N

HAL

open science

Bandit Exploration
Sébastien Bubeck, Rémi Munos, Gilles Stoltz

» To cite this version:

‘ Sébastien Bubeck, Rémi Munos, Gilles Stoltz. Bandit Exploration. 2008. hal-00257454v1

HAL Id: hal-00257454
https://hal.science/hal-00257454v1

Preprint submitted on 19 Feb 2008 (v1), last revised 8 Jun 2010 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00257454v1
https://hal.archives-ouvertes.fr

Pure Exploration for Multi-Armed Bandit Problems

1

Sébastien Bubeck

40 avenue Halley,
59650 Villeneuve d’Ascq, France
sebastien.bubeck@inria.fr

Rémi Munos
Sequel Project, INRIA Futurs Lille  Sequel Project, INRIA Futurs Lille
40 avenue Halley,
59650 Villeneuve d’Ascq, FranceHEC Paris School of Management, CNRS,
remi.munos@inria.fr

Gilles Stoltz*
Ecole Normale Supérieure, CNRS
75005 Paris, France

78351 Jouy-en-Josas, France
gilles.stoltz@ens.fr

Sebastien Bubeck is a student author and wishes to bethis distribution. The problem was first considered by Rob-
considered for the Mark Fulk award.

Abstract

We consider the framework of stochastic multi-armed
bandit problems and study the possibilities and limita-
tions of strategies that explore sequentially the arms.
The strategies are assessed not in terms of their cumula-
tive regrets, as is usually the case, but through quantities
referred to as simple regrets. The latter are related to
the (expected) gains of the decisions that the strategies
would recommend for a new one-shot instance of the
same multi-armed bandit problem. Here, exploration is
only constrained by the number of available rounds (not
necessarily known in advance), in contrast to the case
when cumulative regrets are considered and when ex-
ploitation needs to be performed at the same time. We
start by indicating the links between simple and cumu-
lative regrets. A small cumulative regret entails a small
simple regret but too small a cumulative regret prevents
the simple regret from decreasing exponentially towards
zero, its optimal distribution-dependent rate. We there-
fore introduce specific strategies, for which we prove
both distribution-dependent and distribution-free baind
A concluding experimental study puts these theoretical
bounds in perspective and shows the interest of non-
uniform exploration of the arms.

Introduction and motivation

bins (1952), who derives strategies that asymptoticalgjirat

a per-round reward equal to the expected reward of the best
arm. See Berry and Fristedt (1985) for a review of the classi-
cal (statistical) results. The problem turned out to be &ind
mental as well in artificial intelligence and machine leagni

but it was actually originally motivated by medical statist

see Schlag (2006) for more historical details and reference
to the rich corresponding literature. The typical case & th
test of a new treatment against the best treatment known so
far. Of course, some exploration is needed, so that the test
samples for each treatment are large enough; this is the only
way to guarantee a correct estimation of their respective ef
ficiencies. But since human beings are involved, the cost of
picking the wrong treatment is high (the associated reward
would equal a large negative value); therefore, explondto
potentially risky and exploitation has to be done most of the
time. This is captured by a quantity called the cumulative re
gret, defined as the difference between the per-round reward
of the best arm (treatment, in the medical case) and the one
of the considered strategy. Among others, thes strate-

gies (standing for “upper confidence bounds”) of Auer et al.
(2002a) perform a good exploration—exploitation trad@off
terms of this cumulative regret.

When exploration involves costs not measured in terms
of rewards but rather in terms of resources (e.g., memory or
CcPU), the performances of a strategy have to be assessed in
a different way. As illustrated below, it is then naturalttha
the forecaster allocates sequentially its resources tmexp
the arms to his convenience and outputs the index of an arm
when these resources have been all used. Finally, the rec-
ommended arm is used on a new one-shot instance of the
same bandit problem. Therefore, a strategy is assessed here
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Learning processes usually face an exploration versus ex-in terms of the performances of the recommended arm on
ploitation dilemma, since they have to get information on the problem, leading to the notion of simple regret: the (ex-
the environment (exploration) to be able to take good ac- pectation of the) difference between the reward of the best
tions (exploitation). A key example is the multi-armed biand  arm and the one of the recommended arm. We term this
problem, a sequential decision problem where, at each,stagevariant the pure exploration problem, since, at first sigkt,
the forecaster has to pull one &f given arms and gets are-  ploration and exploitation appear in two distinct phases (a
ward. We consider here a stochastic version in which eachstatement we shall however qualify later on). This pure ex-
arm is parameterized by a probability distribution and pro- ploration problem was referred to as “budgeted multi-armed
vides, when pulled, a reward drawn at random according to bandit problem” in thecoLT'04 open problem by Madani
T partially o et al. (2004). They adress it from a Bayesian and Markov
decision processes point of view, discuss some naturgédstra
gies, and point out difficulties.

A concrete example for such a pure exploration problem

*Partially supported by the French “Agence Nationale pour la
Recherche” under grant JCJC06-137444 “From applicatimtise-
ory in learning and adaptive statistics” and by the PASCAIli-Ne
work of Excellence under EC grant no. 506778.



is given by tree search, for which strategies minimizing the the main result of the paper; strategies with too good (e.g.,
cumulative regret have been used recently in a hierarchicallogarithmically only increasing) distribution-dependbaunds
way to guarantee an exploration making a good use of avail- on their cumulative regrets lead to strategies with simple r

ablecputime. Namely, thasCT strategy (standing fonfcs grets decreasing at best at a polynomial rate. This is in con-
for trees”) of Kocsis and Szepesvari (2006) and #aesT trast with the results of Section 4, which introduces specifi
strategy (standing for “bandits algorithms for tree segroh forecasters and shows an exponentially fast decrease of the

Coquelin and Munos (2007) have shown interesting perfor- simple regrets of some of these strategies. For the cumalati
mances for solving minimax tree search problems with huge regrets to be minimized, exploitation is needed and thespric
trees; they have been applied successfully to the game of goto pay for that is a worse control on the simple regrets, as
see, for instance, the MoGo program of Gelly et al. (2006) captured by Theorem 4. Section 5 qualifies however some of
that plays at a world-class level. The tree explorationgyoli  the gaps in the orders of magnitude of distribution-depahde
resulted in an asymmetric tree expansion in which the mostbounds exhibited in the previous sections and explains that
promising edges were explored first. Strategies designed toas far as distribution-free bounds are considered, most of
focus on exploration and minimizing the simple regret are the previous forecasters have simple regrets decreasing at
expected to be the stone for an improvement of these re-the optimall/./n—rate (up to logarithmic factors). This is
sults. Another valuable example is provided by the setting similar to what can be said for distribution-dependentusrs
of so-called computer experiments (see, for instance,-Sant distribution-free bounds for the cumulative regret. (Bgpa
ner et al., 2003 for a review), e.g., the optimization of some ing, we also exhibit distribution-free bounds for thesl
complex function that can only be evaluated through a (pos- strategy of Auer et al., 2002a.) The simulation study of Sec-
sibly noisy) black-box at a computational only fixed cost. tion 6 puts these theoretical results in perspective andsho
the interest of non-uniform exploration of the arms.

