P1,σ

{
µ̂σ(K),n = 0

}
.

The last probabilities are bounded, for each permutationσ,
by

P1,σ

{
µ̂σ(K),n = 0

}
= E1,σ

[
(1 − µK)Nσ(K),n

]

≥ (1 − µK)E1,σNσ(K),n

where the equality comes from the proof of Theorem 6 and
the inequality is a consequence of Jensen’s inequality. Now,
the expected number of times the sub-optimal armσ(K) is
pulled underP1,σ is bounded by the regret (by very definition
of the latter),

(µ2 − µK) E1,σNσ(K),n ≤ E1,σRn ≤ C ψ(n) ;

we used that by hypothesis, there exists a constantC such
that for allσ, E1,σRn ≤ C ψ(n). Substituting this inequal-
ity, we get for allσ,

P1,σ

{
µ̂σ(K),n = 0

}
≥ (1 − µK)

Cψ(n)/(µ2−µK)
.

We show below that one also has

Pσ

{
µ̂σ(1),n = 0

}
≥ (1 − µ1)

Cψ(n)/µ2 .

Putting things together and resorting to the same symmetry
argument as at the end of the proof of Theorem 6, we then
will have proved

max
σ

Eσrn

≥ µ1 − µ2

K!
(1 − µ1)

Cψ(n)/µ2 (1 − µK)Cψ(n)/(µ2−µK)

×
∑

EK,σ

[
1 − Φσ(1),n

]

≥ µ1 − µ2

2
(1 − µ1)

Cψ(n)/µ2 (1 − µK)Cψ(n)/(µ2−µK)

which yields the claimed result. The proof is thus concluded
by studying the term involving{µ̂σ(1),n = 0}. We denote
by Wn = (I1, XI1,1, . . . , In, XIn,NIn,n

) the history up to
timen. What follows is reminiscient of the techniques used
in Mannor and Tsitsiklis (2004). We are insterested in re-
alizationswn = (i1, xi1,1, . . . , in, xin,nin,n

) of the history
such that wheneverσ(1) was played, it got a null reward.
(We denote above bynj,t is the realization ofNj,t corre-
sponding town, for all j andt.) The likelihood of such awn
underPσ is (1 − µ1)

nσ(1),n times the one underP1,σ. Thus,

Pσ

{
µ̂σ(1),n = 0

}
=

∑
Pσ {Wn = wn}

=
∑

(1 − µ1)
nσ(1),n

P1,σ {Wn = wn}

= E1,σ

[
(1 − µ1)

Nσ(1),n

]

where the sums are over those historieswn such thatxσ(1),t =
0 for all t = 1, . . . , nσ(1),n. The argument is concluded as
before, first by Jensen’s inequality and then, by using that

µ2E1,σNσ(1),n ≤ E1,σRn ≤ C ψ(n)

by definition of the regret and the hypothesis put on its con-
trol.

4 Distribution-dependent bounds

4.1 Uniform sampling and empirical successes

The previous section shows that specific forecasters need to
be constructed for the pure exploration problem for multi-
armed bandits. We study first the simplest of them, given by
uniform sampling for the allocation strategy and empirical
successes for the associated policy. We show an exponential
decrease of its simple regrets towards 0, which is the best
possible rate in view of Theorem 6.

Formally, uniform sampling consists in choosing the al-
locationsϕt = δ[t mod K] where[t mod K] denotes the value
of tmoduloK. Thus, armj is played at roundsj, j+K, j+
2K . . .. We now denote, forn ≥ K andj = 1, . . . ,K,

µ̂j,n =
1

⌊n/K⌋

⌊n/K⌋∑

s=1

Xj,s

the mean reward ofj on the firstK ⌊n/K⌋ rounds. (⌊n/K⌋
denotes the lower integer part ofn/K. We discard here some
final rounds for all arms to have been played equally often
whenever a new decision is made.)



The associated policy, called empirical successes, is de-
fined byΦ1 = . . . = ΦK−1 equal to the uniform distribution
and

Φn = δj∗n where j∗n ∈ argmax
j=1,...,N

µ̂j,n (4)

for n ≥ K (ties broken in some way). We propose two
bounds, the first one is sharper in the case when there are
few arms and the gaps∆i can take extremal values (i.e., at
least one value close to 0 and another one close to 1). The
second one is suited for largen.

Theorem 7 The uniform sampling allocation associated to
the empirical successes policy ensures that the simple regrets
are bounded by

Ern ≤
∑

j:∆j>0

∆j e
−∆2

j⌊n/K⌋/2

for all n ≥ K; and by

Ern ≤
(

max
j=1,...,K

∆j

)
exp

(
−1

8

⌊ n
K

⌋
min
j:∆j>0

∆2
j

)

for all

n ≥
(

1 +
8 lnK

minj:∆j>0 ∆2
j

)
K .

