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EXISTENCE OF TRAVELLING-WAVE SOLUTIONS AND LOCAL

WELL-POSEDNESS OF THE FOWLER EQUATION

BORYS ALVAREZ-SAMANIEGO AND PASCAL AZERAD

Abstract. We study the existence of travelling-waves and local well-posedness
in a subspace of C1

b
(R) for a nonlinear evolution equation recently proposed

by Andrew C. Fowler to study the dynamics of dunes.

1. Introduction

1.1. General setting. Dunes are land formations of sand which are subject to
different forms and sizes based on their interaction with the wind or water or some
other mobile medium. In the case of dunes in the desert their shapes depend mainly
on the amount of sand available and on the change of the direction of the wind
with time (see Herrmann and Sauermann [6]). Some examples of dune patterns are
longitudinal, transverse, star and Barchan dunes, however, there are more than 100
categories of dunes.

An interesting topic is to try to understand if the shape of a dune is maintained
when it moves. With regard to Barchan dunes, for example, Herrmann and Sauer-
mann [6] have given some arguments, mainly related with the fact that Barchan
dunes constantly lose sand at the two horns and tend to disappear if these dunes
are not supplied with new sand, against the hypothesis that Barchan dunes are soli-
tary waves. Recently, Durán, Schwämmle and Herrmann [2] considered a minimal
model for dunes consisting of three coupled equations of motion to study, from a
numerical point of view, the mechanisms of dune interactions for the case when a
small Barchan dune collides with a bigger one; four different cases were observed,
depending only on the relative sizes of the two dunes, namely, coalescence, breeding,
budding, and solitary wave behavior.

In this paper, we are concerned with the following evolution equation proposed
by Fowler (see [3], [4] and [5] for more details) to study nonlinear dune formation:

∂u

∂t
(x, t) +

∂

∂x

[u2

2
(x, t) − ∂u

∂x
(x, t) +

∫ +∞

0

ξ−1/3 ∂u

∂x
(x− ξ, t)dξ

]
= 0, (1.1)

where u = u(x, t) represents the dune amplitude, x ∈ R, and t ≥ 0. The second
and fourth terms of equation (1.1) correspond to the nonlinear and nonlocal terms
respectively, while the third term is the dissipative term. To the authors’ knowledge,
ours is the first study to report a rigorous mathematical proof of the existence of
travelling-waves for dune morphodynamics. The authors hope that these results
could be of interest for geographers, geologists, oceanographers and others.

2000 Mathematics Subject Classification. 47J35; 35G25; 76B25.
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1.2. Organization of the paper. In Section 2 we study the existence of travelling-
wave solutions to equation (1.1). The main result of this section is Theorem 2.1
which implies that there exists a travelling-wave solution u(x, t) = φ(x − ct) to
equation (2.5), for η in a neighborhood of zero, where φ ∈ C1

b (R), and c > 0; the
idea of its proof is to use the implicit function theorem on suitable Banach spaces.
Then, by a scaling argument we extend this for any η ∈ R.

Section 3 is devoted to proving local well-posedness (LWP) for the integral equa-
tion associated to the initial value problem (IVP) for equation (1.1). Inspired by
the regularity of the travelling-wave obtained in Section 2, we consider a suitable
subspace of C1

b (R). Our main result of this section is stated in Theorem 3.1; it gives
local-in-time existence of the solution of the integral equation associated to the IVP
(3.1), with initial data u(·, 0) = u0(·) belonging to the subspace X of C1

b (R), where

X := {f ∈ C1
b (R); f ′ is uniformly continuous}.

1.3. Notations. - We denote by R and C the sets of all real and complex numbers
respectively. N denotes the set of all natural numbers.
- We denote by C(c1, c2, . . .) a constant which depends on the parameters c1, c2, . . .
C is assumed to be a non-decreasing function of its arguments.
- The norm of a measurable function f ∈ Lp(Ω), for Ω a subset of R, is written
‖f‖p