Here, the numbenr of rounds available to the forecaster
is fixed in advance but may be unknown to the forecaster.
Itis determined in the previous examples by the time given 2 Problem setup, notation
to the forecaster with respect to the computational power of
the computer he is using. Of related interest is the setting o ) ] o )
Even-Dar et al. (2002) and Mannor and Tsitsiklis (2004), in We cpn5|der a sequential decision proplem for mult|-f.;1rmed.
which the forecaster can perform exploration during a ran- bandits, where a forecaster plays against a stochastie envi
dom number of round§ (which he chooses) and aims at fonment.K” > 2 arms, denoted by = 1,..., K, are avail-
identifying ane—best arm. They study the possibilities and 2able and thej-th of them is parameterized by a probability
limitations of policies achieving this goal with overwhelm  distributiony; (with finite first moment and expectatign);
ing 1 — & probability and indicate in particular upper and &t those rounds when it is pulled, its associated reward is
lower bounds on (the expectation @f) Performances are ~drawn at random according g, independently of all pre-
therefore not measured by some regret in this case. vious rewards. For each arjnand all time rounds: > 1,

Schlag (2006) solves the pure exploration problem for we dgmitf ijv’a tgle:Xnum)t()er of tm;t(ag wasthpulled from
the case of two arms and rewards given by probability distri- r(]zun S - Ond an é/ 3152, RGN, (NE Sequence
butions over0, 1]. He shows that the minimax value of the ofassociated rewards.
simple regret (where the supremum is taken with respectto ~ The forecaster has to deal simultaneously with two tasks,
all possible pairs of probability distributions and the rimdim a primary one and an auxiliary one. The auxiliary task con-
is over all possible strategies of the forecaster) is agiev sists in exploration, the forecaster should indicate aheac
by a rule called binomial average rule, sampling the two roundt the arm/; to be pulled. He may resort to a ran-
arms equally often and basically recommending the one with domized strategy, denoted ky € A{l,..., K} (where
higher empirical mean. He also computes this minimax value A{1, ..., K} is the set of all probability distributions over
as a function of. and proves that it converges to zero at a the indexes of the arms). The sequelgg) is referred to
(1/+/n)-rate. The article is concluded by pointing out some as an allocation strategy. In that cadg,is drawn at ran-
difficulties for the case of three or more arms. dom according to the probability distributign and the fore-

Static allocations of resources (i.e., the use of a strategyCaSter gets to see the associated rewaralso denoted by
determined before the samplings) were considered in SchiagX #:.~s, . With the notation above. The primary task is to out-
(2006) for the case of two probability distributions overco ~ put at the end of each rourida policy ®; € A{1,..., K}
pact intervals and in Chen et al. (2000) for an arbitrary num- to be played in a new one-shot instance if the environment
ber of Gaussian distributions. In the latter case, arms areSends some stopping signal meaning that the exploraticsepha
optimally sampled (from the static viewpoint) depending on IS OVer.

their (known) variances. As we are only interested in the performances of the se-
quence(®,,) of policies, we call this problem the pure ex-
Structure of the paperWe present formally the model ploration problem for multi-armed bandits. Figure 1 sum-
in Section 2 and define cumulative and simple regrets. Sec-marizes the description of the sequential game and points ou
tion 3 investigates the links between these regrets and indi that the information available to the forecaster for chogsi
cates that upper bounds on the cumulative regrets lead noty,, respectivelyd,, is formed by theX,; s forj =1,..., K
only to upper bounds on the simple regrets (Section 3.1), butands = 1,..., N;._1, respectivelys = 1,..., N, .. For-
also to lower bounds on them. Actually, Section 3.2 states mally, we define the simple regret at roundof the policy



Parameters:K probability distributions for the rewardg
ofthe armsyy, ..., vk

Foreachround = 1,2, ...,

(1) the forecaster chooses, € A{l,...,K} and
pulls an arml; at random according tg;;

(2) the environment draws the rewargfor that action
(denoted byX7, v, , with the notation introduced
in the text);

(3) the forecaster outputs a polidy € A{1,...,K};

(4) If the environment sends a stopping signal, then the
game takes an end; otherwise, the next round stdrts.

Figure 1: The pure exploration problem for multi-armed ban-
dits

®,,) by

T'n = T(q)n) = M* - Ko,

wherep* = p;» = =

Z Dy

j=1,....K

max ; and
pax Hj e,

.....

denote respectively the expectations of the rewards of the
best armj* (a bestarm, if there are several of them with same

maximal expectation) and of the polidy, = (®;,,),=1,...,.N-
A quantity of related interest is the cumulative regret at
roundn,

n
Ry=> p" —p,
t=1
A popular treatment of the multi-armed bandit problems is
to construct forecasters ensuring tiid,, = o(n), see, e.g.,

exploration and exploitation. The design @#,,) relies on
an efficient exploration only, whereas the minimization of
ER,, requires exploitation of the results of the exploration
considered as a side-task.

3.1 A small cumulative regret entails a small simple
regret...

Classical strategies for multi-armed bandits minimizedire
mulative regret. We consider below tbes family of strate-
gies introduced in Auer et al. (2002a) for a stochastic envi-
ronment and th&xpP3 family suited for an adversarial en-
vironment, see Auer et al. (2002b). Other strategies have
been studied like, e.g., tlEREENStrategy of Allenberg et al.
(2006), but for simplicity we focus on the two families men-
tioned above.

These strategies consist only in a sequence of allocation
strategies(p;). We construct the associated sequences of
policies(®,,) and(®,,) as either the sequence of the empiri-
cal distributions of thd, or the sequence of moving averages
oftheyy; foralln =1,2,. ..,

1 — — 1 —
q)”:ﬁ;g]ﬁ and d)n:ﬁ;gat

whered; denotes the Dirac mass on aym

The next lemma is almost a triviality and follows from
the linearity ofr,, in the policy®,, and from the rewriting of
ER, as

1)

ER, =nu" —E

n K
= n/L* —-E Z Z @i tHj

t=1 j=1

> un]
t=1

(as can be seen by taking expectations of conditional expec-
tations).

Lemma 1 For all allocation strategiegy;), the sequences
(®,,) and(®,,) of policies obtained by taking the empirical
distributions and the moving averages (1) are such that for

Lai and Robbins (1985) or Auer et al. (2002a), and even alln =1,2,...,

R, = o(n) a.s., as follows, e.g., from Auer et al. (2002b,

Theorem 6.3) together with a martingale argument. The quan-
tities; = u* — py, are sometimes called instantaneous re-

grets. They differ from simple regrets and in particular,
R, =r]+...+ 7 isingeneral notequal to, + ...+ 7.

Lemma 1 and Theorem 4 will however indicate some con-

nections between, andR,,.

Goal We focus here on simple regrets and ask for
strategies ensuring th&t-,, = o(1).

3 Links between cumulative and simple
regrets

In this section, we show how,, andr,, are related. We first
state the straightforward upper bouid, < ER,, /n, which
holds for suitable choices ¢f,,) and shows that it is indeed
possible to guarantéér,, = o(1).

ER,

and E [r,(®,)] "

Ry,

In particular, for both sequences of policiesFiR,, = o(n),
thenEr,, = o(1).

For further reference, we illustrate this lemma with the
strategiesucBl of Auer et al. (2002a) and a simple modi-
fication of ExP3 (without the mixing step). There is a fun-
damental difference between these two types of bounds, that
will be further illustrated in Sections 4 and 5. The bound for
ucsl depends on the distributions, ..., vx of the arms
whereas the one axP3 holds for all possible distributions
over a given interval, saly, 1] for simplicity.