Proof: To prove the first inequality, we relate the simple re-
gret to the probability of choosing a non-optimal arm,

Ern =
∑

j:∆j>0

∆j EΦj,n ≤
∑

j:∆j>0

∆j P
{
µ̂j,n ≥ µ̂j∗,n

}

where the upper bound follows from the fact that to be the
best empirical arm, an armj must have performed, in par-
ticular, better than the mean best armj∗. We now apply
Hoeffding’s inequality (for i.i.d. random variables, see Ho-
effding, 1963). µ̂j,n − µ̂j∗,n is an average of⌊n/K⌋ i.i.d.
random variables bounded between−1 and1 and with com-
mon expectation−∆j . Thus, the probability of interest is
bounded by

P
{
µ̂j,n − µ̂j∗,n ≥ 0

}

= P
{(
µ̂j,n − µ̂j∗,n

)
− (−∆j) ≥ ∆j

}

≤ exp

(
−

2
⌊
n
K

⌋2
∆2
j

4
⌊
n
K

⌋
)

and the first result follows.
The second inequality is proved by resorting to a sharper

concentration argument, namely, the method of bounded dif-
ferences, see McDiarmid (1989), see also Devroye and Lu-
gosi (2001, Chapter 2). The proof can be found in appendix.

4.2 Empirical successes policy for other allocation
strategies

Because we noticed by preliminary simulations, reported in
Section 6, that the previous uniform sampling was often not
the strategy with best practical performances, we now study
the performances of the empirical successes policy (4) when
the allocation strategy(ϕt) is not given by uniform sampling.
The theoretical bounds will however be worse than the one
of Theorem 7, and this will be explained by the lower bound
on the performances given by Theorem 4.

4.2.1 UCB1 as allocation strategy
Since the proof of the theorem of this section will resort to
concentration inequalities, we need to ensure that all arms
are sampled sufficiently often each. Note that the following
lemma indicates a deterministic lower bound on the num-
ber of times each arm is played. We provide the statement
(and proof, see the appendix) only forK = 2 arms, but we
believe that it extends to the case of more arms. Actually,
Kocsis and Szepesvari (2006, Theorem 3) states a similar re-
sult, the proof being omitted there for the sake of space, but
it is unclear whether their bound is uniform in all distribu-
tions over the arms, as we will need for later purposes, in
Section 5.1, to get distribution-free bounds.

Lemma 8 In the case ofK = 2 arms, for all pairs of dis-
tributionsν1 andν2, UCB1 pulls each arm, during the first
n ≥ 3 rounds, at least

Tn = 2 ln

(
(n− 1)

(
1 −

√
2 ln(n− 1)

n− 1

))

times; consequently,Tn ≥ log2 n for n ≥ 21.

This lemma ensures in particular that the following the-
orem is of interest whenUCB1 is the allocation strategy and
n ≥ 21. Again, a similar result is provided by Kocsis and
Szepesvari (2006, Theorem 5); there, however, the leading
constant is not explicitly computed and the proof is omitted,
again, for the sake of space. The leading constant we pro-
pose below is not suited for the needs of Section 5.1 because
of the (form of the) dependency of the constant in the pa-
rameters∆. A refined analysis will be needed there. For the
moment, we point out that the following theorem illustrates
the lower bound proposed by Theorem 4, in view of Theo-
rem 2. We knew in advance that no faster than a polynomial
distribution-dependent rate could be expected.

Theorem 9 For all n ≥ 1 and all allocation strategies en-
suring that for all distributionsν1, . . . , νK over the rewards,
Nj,n ≥ lnn, for all armsj, the simple regret is bounded by

Ern ≤
∑

j:∆j>0

4

∆j

(
1

n

)∆2
j/2

.

Proof: We start as in the proof of Theorem 7 by writing

Ern ≤
∑

j:∆j>0

∆j P
{
µ̂j,n ≥ µ̂j∗,n

}

and upper bound the probabilities for allj by using the union
bound,

P
{
µ̂j,n ≥ µ̂j∗,n

}

≤ P
{
µ̂j,n ≥ µj + ∆j/2 or µ̂j∗,n ≤ µj∗ − ∆j/2

}

≤ P
{
µ̂j,n ≥ µj + ∆j/2

}
+ P

{
µ̂j∗,n ≤ µj∗ − ∆j/2

}

≤ 4

∆2
j

(
1

n

)∆2
j/2

, (5)

where we now prove the last inequality; the arguments in
the proof being symmetric, we only show that for allj =



1, . . . ,K and all∆ > 0,

P
{
µ̂j,n ≥ µj + ∆

}
≤ 1

2∆2

(
1

n

)2∆2

.