Lp(Ω) =
∫
Ω
|f |pdx for 1 ≤ p < +∞, and ‖f‖L∞(Ω) = ess supΩ|f |. The inner

product of two functions f, g ∈ L2(Ω) is written as (f, g) =
∫
Ω f ḡdx. We will often

omit set Ω when context is clear.
- We denote by f̂ = Ff the Fourier transform of f (F−1 and ˇ are used to de-

note the inverse of the Fourier transform), where f̂(ξ) := 1√
2π

∫
e−iξxf(x)dx for

f ∈ L1(R) (it follows that f̂ ∗ g =
√

2πf̂ ĝ for f, g ∈ L1(R)).
- The Schwartz space of rapidly decreasing functions on R is denoted S(R).
- We denote Λ := (1− ∂2

x)1/2 and Hs(R) (s ∈ R) the usual Sobolev space Hs(R) =
{u ∈ S′(R), ‖u‖Hs <∞}, where ‖u‖Hs = ‖Λsu‖L2.
- Let Ω ⊂ R. C0(Ω) = C(Ω) is used to denote the space of all continuous complex-
valued functions on Ω. Moreover, Ck(Ω) = {u : Ω 7→ C ; u, u′, . . . , u(k) ∈
C0(Ω)}, for k ∈ N. We write C∞(Ω) to denote the set of infinitely differen-
tiable complex-valued functions on Ω. Similarly, we use the notations C0(Ω;Y ) =
C(Ω;Y ), Ck(Ω;Y ), C∞(Ω;Y ) when functions take values in the Banach space Y .
- We write C∞(R) to denote the space of all continuous complex-valued functions
defined on R which tend to zero at infinity.
- We denote by Cb(R) = C0

b (R) the space of all bounded continuous real-valued
functions on R with the norm ‖ · ‖L∞ . Moreover, for every k ∈ N, we write

Ck
b (R) := {f ∈ Ck(R) ; f, f ′, . . . , f (k) ∈ Cb(R)},

where ‖f‖Ck
b

:=
∑k

i=0 ‖f (i)‖L∞ , for all f ∈ Ck
b (R).

- If X and Y are two Banach spaces, we denote by L(X,Y ) the set of all continuous
linear mappings defined on X with values in Y ; if X = Y , we denote by L(X).

2. Existence of Travelling-Wave Solutions of the Fowler Equation

We begin this section with some notations and preliminary results. We define

ψ(x) := χ(0,∞)(x) · x−1/3, for all x ∈ R, (2.1)
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where χA is used to denote the characteristic function of the set A. We also define

g[u] := ψ ∗ ∂xu. (2.2)

We note that, since ψ ∈ S′(R), it follows that for φ ∈ S(R), one has that ψ ∗
φ ∈ C∞(R) ∩ S′(R) and ψ̂ ∗ φ =

√
2πψ̂φ̂ (see Rudin [8]). Then, for ϕ ∈ S(R),

g[ϕ](·) = ψ ∗ ∂xϕ(·) =
∫ +∞
0

ξ−1/3∂xϕ(· − ξ)dξ. Next lemma gives the Fourier
transform of function ψ.

Lemma 2.1. For the function ψ defined by (2.1) we have

ψ̂(ξ) =
1√
2π

Γ
(2

3

)(1

2
− i

√
3

2
sgn(ξ)

)
|ξ|−2/3, (2.3)

where

sgn(ξ) =

{
−1, ξ < 0,

1, ξ > 0,

and Γ is the gamma function.

Proof. We define the function ψn(x) := χ(0,n)(x)x
−1/3, for all x ∈ R, and n ∈ N.

It is not difficult to see that ψn → ψ in S′(R) as n goes to infinity. Let ϕ ∈ S(R).
Then

〈ψ̂n, ϕ〉 =
1√
2π

∫ [ ∫ n

0

cos(ξx)

ξ1/3
dξ − i

∫ n

0

sin(ξx)

ξ1/3
dξ

]
ϕ(x)dx

=
1√
2π

∫
x−2/3

[ ∫ nx

0

cos(u)

u1/3
du− i

∫ nx

0

sin(u)

u1/3
du

]
ϕ(x)dx.