For the sake of completeness, we recall the statement of
ucsl. In the firstK rounds, each arm is played once, that
is, v = ¢, is the Dirac mass onfor¢t = 1,..., K. Then,

More interestingly, we then prove that upper bounds on for¢ > K andj = 1,..., K, we denote by

ER, lead to lower bounds ofir,, ; the better the guaranteed
bound onER,,, the worst the bound oRr,,. This is inter-

preted as a consequence of the classical trade-off between

1
Ny 2 i

It g=1

t
Njyt = Z]I{Is:j} and ﬁj,t =

s=1



the number of rounds armwas pulled before rountiand for all n > 1. Thus the expected simple regrets of either

the mean reward of on these rounds. Nowp; 1 = J;, of the sequences of empirical distributions and moving-aver
where ages (1) are bounded as
2Int

¥ € argmax [i;; + 2 KhnK

]t j:%7...7K /,L.%t Nj_’t ( ) E'f‘n S 4 "
(ties broken by choosing, for instance, the arm with small- foralln > 1
est index).ucBl has a deterministic allocation strategy, the =
associated averages,, ) = (®,,) are howevergivenbynon- 35 byt too small a cumulative regret forces too large
degenerated probability distributions. Auer et al. (2002a a simple regret

Theorem 1) together with Lemma 1 (and the bodnd< 1)
implies the following. We denote in the seque] = p* — p;
the gap between the expected reward of the best arm and th

The main result in this section indicates that the better the
pper bound on the cumulative regret of a strategy, thedarge
the lower bound on its simple regret. Like in Mannor and

one of army. S : . ) )
Yy Tsitsiklis (2004), since we are interested in lower boumds i
Theorem 2 (Auer et al., 2002a)For all probability distribu- this section, we mostly consider Bernoulli distributiofifie
tionsvy,...,vx on [0,1], uCB1 ensures that its expected function) of interest has to be thought of as the distribution-
regret is bounded as dependent upper bound on the order of magnitude of the re-
gret, e.g.z»(n) = lnn in Theorem 2.
1 72 . . .
ER, <8 Z A Inn+{1+ 3 Z A Theorem 4 (Main theorem) For all allocation strategieg, )
Gipg<p I j=1,...K and all functions) : {1,2,...} — R such that
for all n > 1. Thus the expected simple regrets of the se- for all (Bernoulli) distributionsu: , ..., vx on the re-
guence of empirical distributions and moving averages (1) wards, there exists a constaat € Rt with ER, <
are bounded as C(n),
1 ) Inn 2\ K the simple regret of any polidyp,,) based on the allocation
Erp <8( 3 A n + <1 + ?) o (¢¢) is such that
Jipg<pr
’ for all sets of K > 3 (distinct) Bernoulli distributions
foralln > 1. on the rewards, there exist a constdnt> 0 with
We state this result mostly to point out in Section 4 that Er. > 1 min A ) e=DP¥m)
the rate(Inn)/n is not the optimal order of magnitude of "= 2 \ga>0
tbhe egpeCted S”T‘dp'e [jegreé 315 tfar as.fd'St;"bu.t;ﬁn'depg(:ﬁn (up to arelabellingv, . .., vi of the considered distri-
ounds are considered, and that Speciiic algorithms ne € butions intov (1), . . ., vx (k) for some permutatiorn).

fore to be constructed.

In particular, the polynomial decrease of the simple re-
~ We now turn toexP3-type forecasters. It has been noted gretin Theorem 2 is not an accident, our main theorem shows
since Auer et al. (2002b) that to obtain bounds on the (ex- that this needs to be the case in view of the good (logarithmic
pectation of the) cumulative regretxP3 does not need the  pound) performances ofcB1 in terms of the cumulative re-
mixing step. We describe the version recalled, e.g., in the gretER,,. This is why a specific strategy is constructed and
introduction of Stoltz (2005), see also Juditsky etal. @00  studied in Section 4, with exponential convergence rate to

¢1 Is the uniform distribution and for > 2, we definey, 0. Its allocation strategy relies on a heavy exploration and
component-wise as no exploitation. For the cumulative regigR?,, to be mini-
=1 mized, exploitation is needed and the price to pay for that is
P (_nt 21 é-?'vS) at least from a theoretical viewpoint, a worse control on the
Vit = Tk =y simple regret, as captured by Theorem 4. (This statement is
2 k=1 OXP (_m 2is=1 be 5) however qualified in practice for large numbers of rounds
forallj =1,..., K, where in Section 6.) This may be worth noticing in all applications

where controlling the cumulative regret is crucial (one can
_[2lnK and 7. — 1— Xk Ny I think of the evaluation of new medical treatments) and thus
"N TR T g, M no efficient exploration can be performed.

are the estimated losses associated to the rewards. The$oun
of Stoltz (2005, Theorem 2.7) and Lemma 1 imply the fol-
lowing.

As a warm-up and to illustrate some of the techniques
needed in the proof of Theorem 4, we start with two distri-
bution-dependent lower bounds on the simple regret, first,
Theorem 3 (variation of Auer et al., 2002b) For all prob- one for specific policies and second, one for the general case
ability distributionsvy, . . ., v on|0, 1], the variant ofExP3 of all policies. The bound of Theorem 6 is of independent

recalled above ensures that its expected regret is bounsled a INt€rest, since it shows that the distribution-dependate r
(Inn)/n of Theorem 2 is suboptimal. Only then we prove

ER, <+y8(n+1)KInK Theorem 4.



For a givenn > 1, we say that a policy,, never plays Theorem 6 Forall n > 1 and policiesp,,, for all sets of dis-
an arm with zero empirical mean whenever it puts no prob- tributions of rewards given bi > 3 Bernoulli distributions
ab|I|ty mass ¢,, = 0) on armsj with empirical means  with parametergu, > pg > ps ... > ik, the expected sim-
i;n = 0, provided there is at least another arm with non- ple regretis lower bounded (upto a permutation of the arms)
zero empirical mean. (In case all arms have zero empirical by

mean, then we impose, for the time being, thatputs equal
weights on all arms.)

Lemmab5 For all n > 1 and all policies®,, that never
play an arm with zero empirical mean, for all distributions
v, - .., vk Of the rewards such that there is a single best dis-
tribution v* given by a Bernoulli distribution, the expected
simple regret is lower bounded by

K1 min A; enn(—p7)
J:A; >0

Proof: The simple regret is lower bounded in terms of the
probability of not choosing the (unique) optimal afin which

Er, >

is in turn bounded by the probability that the best arm has a

zero empirical mean (up to a factor@ — 1)/ K, that takes
into account the case of a tie between all arms),
> AED;,

Er,,

1
> - _ n(In(l—p1)+n(l—pk))
5 (1 — p2)e
where the maximum is taken with respect to all permutations
oover{l,...,K}.

Proof: The basic idea of the proof is to consider a tie case
when the best and worst arms have zero empirical means; it
happens often enough (with a probability at least expoaknti

in n) and results in the forecaster basically having to pick
another arm. Permutations are used to control the case of
untypical or naive forecasters that would despite all pall a
arm with zero empirical mean, since they force a situation
where those forecasters choose the worst instead of the best
arm.