We use the assumption on theNj,n and resort, again, to the
union bound,

P
{
µ̂j,n ≥ µj + ∆

}

≤ P
{
∃ t ∈ J ⌈lnn⌉, nK s.t. Nj,n = t

andXj,1 + . . .+Xj,t − tµj ≥ t∆
}

≤
n∑

t=⌈lnn⌉

P
{
Xj,1 + . . .+Xj,t − tµj ≥ t∆

}

≤
n∑

t=⌈lnn⌉

exp

(
−2t2∆2

t

)
=

n∑

t=⌈lnn⌉

exp
(
−2t∆2

)

≤
∫ ∞

lnn

exp
(
−2∆2t

)
dt

=
1

2∆2
exp

(
−2∆2 lnn

)
=

1

2∆2

(
1

n

)2∆2

,

where we used Hoeffding’s inequality (for i.i.d. random vari-
ables, see Hoeffding, 1963) for the third inequality, as in the
proof of Theorem 7.

4.2.2 EXP3 as allocation strategy
It is easy to see that the following strategy, calledEXP3 with
a mixing step, has a cumulative regretERn not more than
something of the order of

√
nK lnL, just like EXP3 without

the mixing step.ϕ1 is the uniform distribution and fort ≥ 2,
we defineϕt component-wise as

ϕj,t = (1 − γt)
exp

(
−ηt

∑t−1
s=1 ℓ̂j,s

)

∑K
k=1 exp

(
−ηt

∑t−1
s=1 ℓ̂k,s

) +
γt
K

for all j = 1, . . . ,K, where, as in Section 3.1,

ηt =

√
2 lnK

K t
and ℓ̂k,s =

1 −Xk,Nk,s

ϕk,s
I{Is=k}

are the estimated losses associated to the rewards andγt =
γ
√

(K lnK)/t for someγ > 0 is the (time-varying) mixing
parameter.

Of course the cumulative regret depends linearly upon
γ and the theoretical optimal choice isγ = 0 (as in The-
orem 3). But forγ > 0, the mixing step ensures that (by
concentration-of-the-measure arguments) each arm is sam-
pled at leastγ1 + . . .+ γn = Θ

(√
nK lnK

)
times, and thus

the estimation of the means is fine at a mild (exponential in√
n) error factor. The same argument as in the proof of The-

orem 7 then concludes at a simple regret decreasing at an
exponential in

√
n rate wheneverγ > 0, a rate to be com-

pared to the polynomial rate proposed in Theorem 3 for the
caseγ = 0 (and the policies given by moving averages or
empirical distributions).

The precise statement of the bound and its proof are omit-
ted from this extended abstract due to lack of space (and be-
cause of the poor practical performances ofEXP3 strategies
with mixing step, see the comments for Figure 4).

5 Distribution-free and minimax bounds

5.1 Distribution-free upper bounds

For EXP3 sampling
In Section 4, we exhibited distribution-dependentbounds (i.e.,
bounds that may depend on the underlying distributionsνj ,
usually through the gaps∆j). We now turn to distribution-
free bounds on the simple regrets. They are of the form

sup
ν1,...,νK

Ern ≤ BK,n

where the supremum is taken over allK-tuples of probability
distributions over[0, 1]. Theorem 3 indicates for instance
that the variant ofEXP3 considered there is such thatBK,n =

4
√

(K lnK)/n.
Because of the form of the distribution-dependentbounds

on the regret, it is easy to derive distribution-free bounds
from them, by optimizing the bound in the gaps∆j as illus-
trated below. This is in contrast with the (statistical) prob-
lem of identifying the best arm, for which no non-trivial
distribution-free bounds can be exhibited, since, intuitively,
this problem gets arbitrarily complicated as some of the gaps
∆j tend to 0. Here however, because the regret equals the
product of the gaps and the probabilities of incorrect selec-
tion, facing small gaps helps. This illustrates once again the
usual differences between statistical and learning problems.

For uniform sampling
The following corollary is a simple consequence of Theo-
rem 7, via a worst-case study of the bound as a function of
the∆j (see the straightforward proof in appendix).

Corollary 10 The uniform sampling allocation associated
to the empirical successes policy considered in Section 4.1
ensures that the simple regrets are uniformly bounded by

sup
ν1,...,νK

Ern ≤ e−1/2 K − 1√
⌊n/K⌋

= Θ

(
K
√
K√
n

)

for all n ≥ K.

For UCB1 sampling
We now want to perform the same optimization to get dis-
tribution-free bounds for either of the sequences of empiri-
cal distributions and moving averages policies (1) based on
the allocation strategy ofUCB1. The bound forUCB1 we
recalled in Theorem 2 cannot be optimized directly, for it
tends to infinity as one of the∆j tends to 0. However, a
simple modification of the proof of Auer et al. (2002a, Theo-
rem 1) leads, for the very same forecasterUCB1, to a suitable
bound onERn that in turn, still thanks to Lemma 1, implies
a bound onErn.

Theorem 11 For all probability distributionsν1, . . . , νK on
[0, 1], UCB1 ensures that its expected regret is bounded as

ERn ≤ (K − 1)

√

n

(
8 lnn+ 1 +

π2

3

)

for all n ≥ 1.