Since ∫ +∞

0

cosx

x1/3
dx =

1

2
Γ
(2

3

)
, and

∫ +∞

0

sinx

x1/3
dx =

√
3

2
Γ
(2

3

)
,

it follows that ∣∣∣x−2/3

∫ nx

0

e−iu

u1/3
du ϕ(x)

∣∣∣ ≤ C|x|−2/3|ϕ(x)|,

for all n ∈ N, and x ∈ R. Therefore, the dominated convergence theorem implies
that

lim
n→∞

〈ψ̂n, ϕ〉 =
1√
2π

∫
x−2/3Γ

(2

3

)(1

2
− i

√
3

2
sgn(x)

)
ϕ(x)dx.

This completes the proof of the lemma. �

Remark 2.1. Let s ∈ R. If u ∈ Hs(R), one can define g[u] through its Fourier
transform by

ĝ[u](ξ) := Γ
(2

3

)(√
3

2
sgn(ξ) +

i

2

)
ξ1/3û(ξ), (2.4)

for almost every ξ ∈ R. Thus, if u ∈ Hs(R), it follows that g[u] ∈ Hs−1/3(R) and

‖g[u]‖Hs−1/3 ≤ Γ
(

2
3

)
‖u‖Hs.

In this section we consider the following, more general, version of equation (1.1):

∂tu(x, t) + ∂x

(u2

2
− ∂xu+ η g[u]

)
(x, t) = 0, (2.5)
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where η ∈ R. We will show existence of travelling-wave solutions to equation (2.5),
for any η ∈ R. First, we consider the case η = 0. For any d ∈ R (see Johnson [7]),

ud(x, t) =
d

2

[
1 − tanh

(d
4
(x− d

2
t)

)]
(2.6)

is a solution to equation (2.5) with η = 0.

Remark 2.2. Let λ > 0. We define

uλ(x, t) :=
1

λ
u
(x
λ
,
t

λ2

)
, for x ∈ R, and t ≥ 0. (2.7)

It is straightforward to check that if u is a solution to the equation

∂tu(x, t) + ∂x

(u2

2
− ∂xu+ λ2/3η g[u]

)
(x, t) = 0, (2.8)

then uλ satisfies equation (2.5). Hence, if φ is a travelling-wave solution of equation
(2.8) with speed c, then φλ(·) = 1

λφ( 1
λ ·) is a travelling-wave solution of equation

(2.5) with speed c/λ.

We define, for c ∈ R, the functions

gc(x) := c
(
1 − tanh

( c
2
x
))
, and hc(x) := g′c(x) = −c

2

2
sech2

( c
2
x
)
. (2.9)

Remark 2.3. Let c ∈ R. We see that g[gc] = I1+I2, where Ij := ψj∗hc for j = 1, 2,
with ψ1 := ψ·χ(0,1), and ψ2 := ψ·χ(0,+∞). Now, we state some immediate properties
of the function g[gc].
a.) Let p > 3. Since ψ1 ∈ L1(R), and ψ2 ∈ Lp(R), it follows from the Young
inequality for convolution that g[gc] ∈ Lp(R).
b.) Furthermore, g[gc] ∈ C∞(R). In fact, it follows from the dominated convergence
theorem that I1 is continuous and I1(x) → 0 as |x| → ∞. Moreover, Hölder’s
inequality and the dominated convergence theorem imply that

I2(x) ≤ C(c)
( ∫ +∞

1

sech4( c
2 (x− ξ))

ξ4/3
dξ

)1/4

→ 0, as |x| → +∞.

The continuity of I2 is shown similarly to the continuity of I1.

Let c ∈ R. In the sequel, we will consider the following spaces:

X = Xc :=
{
ϕ ∈ C1

b (R) ;

∫
ϕ′h′c dx = 0

}
,

X̃ = X̃c :=
{
gc + ϕ ; ϕ ∈ X

}
,

where ‖ · ‖X = ‖ · ‖C1
b
. One sees that (X, ‖ · ‖X) is a Banach space.

Remark 2.4. Assume that ϕ ∈ C1
b (R). By integration by parts one has that

g[ϕ](x) =

∫ 1

0

1

ξ1/3
ϕ′(x− ξ)dξ + ϕ(x− 1) − 1

3

∫ +∞

1

1

ξ4/3
ϕ(x − ξ)dξ. (2.10)

Then g[ϕ] ∈ Cb(R). Moreover,

‖g[ϕ]‖L∞ ≤ C ‖ϕ‖C1
b
. (2.11)

Hence, if φ ∈ X̃, it follows from Remark 2.3-b.) above that g[φ] ∈ Cb(R).
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Suppose now that u(x, t) = φ(x−ct) is a solution to equation (2.5), where φ ∈ X̃.