Another layer of notation will be used in the proof. It
could still be avoided here, but will be necessary for thepro
of Theorem 4. Foi = 1 (respectively; = K), we denote
byP; , andE, ,, the probability and expectation with respect
to the K-tuple formed by the/,-1(;), where we replaced

max E,r,
o

785>0 the best of them, indexed (1), by a Dirac measure on 0
> P (respectively, the best and worst of them, indexed-by)
- <J IingoA > (1= @] ando(K), by Dirac measures on 0).
We first use that a maximumi is larger than a mean and ex-
> < min A, > [(1 —Djxp) Lz, =0} tract from the previous proof a lower bound on simple regret
J:8;>0 in terms of incorrect selection of a best arm,
K-1 . ~
> — (jglju;oAj) P {fij« n = 0} maxEyry > = ZE > ZE Poyn]  (3)
where we used that wheti has an average rewafg- ,, = where we denoteA = min AJ = j11 — pp. Foralle,
0, itis not played with probability at least— 1/ K (it could 3:4;>0
only be played in the case when all arms would have zeroE, [1 — @, ,,]
empirical average rewards). Now, conditionally to the draw '
actionsIy, ..., I,, and using the fact that* is a Bernoulli > E, [(1 = Py(1)n) H{ﬁa(l),nzoﬂ
distribution, ( ) | i )
) = IEa’|: 1- (I)U(l),n ﬁa(l),n = O:| x P, ﬁa(l),n =0
. . . . = ,0 — *o(1),n o Mo(1),n =
which concludes the proof by integration with respect to the ' W W N
conditioning. [ | = Eio[(1-®1)n)] Es [(1 ) mm}
We now turn to the general case, for which we are not > K, ,[(1 - ®y(1),)] (1 —p1)",

willing to put any restriction on the policied,,. Note that
distribution-dependent lower bounds suffer from the geher
drawback that we can never prevent naive strategies like/“pl

always the first arm” to be efficient despite all against some

particular K -tuples of distributions of the arms. Symmetry

is a way to deal with that. We therefore consider sets of dis-

tributions over the arms witli elements and run the fore-
caster over all possibl& -tuples obtained from this set. In
the sequel, we thus fix a setBfdistributions {v1, ... , vk },
and, with no loss of generality, we index them so that>
o > ... > pk. Forall permutations over{1,..., K},
we denote byP, and E, the probability and expectation
when the distributions of the arms are given by Hiduple
Ve=1(1),-- > Vo—1(K)- IN this K-tuple, the best arm has in-
dexo(1), the second best i8(2), and so on. We are now
ready to state our policy-independent lower bound.

where we used for the third step the fact that, is the same
asP,, except that it ensures that aen(l) has zero reward
throughout, and subsequent steps are similar to the end of th
proof of Lemma 5. We can obviously iterate the argument,
and get, by considering the worst arm,

E1o [1 = ®o1),n]

> Ero | (1= Pon) | o

> Ek,o [(1 = Po(1),n) } (1—px)"
Putting things together, we have proved

Z]E

>

O} X ]P)l,o {ﬁa(K),n = 0}

Do(1),n]

(1= p2)" (1= puxc)" ZEKa[ - 0(1)771}'



The proofis concluded by showing that by symmetry
K!
; EK,U |:1 - (I)U(l),n:| > 7

and substituting this resultin (3).

SincePg , only depends om(2),...,0(K — 1), we de-
note byP?(2).--(K-1) the common value of these proba-
bility distributions whery (1) ando (K) vary (and a similar

notation for the associated expectation). We can thus group

the permutations two by two according to thesgd — 2)-
tuples, one of the two permutations is defineds§y) equal
to one of the two elements dfi, ..., K} not present in the
(K —2)-tuple, and the other one is such thdt ) equals the
other such element. Formally,

Z EK,a(ba(l),n

E EJ2:JK -1

>

PQjn

J2se K -1 JE{L,... KN\ {2,k -1}
EJ2:-Jk-1[q K!
< K~ _ -
)
J25--JK—1

where the summations over, ..., jx 1 are over all possi-
ble (K — 2)-tuples of distinct elements ifil,..., K}. N

We are now ready to prove Theorem 4.
Proof: We consider here a set &f > 3 (distinct) Bernoulli
distributions; actually, we only use below that their param
eters are (up to a first relabelling) such that > s >
U3 ... > WK, 2 > WE, and thusus > 0. We start with
the following inequality, extracted from the proof of Theo-
rem 6,

moz}xIEng > MI;!MQ ZEK,U [1—Do(1)n)

xXPgy {ﬁa(l),n = 0} Pl,a’ {ﬁa’(K),n = 0} .
The last probabilities are bounded, for each permutation
by

]P)l,a {,aa'(K),n = O} = El,a’ |:(1 — /LK)NU(K)’TL]

E1,0 No(K),n

Y

(1—px)

Putting things together and resorting to the same symmetry
argument as at the end of the proof of Theorem 6, we then
will have proved

max E, 7,
[ea

> M1 — p2
- K!

X ZEK,U [1 - (I)a'(l),n}

> M1 ;/LQ (1 . Nl)Cw(n)/ug (1 _ NK)Cw(n)/(ug—uK)

which yields the claimed result. The proof is thus concluded
by studying the term involving i, (1), = 0}. We denote
by W, = (I, Xn,1,...,1n, X1, n;, ) the history up to
time n. What follows is reminiscient of the techniques used
in Mannor and Tsitsiklis (2004). We are insterested in re-
alizationsw,, = (i1,%i, 1, -, in, Ti, n,, ) Of the history
such that whenever(1) was played, it got a null reward.
(We denote above by, ; is the realization ofV; ; corre-
sponding taw,,, for all j andt.) The likelihood of such a,,
underP, is (1 — pq)"=®.» times the one undét; ,. Thus,

Po’ {//Ia'(l),n = 0} = Z]P)a' {Wn = wn}
Z (1 - /Ll)ng(l)m ]P)l,a {Wn = wn}

o [P

(1 . Ml)cw(n)/m (1 . MK)Cw(n)/(#zﬁuk)

where the sums are over those histotigssuch thatr (1) ; =
Oforallt =1,...,m,0),. The argumentis concluded as
before, first by Jensen’s inequality and then, by using that

/LQEl,aNU(l),n S El,aRn S Cﬂ’(n)

by definition of the regret and the hypothesis put on its con-
trol. |

4 Distribution-dependent bounds

4.1 Uniform sampling and empirical successes

The previous section shows that specific forecasters need to
be constructed for the pure exploration problem for multi-
armed bandits. We study first the simplest of them, given by
uniform sampling for the allocation strategy and empirical
successes for the associated policy. We show an exponential

where the equality comes from the proof of Theorem 6 and decrease of its simple regrets towards 0, which is the best
the inequality is a consequence of Jensen’s inequality.,Now possible rate in view of Theorem 6.

the expected number of times the sub-optimal aff&’) is
pulled undei, , is bounded by the regret (by very definition
of the latter),

(2 — ) E1,oNo(k)yn < E1oRy < CtP(n) ;

we used that by hypothesis, there exists a congtastich
that for allo, E; ,R, < C1(n). Substituting this inequal-
ity, we get for allo,

P1o {fio(x)n =0} > (1 — S Rl
We show below that one also has
Py { iy = 0} > (1 — pg) P02

Formally, uniform sampling consists in choosing the al-
locationsp; = 0 moa k] Wheret mod K] denotesthe value
of t moduloK. Thus, army is played at roundg, j+ K, j+
2K .... We now denote, fon > K andj =1,..., K,

1 n/K]
A'n: X's
Hj, Ln/KJ 52:; s

the mean reward of on the firstK' |n/K | rounds. (n/K |
denotes the lower integer partof K. We discard here some
final rounds for all arms to have been played equally often
whenever a new decision is made.)