Thus the expected simple regrets of either of the sequences
of empirical distributions and moving averages (1) based on
the allocation strategy ofUCB1 are uniformly bounded as

Ern ≤ (K − 1)

√
8 lnn+ 1 + π2

3

n

for all n ≥ 1.

Proof: It can be extracted from the proof of Auer et al.
(2002a, Theorem 1) that for all suboptimal armj,

ENj,n ≤ 8 lnn

∆2
j

+ 1 +
π2

3
;

on the other hand, the simple upper boundENj,n ≤ n al-
ways holds true. Therefore,ENj,n is less than the minimum
of these two bounds, and hence, less than the geometric mean
of them,

ENj,n ≤

√√√√n

(
8 lnn

∆2
j

+ 1 +
π2

3

)
.

The first bound of the theorem now follows from the very
definition of the regret,

ERn =
∑

j:∆j>0

∆j ENj,n

≤
∑

j:∆j>0

√

n

(
8 lnn+ ∆2

j

(
1 +

π2

3

))
. (6)

With a somewhat refined analysis, one can indeed com-
pute the exact order of magnitudes ofERn in K andn for
UCB1,

ERn = Θ
(
K
√
n lnn

)
,

which, still by virtue of Lemma 1, shows that either of the
sequences of empirical distributions and moving averages (1)
based on the allocation strategy ofUCB1 has simple regrets
of the order of

Ern = Θ

(
K

√
lnn

n

)
.

The details are omitted from this extended abstract.

We now turn to the combination ofUCB1 as allocation
strategy and empirical successes as final policy, as studied
in Section 4.2.1. The bound of Theorem 9 cannot be op-
timized over the∆j to yield a non-trivial distribution-free
bound. One way around is to use a sharper concentration in-
equality, namely Bernstein’s inequality for martingales,see,
e.g., Freedman (1975) or Cesa-Bianchi et al. (2005, Lemma
15), and partition the set of possible values for theNj,n in
a finer way (in not more than something of the order oflnn
bins).

We could also have followed the approach of the proof
of Theorem 11 and combined (5) with the fact that the prob-
abilities of interest are always less than 1 to get, via Hölder’s
averages, the bound

Ern ≤
∑

j:∆j>0

∆j

(
4

∆2
j

(
1

n

)∆2
j/2
)α

for all α ∈ [0, 1]. Choosingα > 0 arbitrarily close to 0
would get the distribution-free convergence rate for the sim-
ple regrets arbitrarily close to1/

√
lnn, but with a leading

constant by far worse than in the bound stated below. Recall
that the condition on the number of times each arm is pulled
is natural in view of the result of Lemma 8 and the comments
following it.

Theorem 12 For all n ≥ 1 and all allocation strategies en-
suring that for all distributionsν1, . . . , νK over the rewards,
Nj,n ≥ log2 n for all arms j, the simple regret is bounded
by

Ern ≤ 4
√

2 (K − 1)√
2 − 1

1√
log2 n

.

Proof: The proof is a variation on the one of Theorem 9; we
essentially replace Hoeffding’s inequality (for i.i.d. random
variables) by the sharper Bernstein’s inequality (for martin-
gales). We simply prove below that for allj = 1, . . . ,K and
all ∆ > 0,

P
{
µ̂j,n ≥ µj + ∆

}
≤

√
2

∆
(√

2 − 1
)√

log2 n
; (7)

and the conclusion will follow (since here also the argument
is symmetric forj andj∗).

The martingale difference sequence we consider here is
formed by the(Yt − µj)I{It=j} (bounded by 1), witht =
1, . . . , n, where we recall from Figure 1 thatYt is the reward
obtained by the forecaster at roundt. The associated martin-
galeMj,n and sum of conditional variancesVj,n are given
by

Mj,n = Nj,n (µ̂j,n − µj) and Vj,n = µj(1 − µj)Nj,n .

Using thatx(1 − x) ≤ 1/4 for all [0, 1], we have, for all
ε > 0 andv > 0,

P

{
µ̂j,n ≥ µj +

ε

Nj,n
and Nj,n ≤ 4v

}

≤ P

{
µ̂j,n ≥ µj +

ε

Nj,n
and Nj,n ≤ v

µj(1 − µj)

}

= P
{
Mj,n ≥ ε and Vj,n ≤ v

}

≤ exp

(
− ε2

2(v + ε/3)

)
, (8)

where the last step is exactly the statement of Berstein’s in-
equality. We partition the set of possible values forNj,n
into the (integer) intervalsJ2r, 2r+1−1K, for r varying from



r0 = ⌊log2 ⌈log2 n⌉ ⌋ to r1 = ⌊log2 n⌋,
P
{
µ̂j,n ≥ µj + ∆

}

=

r1∑

r=r0

P
{
µ̂j,n ≥ µj + ∆ and 2r ≤ Nj,n ≤ 2r+1 − 1

}

≤
r1∑

r=r0

P

{
µ̂j,n ≥ µj +

2r∆

Nj,n
and Nj,n ≤ 2r+1

}

≤
r1∑

r=r0

exp

(
− (2r∆)2

2 (2r−1 + (2r∆)/3)