Then −cφ′ + d
dx(φ2

2 −φ′ +ηg[φ]) = 0. Thus, a sufficient condition to guarantee that
φ satisfies the last equation is

F (η, φ) = Fc(η, φ) := cφ− φ2

2
+ φ′ − ηg[φ] = 0. (2.12)

We denote by τc the function given by τc(x) := c− gc(x) = c tanh( c
2x), for x ∈ R.

We now define the function G = Gc, which is well defined on R × X by Remarks
2.3 and 2.4 above, as

G : R × X 7→ Cb(R)

(η, ϕ) 7→ G(η, ϕ) = τcϕ− ϕ2

2
+ ϕ′ − ηg[ϕ] − ηg[gc]. (2.13)

Assume that φ = ϕ+ gc ∈ X̃. Since F (0, gc) = 0, it follows that F (η, φ) = G(η, ϕ).
Hence, φ satisfies equation (2.12) if and only if ϕ verifies the equation G(η, ϕ) = 0.

The following theorem implies the existence of a travelling-wave solution, u(x, t) =

φ(x − ct) with c > 0 and φ ∈ X̃, to equation (2.5) for η in a neighborhood of zero;
its proof uses the implicit function theorem.

Theorem 2.1. Suppose c > 0. Then there exist δ, δ0 > 0 such that for every η ∈
(−δ, δ), there is exactly one ϕη = ϕη,c ∈ X for which ‖ϕη‖X ≤ δ0 and G(η, ϕη) = 0.
Moreover, the mapping η 7→ ϕη is a C∞-map on a neighborhood of 0.

Proof. Let c > 0. The mapping G = Gc is defined on the Banach space R × X

taking values in the Banach space (Cb(R), ‖ · ‖L∞), and satisfies G(0, 0) = 0.
We now claim that ∂1G and ∂2G exist as partial F-derivatives (Fréchet deriva-

tive) on R×X and that the partial F-derivative ∂2G(0, 0) : X 7→ Cb(R) is bijective.
In fact, let us take (η, ϕ) ∈ R × X. One can see that

∂1G(η, ϕ)· = −(g[ϕ] + g[gc])·
and

∂2G(η, ϕ)· = (τc − ϕ) · +∂x · −ηg[·]. (2.14)

Then ∂1G(η, ϕ) ∈ L(R, Cb(R)), and ∂2G(η, ϕ) ∈ L(X, Cb(R)). Moreover, we obtain
that ‖∂1G(η, ϕ)‖L(R,Cb(R)) ≤ C · (‖ϕ‖C1

b
+ ‖g[gc]‖L∞), and ‖∂2G(η, ϕ)‖L(X,Cb(R)) ≤

C · (1 + |η| + ‖τc − ϕ‖L∞), where we have used inequality (2.11). Hence, ∂1G, ∂2G
exist as partial F-derivatives on R × X.
We will now show that the partial F-derivative ∂2G(0, 0) = τc + ∂x : X 7→ Cb(R) is
bijective. We begin with the injectivity; we emphasize here that the definition of
the space X ⊂ C1

b (R) was chosen to ensure the injectivity of the mapping ∂2G(0, 0).
Let f be an element of X such that τcf + f ′ = 0. By solving the last ordinary
differential equation, one gets

f(x) = f(0) · e−
∫ x
0

τc(s)ds = f(0) · sech2
( c

2
x
)
.

Since f ∈ X, it follows that
∫
f ′(x)h′c(x)dx = −f(0)

2

c2

∫
(h′c)

2(x)dx = 0.