The associated policy, called empirical successes, is de-4.2.1 ucBl as allocation strategy

fined by®; = ... = &, _; equal to the uniform distribution
®, =60; where j: € argmax [i;
o j=1,...N

and
(4)

for n > K (ties broken in some way). We propose two
bounds, the first one is sharper in the case when there ar
few arms and the gapi; can take extremal values (i.e., at
least one value close to 0 and another one close to 1). Th
second one is suited for large

Theorem 7 The uniform sampling allocation associated to
the empirical successes policy ensures that the simpletegr
are bounded by

Er, < Z Aje_A?Ln/KJ/Z
J:A;>0

forall n > K;and by
)exp(

Er, < (
8In K

for all
mini.a s A2
J: j>0 5

“max__Aj ;{

j=1,....K

n2<1—|— )K

Proof: To prove the first inequality, we relate the simple re-
gret to the probability of choosing a non-optimal arm,

Erp= Y NER;, < > AjP{fjn > fijen}
§:A;>0 §:A;>0

where the upper bound follows from the fact that to be the
best empirical arm, an arrthmust have performed, in par-
ticular, better than the mean best ajfn We now apply
Hoeffding’s inequality (for i.i.d. random variables, see-H
effding, 1963). i, — [i;+» IS an average ofn/K | i.i.d.
random variables bounded betweeh and1 and with com-
mon expectation-A;. Thus, the probability of interest is
bounded by

P{lijn — fijen > 0}
P { (//Ijm - ﬁj*,n)

n |2 A2
(2L

n

—(=4y) = Aj}
4[%] )
and the first result follows.
The second inequality is proved by resorting to a sharper
concentration argument, namely, the method of bounded dif-
ferences, see McDiarmid (1989), see also Devroye and Lu-

gosi (2001, Chapter 2). The proof can be found in appendix.
|

4.2 Empirical successes policy for other allocation
strategies

Because we noticed by preliminary simulations, reported in
Section 6, that the previous uniform sampling was often not
the strategy with best practical performances, we now study
the performances of the empirical successes policy (4) when
the allocation strategfyy; ) is not given by uniform sampling.
The theoretical bounds will however be worse than the one
of Theorem 7, and this will be explained by the lower bound
on the performances given by Theorem 4.

Since the proof of the theorem of this section will resort to
concentration inequalities, we need to ensure that all arms
are sampled sufficiently often each. Note that the following
lemma indicates a deterministic lower bound on the num-
ber of times each arm is played. We provide the statement

Qand proof, see the appendix) only f&r = 2 arms, but we

believe that it extends to the case of more arms. Actually,

&ocsis and Szepesvari (2006, Theorem 3) states a similar re-

sult, the proof being omitted there for the sake of space, but
it is unclear whether their bound is uniform in all distribu-
tions over the arms, as we will need for later purposes, in
Section 5.1, to get distribution-free bounds.

Lemma 8 In the case of = 2 arms, for all pairs of dis-
tributions v, andw,, ucBl pulls each arm, during the first
n > 3 rounds, at least

T, = 21n <(n—1) <1—,/%>>

times; consequentl¥;, > log, n for n > 21.

This lemma ensures in particular that the following the-
orem is of interest whencsl is the allocation strategy and
n > 21. Again, a similar result is provided by Kocsis and
Szepesvari (2006, Theorem 5); there, however, the leading
constant is not explicitly computed and the proof is omitted
again, for the sake of space. The leading constant we pro-
pose below is not suited for the needs of Section 5.1 because
of the (form of the) dependency of the constant in the pa-
rametersA. A refined analysis will be needed there. For the
moment, we point out that the following theorem illustrates
the lower bound proposed by Theorem 4, in view of Theo-
rem 2. We knew in advance that no faster than a polynomial
distribution-dependent rate could be expected.

Theorem 9 For all n > 1 and all allocation strategies en-
suring that for all distributions/, . . ., vk over the rewards,
N;.n > Inn, for all arms;j, the simple regret is bounded by

Proof: We start as in the proof of Theorem 7 by writing
Er, < Z Aj P{ﬁj,n > ﬁj*,n}
J:A; >0

and upper bound the probabilities for alby using the union
bound,

P{ijn > Fijen}
P{lijn > pj + A;/2 OF fije o < pje — Aj/2}
P{fjn > pj + A;/2} +P{lijen < pje — A;/2}

4 <1>A?/2

— (=
Aj n

where we now prove the last inequality; the arguments in
the proof being symmetric, we only show that for al=

IN A

IN

®)



1,...,KandallA > 0,
1 1 2A
P{Mj,n > +A} < A2 <E>

We use the assumption on thg ,, and resort, again, to the
union bound,

P{ﬁj,n > Wi+ A}
< P{3te[[lnn],n] st N;,=t
andX;; +...+ X, —tu; > tA}

n

< Z P{XJJ + ...+ Xj,t —tp; > tA}
t=[Inn]
< i exp (—2t2A2) = i exp (—2tA2)
- t
t=[lnn] t=[Inn]
<

/ exp (—2A2t) dt
1

nn

1 , 11\
= Eexp (—2A lnn) = E (E) 5

where we used Hoeffding’s inequality (for i.i.d. randomivar
ables, see Hoeffding, 1963) for the third inequality, asm t
proof of Theorem 7. |

4.2.2 ExpP3 as allocation strategy

Itis easy to see that the following strategy, calied3 with
a mixing step, has a cumulative regt&R,, not more than

something of the order of n K In L, just like EXP3 without
the mixing step; is the uniform distribution and far> 2,
we definep; component-wise as

P (_"t Yo éﬂ'*s) ol

= +

Yokl €XD (—m Sl ék.,s) K
forallj =1,..., K, where, as in Section 3.1,

= and /¢ s = — 27
Ui A/ Kt k, Ohs

are the estimated losses associated to the rewards,and

v/ (K In K)/t for somey > 0 is the (time-varying) mixing
parameter.

wit = (1—7)

{Is:k}

5 Distribution-free and minimax bounds

5.1 Distribution-free upper bounds

For ExP3 sampling

In Section 4, we exhibited distribution-dependentbounds (
bounds that may depend on the underlying distributions

usually through the gap&;). We now turn to distribution-

free bounds on the simple regrets. They are of the form

sup [Er, < Bk

U1y VK

where the supremum is taken over/gHituples of probability
distributions over{0,1]. Theorem 3 indicates for instance
that the variant oExP3 considered there is such tha ,, =

4\/(KIn K)/n.

Because of the form of the distribution-dependent bounds
on the regret, it is easy to derive distribution-free bounds
from them, by optimizing the bound in the gafis as illus-
trated below. This is in contrast with the (statistical) fpro
lem of identifying the best arm, for which no non-trivial
distribution-free bounds can be exhibited, since, intalj,
this problem gets arbitrarily complicated as some of thesgap
Aj tend to 0. Here however, because the regret equals the
product of the gaps and the probabilities of incorrect selec
tion, facing small gaps helps. This illustrates once adaén t
usual differences between statistical and learning proble

For uniform sampling

The following corollary is a simple consequence of Theo-
rem 7, via a worst-case study of the bound as a function of
the A, (see the straightforward proof in appendix).

Corollary 10 The uniform sampling allocation associated
to the empirical successes policy considered in Section 4.1
ensures that the simple regrets are uniformly bounded by

K-1 KVK
sup Er, < e 1/2 =0
Vi, VK VI n/K| n
forall n > K.