)
,

where the last step is an application of (8) withv = 2r−1 and
ε = 2r∆. Substituting2r−1 + (2r∆)/3 ≤ 2r yields

P
{
µ̂j,n ≥ µj + ∆

}

≤
r1∑

r=r0

exp

(
− (2r∆)2

2 (2r−1 + (2r∆)/3)

)
≤

r1∑

r=r0

e−2r∆2/2

≤ M

r1∑

r=r0

1

∆
√

2r
≤ e−1/2

∆
(√

2
)r0

1

1 − 1/
√

2
,

where we used for the third inequality thatM = e−1/2 is
the maximum ofx ∈ [0,∞[7→ x e−x

2/2 and in the last step,
that we are left with a geometric sum. The proof of (7) is
concluded by noting that

(√
2
)r0

= exp

(
1

2
⌊log2 ⌈log2 n⌉ ⌋

)

≥ e−1/2 exp

(
1

2
log2 log2 n

)
= e−1/2

√
log2 n .

5.2 Minimax bounds

We presented in Section 3.2 some distribution-dependent lo-
wer bounds on the simple regrets and we now focus on dis-
tribution-free such bounds. We show below that the orders
of magnitude in the number of roundsn are different for two
types of bounds. Theorems 6 and 7 indicate that the opti-
mal order of magnitude for distribution-dependent bounds is
exponential, whereas it is1/

√
n for distribution-free bounds

as asserted by Theorems 3 and 13. A similar situation arises
for the cumulative regret, see Lai and Robbins, 1985 (opti-
mal lnn rate for distribution-dependent bounds) versus Auer
et al., 2002b (optimal

√
n rate for distribution-free bounds).

Theorem 13 For all n ≥ 1 and K ≥ 2 such thatn >
K/(4 ln(4/3)), the simple regrets are bounded in a minimax
sense as

inf sup
ν1,...,νK

Ern ≥
√

2 − 1

2
√

2 ln(4/3)

√
K

n

where the infimum is taken over all (randomized) allocation
strategies and all associated policies.

The proof is almost the same as the proofs of the lower
bounds on the cumulative regret in multi-armed bandit prob-
lems, see Auer et al. (2002b, Appendix A) and Cesa-Bianchi
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UCB with empirical success
UCB with empirical distribution
Exp3 with empirical success
Exp3 with empirical distribution
Exp3 with moving averages

Figure 2:K = 2 arms with Bernoulli distributions with pa-
rameters1/2 and2/3.

and Lugosi (2006, Section 6.9), except that we only have to
consider the final round here. It can be found in the appendix.

Actually, in view of Lemma 1, the way the proofs could
go for cumulative regrets is by lower bounding the simple
regrets and use that the minimax value for cumulative regrets
aftern rounds is at leastn times the minimax value of simple
regrets.

It is an open question whether the extra
√

lnK factor
of Theorem 3 is necessary or if the lower bound of Theo-
rem 13 should be improved.Ern is usually easier to han-
dle thanERn. Fancier techniques than those of the proof
of Theorem 13 might lead to an improvement of the lower
bound on the minimax value ofErn (and thus, on the one of
ERn); one might take inspiration, for instance, from the ex-
act computation of the minimax value of simple regretErn
for two-armed bandits in Schlag (2006), where the minimax
optimal strategy is exhibited. The latter, called binomialav-
erage rule, samples the two arms equally often and basically
chooses the one with best empirical average at even rounds
(and a slight adaptation of that at odd rounds, when one arm
has been sampled once less than the other one). He however
points out that the minimax strategy is probably more com-
plicated whenever there are at least three arms. (A related
result of this paper is that in Corollary 10 we have a worse
dependence inK for the uniform sampling together with em-
pirical successes than in Theorem 3.)

6 Simulation study

Figures 2–4 present some experimental results on artificial
data. We considered three different allocation strategies(uni-
form sampling,EXP3 with and without mixing parameter
γ, and UCB1) and three associated policies (empirical dis-
tributions, moving averages, and empirical successes). The
corresponding simple regrets are computed over10 000 runs
of eachK–tuple of distributions and we plot their averages,
which approximate well the expectationsErn. The distri-
butions used for the simulations are given by Bernoulli dis-
tributions, in number and with parameters depending on the
experiment (see the captions of the different figures for a de-
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Figure 3:K = 3 arms with Bernoulli distributions with pa-
rameters1/2, 2/3, and4/5.
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Figure 4:K = 50 arms with Bernoulli distributions; all pa-
rameters chosen independently at random in[0, 1].

scription of eachK–tuple). Though we only offer a lim-
ited number of graphical illustrations of the performances,
we mention that all situations illustrated below are typical
and do not result from a particular choice of the underlying
distributions.