Then f(0) = 0, and therefore f = 0.
We will now show that the mapping ∂2G(0, 0) is onto. Let y be an element of
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Cb(R). By the method of variation of parameters, we obtain that the function

g(x) := λlc(x) + lc(x)

∫ x

0

y(s)

lc(s)
ds (2.15)

is a solution to the equation τcg + g′ = y, for any λ ∈ R, where lc := − 2
c2hc =

sech2( c
2x). We will prove that g ∈ X for a suitably chosen real number λ. First, we

remark that there exists a unique λ = λy,c ∈ R such that
∫
g′h′cdx=0. In fact take

λ :=
c2

2
∫
(h′c)

2(x)dx

∫ [
(h′c)

2(x)

∫ x

0

y(s)

hc(s)
ds+ y(x)h′c(x)

]
dx, (2.16)

where we note that

0 <

∫
(h′c)

2(x)dx ≤ c6

4

∫
sech4

( c
2
x
)
dx = C(c),

∫
|h′c(x)|dx = c2,

and
∫

(h′c)
2(x)

∣∣∣
∫ x

0

y(s)

hc(s)
ds

∣∣∣dx ≤ c4

2
‖y‖L∞

∫
sinh2( c

2x)

cosh6( c
2x)

∣∣∣
∫ x

0

1 + cosh(cs)

2
ds

∣∣∣dx

≤ c3

4
‖y‖L∞

∫ [
c|x|sech4

( c
2
x
)

+ 2 sech2
( c

2
x
)]
dx ≤ C(c)‖y‖L∞ .

It remains to show that g given by (2.15) and (2.16) belongs to C1
b (R). It is

immediate to see that g ∈ C(R), we need to show that g is bounded. We have that

sech2
( c

2
x
)∣∣∣

∫ x

0

y(s)

sech2( c
2s)

ds
∣∣∣ ≤ ‖y‖L∞

1 + cosh(cx)

∣∣∣
∫ x

0

(1 + cosh(cs))ds
∣∣∣

≤ ‖y‖L∞

( |x|
1 + cosh(cx)

+
1

c
| tanh(cx)|

)
≤ C(c)‖y‖L∞ .

Then g ∈ Cb(R). Moreover, since g satisfies the equation τcg + g′ = y, it follows
that g ∈ C1

b (R). Hence, g ∈ X. Therefore, ∂2G(0, 0) is a surjective mapping.
It is not difficult to see, by using inequality (2.11), that G, ∂1G and ∂2G are

continuous on R × X. Then, the implicit function theorem implies the first part of
the theorem. Furthermore, from (2.13) one can see that function G is quadratic in
ϕ and linear in η, therefore it is not difficult to verify that ∂2

i,jG(η, ϕ) is independent

of (η, ϕ) ∈ R×X, for all i, j ∈ {1, 2}. Hence, ∂k
i1,...,ik

G(η, ϕ) = 0 for all k ≥ 3, where
i1, . . . , ik ∈ {1, 2}, and (η, ϕ) ∈ R × X. Finally, the second part of the theorem is
then a consequence of the fact that the mapping G is a C∞-map on R × X.

�

Corollary 2.1. Let η ∈ R and c > 0. Then there exists λ0 = λ0(η, c) > 0

such that for every d ∈ ( c
λ0
,+∞), there is a travelling-wave solution φ̃ ∈ C1

b (R) of

equation (2.5) with speed d.

Proof. By Theorem 2.1 there exists λ0 > 0 such that for every λ ∈ (0, λ0), there is
a φ = φλ,η,c ∈ C1

b (R) such that u(x, t) = φ(x − ct) is a solution to equation (2.8).

Now we can see, by using Remark 2.2, that φ̃(·) = 1
λφ( 1

λ ·) is a travelling-wave
solution of equation (2.5) with speed c/λ. �
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3. Local Theory in a subspace of C1
b (R)

In Section 2, we proved the existence of a travelling-wave solution u(x, t) =
φ(x−ct) to equation (2.5) for any η ∈ R, where c is an appropriate positive number
and φ ∈ C1

b (R). Motivated by this last result, we will consider in this section the
local well-posedness theory for the following initial value problem (IVP)

{
∂tu(x, t) + ∂x

(
1
2u

2 − ∂xu+ g[u]
)
(x, t) = 0,

u(0) = u0,
(3.1)

where g[u] is given by (2.2), and u0 belongs to a suitable subspace of C1
b (R). The

Cauchy problem associated to the IVP (3.1) for initial data u0 ∈ L2(R) was recently
studied by Alibaud, Azerad and Isèbe [1].

3.1. The Linear Equation. First, we consider the linear part associated to the
IVP (3.1), namely

{
∂tu(x, t) − ∂2

xu(x, t) + ∂xg[u](x, t) = 0,
u(0) = u0.