For ucsl sampling

We now want to perform the same optimization to get dis-
tribution-free bounds for either of the sequences of empiri

Of course the cumulative regret depends linearly upon cal distributions and moving averages policies (1) based on

~ and the theoretical optimal choiced4s= 0 (as in The-

orem 3). But fory > 0, the mixing step ensures that (by

the allocation strategy aficsl. The bound forucsl we
recalled in Theorem 2 cannot be optimized directly, for it

concentration-of-the-measure arguments) each arm is samtends to infinity as one of thé; tends to 0. However, a

pled at leasty; + ...+, = ©(vVnK In K) times, and thus

simple modification of the proof of Auer et al. (2002a, Theo-

the estimation of the means is fine at a mild (exponential in Fem 1) leads, for the very same forecasteg1, to a suitable
\/ﬁ) error factor. The same argument as in the proof of The- bound On]ERn that n turn, St|” thankS to Lemma 1, Imp|IeS
orem 7 then concludes at a simple regret decreasing at arft bound orEr,,.

exponential iny/n rate whenevery > 0, a rate to be com-

pared to the polynomial rate proposed in Theorem 3 for the Theorem 11 For all probability distributionsv, . .

., VK 0N

casey = 0 (and the policies given by moving averages or [0, 1], UCB1 ensures that its expected regret is bounded as

empirical distributions).

The precise statement of the bound and its proof are omit-
ted from this extended abstract due to lack of space (and be-

cause of the poor practical performanceg&P3 strategies
with mixing step, see the comments for Figure 4).

2
ER, < (K — 1)\/n (81nn+1+ %)

forall n > 1.



Thus the expected simple regrets of either of the sequences We could also have followed the approach of the proof

of empirical distributions and moving averages (1) based on
the allocation strategy afcs1 are uniformly bounded as

/81 1+
Er, < (K —1) shan+ 1+
n

forall n > 1.

Proof: It can be extracted from the proof of Auer et al.
(2002a, Theorem 1) that for all suboptimal ajm

2

1_.
14

8lnn

ENjn < —x3
J

on the other hand, the simple upper boltW; ,, < n al-
ways holds true. Therefor&NN; ,, is less than the minimum

of Theorem 11 and combined (5) with the fact that the prob-
abilities of interest are always less than 1 to get, via ldij{d

averages, the bound
>A§/2> «

ETn S Z Aj
J:A; >0

for all & € [0,1]. Choosinga > 0 arbitrarily close to 0
would get the distribution-free convergence rate for the-si
ple regrets arbitrarily close tb/+/Inn, but with a leading
constant by far worse than in the bound stated below. Recall
that the condition on the number of times each arm is pulled
is natural in view of the result of Lemma 8 and the comments
following it.

1

(% (2

n

of these two bounds, and hence, less than the geometric meafheorem 12 For all » > 1 and all allocation strategies en-

of them,

2
T
14
+3

8lnn
ENJ"”S\I"<T+ )
J

The first bound of the theorem now follows from the very
definition of the regret,

ER,= Y  A;EN;,
J:A;>0

<y

7:A;>0

n <81nn+A? (l—i—

7)) ®

With a somewhat refined analysis, one can indeed com-

pute the exact order of magnitudesloR,, in K andn for
ucel,

ER, — © (K\/n In n) ,
which, still by virtue of Lemma 1, shows that either of the

sequences of empirical distributions and moving averages (
based on the allocation strategywtsl has simple regrets

of the order of
Er, = © (K\/ln—”> .
n

The details are omitted from this extended abstract.

We now turn to the combination afcBl as allocation

strategy and empirical successes as final policy, as studied

in Section 4.2.1. The bound of Theorem 9 cannot be op-
timized over theA; to yield a non-trivial distribution-free

bound. One way around is to use a sharper concentration in-

equality, namely Bernstein’s inequality for martingalese,

suring that for all distributions/, . . ., vk over the rewards,
Nj.n > log,n for all arms j, the simple regret is bounded

by

]Ern§4\/§(K_1) 1
V2 -1 v/logs n

Proof: The proofis a variation on the one of Theorem 9; we
essentially replace Hoeffding's inequality (for i.i.dndom
variables) by the sharper Bernstein’s inequality (for mart
gales). We simply prove below that forgl=1,..., K and

all A >0,

V2 .
A(\/i — 1) V/1ogon ’

and the conclusion will follow (since here also the argument
is symmetric for; andj*).

The martingale difference sequence we consider here is
formed by the(Y; — u;)l;7,—; (bounded by 1), witht =
1,...,n, where we recall from Figure 1 th&} is the reward
obtained by the forecaster at rouhdr'he associated martin-
gale M; , and sum of conditional variancég ,, are given

by

]P’{ﬁj,n > Wi+ A} <

()

Mjn = Njn(fjn—p) and Vi, = pu;(1—p;) Njn

Using thatz(1 — z) < 1/4 for all [0, 1], we have, for all
e > 0andv > 0,

P {ﬁj,n > Hy + N5 and Nj,n < 41}}
j,n
v

pg (1 = pj)

}

(8)

—~ &
P{uj,n >y + ~

Jsn

and N, ,, <

P{M;, >e and V;, <v}

exp (_2(%1/3)) ,

e.g., Freedman (1975) or Cesa-Bianchi et al. (2005, Lemma

15), and partition the set of possible values for ffig, in
a finer way (in not more than something of the ordehof
bins).

where the last step is exactly the statement of Berstein’s in
equality. We partition the set of possible values gy,
into the (integer) intervalf2”, 27+1 — 1], for r varying from
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Figure 2: K = 2 arms with Bernoulli distributions with pa-

1 1
(27A)? _2A%)2 rameters /2 and2/3
< - < .
- TZT:O xp ( 2(2r-14(2rA)/3) ) — r;m ‘
- TZ] 1 e~ 1/2 1 and Lugosi (2006, Section 6.9), except that we only have to
= AV T ALV 1-1/V2] consider the final round here. It can be found in the appendix.
r=ro Actually, in view of Lemma 1, the way the proofs could
where we used for the third inequality thaf = e~ '/? is go for cumulative regrets is by lower bounding the simple

regrets and use that the minimax value for cumulative regret
aftern rounds is at least times the minimax value of simple
regrets.
It is an open question whether the extydn K factor
V2™ — 1 1 1 of Theorem 3 is necessary or if the lower bound of Theo-
( ) =Pl 3 [log, [logy n] | rem 13 should be improvedEr,, is usually easier to han-
1 dle thanER,,. Fancier techniques than those of the proof
> e 1/2 exp <_ log, log, n> — /2, /logy 1 . of Theorem 13 might lead to an improvement of the lower
2 bound on the minimax value &fr,, (and thus, on the one of
] ER,); one might take inspiration, for instance, from the ex-
act computation of the minimax value of simple redtet,
. for two-armed bandits in Schlag (2006), where the minimax
52 Minimax _bounds o optimal strategy is exhibited. Tghé Iattez, called binonaial
We presented in Sec_t|0n 3.2some dlstnbutlon-dependent!O erage rule, samples the two arms equally often and basically
wer bounds on the simple regrets and we now focus on dis-chooses the one with best empirical average at even rounds
trlbutlon_—free _SUCh bounds. We show beIOW that the orders (and a S||ght adaptation of that at odd roundS, when one arm
of magnitude in the number of roundsare differentfor two  has been sampled once less than the other one). He however
types of bounds. Theorems 6 and 7 indicate that the opti- points out that the minimax strategy is probably more com-
mal order of magnitude for distribution-dependentbousds i pjicated whenever there are at least three arms. (A related
exponential, whereas it i/ /n for distribution-free bounds  result of this paper is that in Corollary 10 we have a worse
as asserted by Theorems 3 and 13. A Slml|al‘ situation anse%ependence i’ for the uniform Samp"ng togetherwith em-
for the cumulative regret, see Lai and Robbins, 1985 (opti- pirical successes than in Theorem 3.)
malln n rate for distribution-dependent bounds) versus Auer
et al., 2002b (optima|/n rate for distribution-free bounds).