Figure 2 essentially shows that empirical successes poli-
cies described and studied in Section 4 clearly outperform
the policies (empirical distributions and moving averages)
of Section 3.1, even though the theoretical rates of conver-
gence of the latter are usually better than those of the former.
(We recall that sinceUCB1 is a deterministic strategy, em-
pirical distributions and moving averages coincide for it,see
the comments before Theorem 2. Here, we take a mixing
parameterγ = 0 for EXP3, as in Section 3.1.) Empirical
distributions and moving averages seem to be of theoretical
interest only; they probably suffer in practice from being too
conservative.

Figure 3 shows that for a small number of arms (typ-
ically, for K less than 10) the empirical successes based
on uniform sampling,UCB1 sampling, andEXP3 sampling
(with no mixing parameter) have comparable performances,

whereas Figure 4 (see also Figure 5 in the appendix) illus-
trates that this is not the case anymore for larger numbers
(typically, more than 10). In this case,UCB1 is good for
small values ofn and EXP3 is the best allocation strategy
whenn is larger. A closer look to the small values ofK in-
dicates that whereas uniform sampling is the best allocation
strategy forK = 2, it is never the optimal allocation strategy
for K ≥ 3; this is not even due to the fact that we discard
some final rounds to compute the empirical successes, as the
reader may notice that at rounds with indexes multiple of
K the performances of this strategy is always off the others.
Actually, the last rounds represented in Figure 3 show that
the simple regret associated to the uniform sampling is twice
larger than those associated toUCB1 andEXP3 samplings.
This ranking may be surprising at first sight, since, in the-
ory, the distribution-dependent rates for uniform sampling
combined to empirical successes indicate an exponential de-
crease of the simple regrets (Theorem 7), whereas Theorem 4
together with Theorem 2 shows that the simple regrets asso-
ciated toUCB1 andEXP3, even through empirical successes,
cannot converge faster than at a polynomial rate. In prin-
ciple, the uniform allocation should thus take the lead over
it, a phenomenon we only observed for numbers of rounds
n so large that simple regrets are smaller than10−10, a pre-
cision for which little can be guaranteed in terms of correct
numerical computations.

Figure 4 studies also whether a mixing parameterγ would
benefit toEXP3–based strategies. We only reported one value
but tested many; in all cases, the performances of the mixing–
EXP3 strategies interpolated the ones of uniform sampling
andEXP3 without mixing, therefore performing worse than
the latter for more thanK ≥ 3 arms. In Section 4.2 and Fig-
ure 4, we considered time-varying mixing parameters, but it
turns out that that on simulations not reported here, the use
of constant mixing parameters does not change the picture:
it is always better not to mix theEXP3 distributions with the
uniform distribution.

The simulations are somewhat disappointing in the sense
that the theoretical best strategies are not the best in practice;
but they point out to which extend simple regrets can gain
from being computed with non-uniform allocation strategies,
a result well-known in the Gaussian case (see Chen et al.,
2000) but not, to the best of our knowledge, in the case of
Bernoulli distributions. ThatEXP3 or UCB1 be the best allo-
cation strategies also show, surprisingly enough, the interest
of exploration–exploitation trade-offs for pure exploration
problems!

7 Conclusion and open problems

We showed in this paper that even for the pure exploration
problem, the exploration–exploitation trade-off is useful, via
forecasters likeUCB1 andEXP3. Together with the mov-
ing averages policy, they lead to good, and even almost op-
timal, distribution-free bounds; associated to the empirical
successes policy, they show interesting practical performan-
ces. These results are somewhat surprising in view of the dis-
tribution-dependent bounds that indicate that forecasters per-
forming good exploration–exploitation trade-offs in terms of
cumulative regrets have simple regrets with orders of mag-



nitude way off those of some more naive forecasters, as, for
instance, the uniform sampling together with empirical suc-
cesses policy.

Three extensions are left for future research. The first
would be to take into account that getting the reward of an
arm might take a (random) time that depends on the arm, to
model, e.g., that some paths are more complicated to evalu-
ate in the motivating example of tree search; this was done
for cumulative regret by György et al. (2007).

The second is to study in detail the case of probability
distributions over the rewards that are not compactly sup-
ported and check whether the asserted links between cumu-
lative and simple regrets also hold. The prototypical case is
of course the case of Gaussian distributions, as in Chen et al.
(2000).

Pure exploration for bandit problems in topological
spaces

The third extension if of theoretical interest. For an intervalI
of R, we denote byPB(I) the set of probability distributions
overI with first moments less thanB. Given a topological
spaceX , we call environment onX any mappingM : X →
PB(I) (for someB andI). We say thatM is continuous if
the mapping that associates to eachx ∈ X the expectation
µ(x) of M(x) is continuous.