the maximum of € [0, col— x e~*"/2 and in the last step,
that we are left with a geometric sum. The proof of (7) is
concluded by noting that

Theorem 13 For aII_n > land K > 2 such _thatn_ > 6 Simulation study
K/(41n(4/3)), the simple regrets are bounded in a minimax  Figures 2—4 present some experimental results on artificial

sense as data. We considered three different allocation strategieis
N K form sampling,ExP3 with and without mixing parameter
inf sup Er, > —ooo 1/ — ~, anducBl) and three associated policies (empirical dis-
Vi VK 2\/2In(4/3) V. n tributions, moving averages, and empirical successes3. Th
where the infimum is taken over all (randomized) allocation corresponding simple regrets are computed 0€100 runs
strategies and all associated policies. of eachK—tuple of distributions and we plot their averages,

which approximate well the expectatiois,,. The distri-
The proof is almost the same as the proofs of the lower butions used for the simulations are given by Bernoulli dis-
bounds on the cumulative regret in multi-armed bandit prob- tributions, in number and with parameters depending on the
lems, see Auer et al. (2002b, Appendix A) and Cesa-Bianchi experiment (see the captions of the different figures for-a de
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Figure 3: K = 3 arms with Bernoulli distributions with pa-
rameterd /2, 2/3, and4/5.
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Figure 4: K = 50 arms with Bernoulli distributions; all pa-
rameters chosen independently at randof jn].

scription of eachK—tuple). Though we only offer a lim-
ited number of graphical illustrations of the performances
we mention that all situations illustrated below are typica
and do not result from a particular choice of the underlying
distributions.

whereas Figure 4 (see also Figure 5 in the appendix) illus-
trates that this is not the case anymore for larger numbers
(typically, more than 10). In this casecBl is good for
small values ofn andEXP3 is the best allocation strategy
whenn is larger. A closer look to the small values &fin-
dicates that whereas uniform sampling is the best allocatio
strategy forK” = 2, itis never the optimal allocation strategy
for K > 3; this is not even due to the fact that we discard
some final rounds to compute the empirical successes, as the
reader may notice that at rounds with indexes multiple of
K the performances of this strategy is always off the others.
Actually, the last rounds represented in Figure 3 show that
the simple regret associated to the uniform sampling isgwic
larger than those associateduaBl andexP3 samplings.
This ranking may be surprising at first sight, since, in the-
ory, the distribution-dependent rates for uniform sangplin
combined to empirical successes indicate an exponential de
crease of the simple regrets (Theorem 7), whereas Theorem 4
together with Theorem 2 shows that the simple regrets asso-
ciated toucBl andexP3, even through empirical successes,
cannot converge faster than at a polynomial rate. In prin-
ciple, the uniform allocation should thus take the lead over
it, a phenomenon we only observed for numbers of rounds
n so large that simple regrets are smaller than'®, a pre-
cision for which little can be guaranteed in terms of correct
numerical computations.

Figure 4 studies also whether a mixing parametsould
benefit toExP3—based strategies. We only reported one value
but tested many; in all cases, the performances of the mixing
EXP3 strategies interpolated the ones of uniform sampling
andexP3 without mixing, therefore performing worse than
the latter for more tha’ > 3 arms. In Section 4.2 and Fig-
ure 4, we considered time-varying mixing parameters, but it
turns out that that on simulations not reported here, the use
of constant mixing parameters does not change the picture:
it is always better not to mix thexp3 distributions with the
uniform distribution.

The simulations are somewhat disappointing in the sense
that the theoretical best strategies are not the best itipeac
but they point out to which extend simple regrets can gain
from being computed with non-uniform allocation strategie
a result well-known in the Gaussian case (see Chen et al.,
2000) but not, to the best of our knowledge, in the case of
Bernoulli distributions. ThatxpP3 orucsl be the best allo-

_ Figure 2 essentially shows that empirical successes poli-cation strategies also show, surprisingly enough, thedste
cies described and studied in Section 4 clearly outperform ¢ exploration—exploitation trade-offs for pure explooat

the policies (empirical distributions and moving avergges

of Section 3.1, even though the theoretical rates of conver-

gence of the latter are usually better than those of the forme
(We recall that sincescBl is a deterministic strategy, em-
pirical distributions and moving averages coincide fosée

problems!

7 Conclusion and open problems

We showed in this paper that even for the pure exploration

the comments before Theorem 2. Here, we take a mixing problem, the exploration—exploitation trade-off is usgfia

parametery = 0 for EXP3, as in Section 3.1.) Empirical

forecasters likeucBl andexP3. Together with the mov-

distributions and moving averages seem to be of theoreticaling averages policy, they lead to good, and even almost op-

interest only; they probably suffer in practice from being t
conservative.

Figure 3 shows that for a small nhumber of arms (typ-

timal, distribution-free bounds; associated to the eroaliri
successes policy, they show interesting practical peidiorm
ces. These results are somewhat surprising in view of the dis

ically, for K less than 10) the empirical successes basedtribution-dependent bounds that indicate that forecagter-

on uniform samplingucBl sampling, an&xpP3 sampling

forming good exploration—exploitation trade-offs in terof

(with no mixing parameter) have comparable performances,cumulative regrets have simple regrets with orders of mag-



nitude way off those of some more naive forecasters, as, for
instance, the uniform sampling together with empiricalsuc
cesses policy.

Three extensions are left for future research. The first
would be to take into account that getting the reward of an
arm might take a (random) time that depends on the arm, to
model, e.g., that some paths are more complicated to evalu-
ate in the motivating example of tree search; this was done
for cumulative regret by Gyorgy et al. (2007).

The second is to study in detail the case of probability
distributions over the rewards that are not compactly sup-
ported and check whether the asserted links between cumu-
lative and simple regrets also hold. The prototypical case i
of course the case of Gaussian distributions, as in Chen et al
(2000).

Pure exploration for bandit problems in topological
spaces

The third extension if of theoretical interest. For an ingdf
of R, we denote byPs (1) the set of probability distributions
over I with first moments less thaB. Given a topological
spaceX, we call environment o’ any mappingV/ : X —
Pr(I) (for someB andl). We say thatM is continuous if
the mapping that associates to eack X' the expectation
u(x) of M(z) is continuous.

The X—armed bandit problem is as follows. An environ-
mentM on X is fixed by Nature. The forecaster may choose
at each round a poirt in X and gets a rewards distributed
according toM (I;). We say that a familyF of environ-
ments is explorable—exploitable (respectively, expltpib
for any environmenil/ € F, the forecaster can guarantee
that his expected per-round reward converges to the expec-
tation p* of the best distribution among the () (respec-
tively, recommends a random point &f such that its as-
sociated expected reward in a one-shot new instance of the
problem is close tq.*). Explorability is a milder require-
ment than explorability—exploitability, as can be seen by a
equivalent of Lemma 1 in this setting.