TheX–armed bandit problem is as follows. An environ-
mentM onX is fixed by Nature. The forecaster may choose
at each round a pointIt in X and gets a rewards distributed
according toM(It). We say that a familyF of environ-
ments is explorable–exploitable (respectively, explorable) if
for any environmentM ∈ F , the forecaster can guarantee
that his expected per-round reward converges to the expec-
tationµ∗ of the best distribution among theM(x) (respec-
tively, recommends a random point ofX such that its as-
sociated expected reward in a one-shot new instance of the
problem is close toµ∗). Explorability is a milder require-
ment than explorability–exploitability, as can be seen by an
equivalent of Lemma 1 in this setting.

This paper was about the family of all environments over
X = {1, . . . ,K} and a fixed boundedI being explorable.
By using the doubling trick, it can be seen that forI = R,
a fixed boundB, and a separable spaceX , the family of
all continuous environments defined with these parameters
is explorable. On the negative side, one can show that ifX
is uncountable, there exists a family of environments over
I = [0, 1] (with B = 1) that is not explorable. In addition
to investigating this further, one natural question is to see
whether there are situations where explorability is possible
but not explorability–exploitability.
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A Omitted proofs and omitted figure

We include here all material omitted in the main text for the
sake of the limitation on the number of pages. They will be
dropped in the final submission if the paper is accepted. Re-
viewers may of course advise us to put back some of the fol-
lowing proofs and recommend to omit some other sections
of the paper instead.

A.1 Proof of the second statement of Theorem 7

Proof: We start by writing

Ern =
∑

j:∆j>0

∆j EΦj,n

≤
(

max
j=1,...,K

∆j

)
P

{
max
j:∆j>0

µ̂j,n ≥ µ̂j∗,n

}

where the second inequality follows from the fact that regret
is suffered only when an arm with suboptimal expectation
has the best empirical performances. Now, the quantity of
interest can be rewritten as
⌊ n
K

⌋(
max
j:∆j>0

µ̂j,n − µ̂j∗,n

)
= f

(
~X1, . . . , ~X⌊ n

K ⌋
)

for some functionf , where for allt = 1, . . . , ⌊n/K⌋, we
denote by ~Xt the vector(X1,t, . . . , XK,t). (f is defined
as a maximum of at mostK − 1 sums of differences.) It
is straightforward that since all random variables of interest
take values either 0 or 1 here, the bounded differences con-
dition is satisfied with ranges all equal to 2. Therefore, the
indicated concentration inequality states that

P

{(
max
j:∆j>0

µ̂j,n − µ̂j∗,n

)
− E

[
max
j:∆j>0

µ̂j,n − µ̂j∗,n

]
≥ ε

}

≤ exp

(
−2
⌊
n
K

⌋
ε2

4

)

for all ε > 0. We choose

ε = −E

[
max
j:∆j>0

µ̂j,n − µ̂j∗,n

]

≥ min
j:∆j>0

∆j − E

[
max
j:∆j>0

µ̂j,n − µ̂j∗,n + ∆j

]

(where we used that the maximum ofK first quantities plus
the minimum ofK other quantities is less than the maximum
of theK sums). We now argue that

E

[
max
j:∆j>0

µ̂j,n − µ̂j∗,n + ∆j

]
≤
√

2 lnK

⌊n/K⌋ ;

this is done by a classical argument, using bounds on the
moment generating function of the random variables of in-
terest. ConsiderZj = ⌊n/K⌋

(
µ̂j,n − µ̂j∗,n + ∆j

)
for all

j = 1, . . . ,K. Independence and Hoeffding’s lemma (see,
e.g., Devroye and Lugosi, 2001, Chapter 2) imply that for all
λ > 0,

E
[
eλZj

]
≤ exp

(
−1

2
λ2⌊n/K⌋

)

(where we used again thatZj is given by a sum of random
variables bounded between−1 and 1). A well-known in-
equality for maxima of subgaussian random variables (see,
again, Devroye and Lugosi, 2001, Chapter 2) then yields

E

[
max

j=1,...,K
Zj

]
≤
√

2⌊n/K⌋ lnK ,

which leads to the claimed upper bound. Putting things to-
gether, we get that for the choice

ε = −E

[
max
j:∆j>0

µ̂j,n − µ̂j∗,n

]

≥ min
j:∆j>0

∆j −
√

2 lnK

⌊n/K⌋ > 0

(for n sufficiently large, a statement made precise below),
one has

P

{
max
j:∆j>0

µ̂j,n ≥ µ̂j∗,n

}
≤ exp

(
−2
⌊
n
K

⌋
ε2

4

)

≤ exp



−1

2

⌊ n
K

⌋(
min
j:∆j>0

∆j −
√

2 lnK

⌊n/K⌋

)2


 .

The result follows forn such that

min
j:∆j>0

∆j −
√

2 lnK

⌊n/K⌋ ≥ 1

2
min
j:∆j>0

∆j ;

the second part of the theorem indeed only considers suchn.

A.2 Proof of Lemma 8

The following proof is close to the one of Audibert et al.
(2008, Proposition 1).
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Proof: The second part of the lemma follows by straightfor-
ward calculations. To prove the first part, for integerst ≥ 2,
we denote, byp(t) the unique solution of the equation

√
2 ln t

x
= 1 +

√
2 ln t

t− x
.

Simple calculations (not reported in this extended abstract)
show that fort ≥ 2,

p(t+ 1) ≤ p(t) +
1

2
(9)

and 2 ln

(
t

(
1 −

√
2 ln t

t

))
≤ p(t) ≤ t

2
. (10)

We fix an arm, sayj = 1, and prove by induction that
N1,t ≥ p(t− 1) for all t ≥ 3; the lemma then follows by the
first inequality in (10). SinceUCB1 pulls, by definition, each



arm once before using the rule (2), we have thatN1,3 ≥ 1 ≥
p(2), where we used the upper bound onp(t) given in (10).
Assume now that for somet ≥ 3, we haveN1,t ≥ p(t − 1).
If It+1 = 1, thenN1,t+1 = N1,t + 1 ≥ p(t− 1) + 1 ≥ p(t),
where we used (9). If on the contraryIt+1 = 2, then this is
because

µ̂1,t +

√
2 ln t

N1,t
≤ µ̂2,t +

√
2 ln t

n−N1,t
;

in particular,
√

2 ln t

N1,t
≤ 1 +

√
2 ln t

n−N1,t
,

revealing thatN1,t ≥ p(t). In this case, we thus also have
N1,t+1 = N1,t ≥ p(t).

A.3 Proof of Corollary10

Proof: In view of Theorem 7, since the gaps∆j all lie in
[0, 1] and at least one of them equals 0, the maximum of the
function

(x1, . . . , xK−1) ∈ [0, 1]K−1 7→
K−1∑

j=1

xje
−x2

j⌊n/K⌋/2

is a suitable minimax bound. By separation of the variables
(and since it only helps to takexj > 0), this maximum is
K − 1 times the maximum of

g : x ∈]0, 1] 7→ xe−x
2⌊n/K⌋/2 .

The latter is identified asg
(√

1/⌊n/K⌋
)

by consideringln g,
which has first derivative1/x − x⌊n/K⌋, vanishing atx =√

1/⌊n/K⌋, and negative second derivative.

A.4 Proof of Theorem 13

Proof: We introduce firstP0 andE0 as the probability distri-
bution and expectation associated to theK–tuple of symmet-
ric Bernoulli distributionsνj = B(1/2) for all j = 1, . . . ,K.
We fix 0 ≤ ε ≤ 1/4. For all i = 1, . . . ,K, we also de-
note byPi andEi those associated to theK–tuple given by
νi = B(1/2 + ε) andνj = B(1/2) for all j 6= i.

We fix first a deterministic forecaster. The distributions
ϕt andΦn are given by Dirac masses on points that we de-
note byIt, the indexes of the pulled arms, and byJn, the
recommended action. We have

sup
ν1,...,νK

Ern ≥ 1

K

K∑

i=1

Eirn =
ε

K

K∑

i=1

(1 − Pi {Jn = i})

where the last equality comes from the fact that we suffer
an expected regret ofε whenever we did not recommend the
optimal action (with indexi underPi). Denoting byPJ the
image distribution of some probability distributionP by a
random variableJ , we then have, by Pinsker’s inequality,
for all i = 1, . . . ,K,

Pi {Jn = i} − P0 {Jn = i} ≤
√

1

2
K
(

P
Jn

0 , P
Jn

i

)

≤ 2
√

ln(4/3) ε

√√√√
n∑

t=1

E0Ni,n

where the last inequality proceeds from an inequality on Kull-
back-Leibler divergences stated in Cesa-Bianchi and Lugosi
(2006, top of page 168). Averaging overi and using concav-
ity of the root together withN1,n + . . . + NK,n = n, we
get

1

K

K∑

i=1

Pi {Jn = i} ≤ 1

K
+ 2
√

ln(4/3) ε

√
n

K
.

Substituting this inequality, we have proved

1

K

K∑

i=1

Eirn ≥ ε

(
1 − 1

K
− 2
√

ln(4/3) ε

√
n

K

)
.

The proof is concluded as in Cesa-Bianchi and Lugosi (2006,
Section 6.9), first by optimizing overε and then by consid-
ering the case of randomized policies, which follows from
the bound for deterministic strategies basically by takingex-
pectations with respect to the auxiliary randomizations the
forecaster has access to, see the reference above for more
details.

A.5 Additional figure for the simulation study in
Section 6
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Figure 5: K = 100 arms with Bernoulli distributions; all
parameters chosen independently at random in[0, 1].