This paper was about the family of all environments over
X = {1,...,K} and a fixed bounded being explorable.
By using the doubling trick, it can be seen that foe= R,

a fixed boundB, and a separable spaée the family of

all continuous environments defined with these parameters
is explorable. On the negative side, one can show that if

is uncountable, there exists a family of environments over
I = [0,1] (with B = 1) that is not explorable. In addition

to investigating this further, one natural question is te se
whether there are situations where explorability is pdesib
but not explorability—exploitability.
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A Omitted proofs and omitted figure (where we used again that; is given by a sum of random
. . . , , variables bounded betweenl and1). A well-known in-
We include here all material omitted in the main text for the equality for maxima of subgaussian random variables (see,

sake of the limitation on the number of pages. They will be 5,5in Devrove and Lugosi. 2001. Chapter 2) then vields
dropped in the final submission if the paper is accepted. Re- gain, Levroy Hgost, ’ pter 2) v

viewers may of course advise us to put back some of the fol- \/7
lowing proofs and recommend to omit some other sections B max Z;| < 2[n/K|In K,

of the paper instead. ) ) ) )
which leads to the claimed upper bound. Putting things to-

A.1 Proof of the second statement of Theorem 7 gether, we get that for the choice

Proof: We start by writing N N
e = —]E{ ax fljn —Mj*,n}
JiA; >0 -
Erp= Y A;ED;,
A 2In K
785>0 >  min Aj— 22 S0
J:A;>0 In/K|
< ( max AJ) ]P’{_Inax Hjn > ﬁgn}
g=L.., K 785>0 (for n sufficiently large, a statement made precise below),

where the second inequality follows from the fact that regre ©n€ has

is suffered only when an arm with suboptimal expectation o |m |2
has the best empirical performances. Now, the quantity of ]p{ ax fijn > fij- n} < exp <_ %] )
jtA;>00 7 T ’ - 4

interest can be rewritten as J:A
" P 4 ¢ 1 SmK )

f (s ) ) a1 )
for some functionf, where for allt = 1,...,|n/K|, we
denote byX, the vector(Xy,,..., Xg,). (f is defined  Theresultfollows for such that
as a maximum of at mosk” — 1 sums of di.fferences_.) It omK 1
is straightforward that since all random variables of iasgr min Aj — [ —— >~ min A;;
take values either 0 or 1 here, the bounded differences con- J:85>0 [n/K| 2 j:0;>0

dition is satisfied with ranges all equal to 2. Therefore, the

indicated concentration inequality states that the second part of the theorem indeed only considersssuch

P {( maxoﬁj,n - ﬁj*m) —E { max fijn — ﬁj*,n} 2 5} A.2 Proof of Lemma 8

JiA;> J:A;>0
o |n| .2 The following proof is close to the one of Audibert et al.
< exp <_ﬂ> (2008, Proposition 1).
- 4
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for all e > 0. We choose ) ) ) ]
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> min A, —E [_max Tijin — e m + AJ} Proof: The second part of the lemma follows by straightfor-
J:8;>0 J:85>0 ward calculations. To prove the first part, for integers 2,

(where we used that the maximum Effirst quantities plus we denote, by(#) the unique solution of the equation

the minimum ofK other quantities is less than the maximum
2Int 2Int
of the K sums). We now argue that — = 14 rompel
E N N ALl < 2ln K Simple calculations (not reported in this extended ab8trac
JRaZ g Ham = Htn TAj| = /K]’ show that fort > 2,
.. . . 1
this is done by a classical argument, using bounds on the p(t+1) <p(t)+ 3 9)
moment generating function of the random variables of in-
terest. ConsideZ; = |n/K|(jijn — [ij~n + A;) for all 2Int t
j =1,...,K. Independence and Hoeffding’s lemma (see, and  2Inft{1- p <pt) < 3 -(10)
e.g., Devroye and Lugosi, 2001, Chapter 2) imply that for all
A>0, We fix an arm, sayy = 1, and prove by induction that

. 1 Ny > p(t—1)forall¢t > 3; the lemma then follows by the
A\Z; 2 1,t 2P
E [e*] <exp (_5)‘ L"/KJ) first inequality in (10). SincercBl pulls, by definition, each



arm once before using the rule (2), we have tNa > 1 >
p(2), where we used the upper boundgn) given in (10).
Assume now that for some> 3, we haveN; ; > p(t — 1).
If It+1 =1, thean,Hl = Nl,t +1> p(t — 1) +1> p(t),
where we used (9). If on the contrafy,; = 2, then this is
because

o 21nt<ﬂ2t+ 2Int
' Niy n— Nl t
in particular,
2lnt 2Int
N1y n—Niy
revealing thatV, ; > p(t). In this case, we thus also have
Nitp1= N1t > p(t). [ ]

A.3 Proof of Corollary10
Proof: In view of Theorem 7, since the gags; all lie in

where the lastinequality proceeds from an inequality or-Kul
back-Leibler divergences stated in Cesa-Bianchi and Liugos
(2006, top of page 168). Averaging ovieand using concav-
ity of the root together withV, ,, + ... + Nk, = n, we

get

K
%;]P’i {J, =i} < % +2/In(4/3) e \/g

Substituting this inequality, we have proved

%émrnza<1—%—2me\/%> :

The proofis concluded as in Cesa-Bianchi and Lugosi (2006,
Section 6.9), first by optimizing overand then by consid-
ering the case of randomized policies, which follows from
the bound for deterministic strategies basically by takirg
pectations with respect to the auxiliary randomizatiores th

[0,1] and at least one of them equals 0, the maximum of the forecaster has access to, see the reference above for more

function

K-1
2
-1, E IjefmjLn/KJ/Z
J=1

(xl,...,fol) S [O, 1]K

is a suitable minimax bound. By separation of the variables

(and since it only helps to take; > 0), this maximum is
K — 1 times the maximum of

g:x€l0,1] — ze~ In/K1/2

The latter is identified ag(+/1/[n/K|) by consideringn g,
which has first derivativé /= — 2|n/K |, vanishing atr =

v/1/|n/K |, and negative second derivative. |

A.4 Proof of Theorem 13

Proof: We introduce firsP, andlE, as the probability distri-
bution and expectation associated to iretuple of symmet-
ric Bernoulli distributions/; = B(1/2)forallj =1,..., K.
We fix0 < e < 1/4. Foralli = 1,..., K, we also de-
note byP; andE; those associated to tHé—tuple given by
=B(1/2+¢) andv; = B(1/2) forall j # i.

We fix first a deterministic forecaster. The distributions

details. [ |

A.5 Additional figure for the simulation study in
Section 6

v, = rand, i=1..100

0.35

r r r r
Uniform sampling with empirical success
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— — — Exp3 with empirical success

o
w

o o
o s o N
N a N a
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o
o
a

0 . . . . . . .
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¢ and®,, are given by Dirac masses on points that we de- Figure 5: K = 100 arms with Bernoulli distributions; all

note byI;, the indexes of the pulled arms, and Iy, the
recommended action. We have
1 K
sup Er, > EZE Ty =

Vlyeeny VK i=1

£

K
Z 1_P1{anl})

where the last equality comes from the fact that we suffer
an expected regret efwhenever we did not recommend the

optimal action (with index underP;). Denoting byP’ the
image distribution of some probability distributidhby a
random variable/, we then have, by Pinsker’s inequality,
foralli =1,..., K,

By {Jn = i} = Po {Ju = i}

IN

3k (75 2)

IN

parameters chosen independently at randof®, ity.