(3.2)

By formally taking the Fourier transform of the last expression, we get

û(ξ, t) = K̂(ξ, t)û0(ξ), (3.3)

where

K̂(ξ, t) = e−t[ξ2−ξ4/3(a+ib sgn(ξ))], (3.4)

for ξ ∈ R and t ≥ 0, with a := 1
2Γ(2

3 ) and b := −
√

3
2 Γ(2

3 ). For ξ ∈ R, we define

Φ(ξ) := (a+ ib sgn(ξ)). (3.5)

We note that |Φ(ξ)| = Γ(2
3 ), for all ξ ∈ R.

Remark 3.1. For every t > 0, the kernel K(·, t) is not a nonnegative function.
More precisely, for every t > 0, there exists x ∈ R such that K(x, t) < 0. This
fact implies, in particular, that the IVP (3.1) is non-monotone (see [1] for more
details).

For t ≥ 0, we define the operator E(t) by
{
E(t)φ(x) = 1√

2π

(
K(·, t) ∗ φ

)
(x), for t > 0 and x ∈ R,

E(0)φ = φ,
(3.6)

where φ ∈ Cb(R) (see Lemma 3.11 below). Now, we define the following spaces

Y := {g ∈ Cb(R); g is uniformly continuous} ; (3.7)

X := {f ∈ C1
b (R); f ′ is uniformly continuous}. (3.8)

One can see that (Y, ‖ · ‖Cb(R)), and (X, ‖ · ‖C1
b (R)) are Banach spaces and that

X →֒ Y . In Sub-section 3.2 we will show local-in-time well-posedness of the IVP
(3.1), with initial data u0 ∈ X .

The following lemma contains a calculus result.

Lemma 3.1. Let h : R 7→ C be a function which satisfies the following conditions:
i.) h ∈ L1(R) ∩ C∞(R) ∩ C2(R \ {0});
ii.) h′ ∈ L1(R), |h′(x)| → 0 as |x| → +∞. Moreover, there exist limx↓0 h′(x) =
h′(0+), and limx↑0 h′(x) = h′(0−);
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iii.) h′′ ∈ L1(R).

Then ĥ ∈ L1(R) ∩ C∞(R), and

‖ĥ‖L1 ≤
√

2

π

[
‖h‖L1 + |h′(0+) − h′(0−)| + ‖h′′‖L1

]
. (3.9)

Proof. Since h ∈ L1(R), it follows from the Riemann-Lebesgue lemma that ĥ ∈
C∞(R). After using integration by parts twice, we see that

ĥ(ξ) =
1√
2π

[ ∫ +∞

−∞
h′′(x)

e−iξx

(iξ)2
dx+

h′(0+) − h′(0−)

(iξ2)

]
, for ξ 6= 0.

Expression (3.9) follows from the last equation and from the fact that ‖ĥ‖L∞ ≤
1√
2π

‖h‖L1. �

Remark 3.2. It is well-known that W 1,1(R) ⊂ C∞(R) ∩ AC(R), where AC(R)
denotes the space of all complex-valued functions, which are absolutely continuous
on R. Therefore, it follows from Lemma 3.1 above that if f ∈ W 2,1(R), then

f̂ ∈ L1(R) ∩ C∞(R) and

‖f̂‖L1 ≤
√

2

π

[
‖f‖L1 + ‖f ′′‖L1

]
. (3.10)

Remark 3.3. Suppose now that t ∈ (0, 1). Since

K(x, t) =
1√
2π

∫
eixξe−t[ξ2−ξ4/3Φ(ξ)]dξ

=
t−1/2

√
2π

∫
ei(t−1/2x)ξ e−[ξ2−ξ4/3Φ(ξ)] e−(1−t1/3)ξ4/3Φ(ξ)dξ,

it follows that

K(x, t) = t−1/2
(
K(·, 1) ∗G(·, 1 − t1/3)

)
(t−1/2x), for x ∈ R, (3.11)

where

G(·, 1 − t1/3) =
1√
2π

F−1(e−(1−t1/3)ξ4/3(a+ib sgn(ξ)))(·). (3.12)

The next three lemmas are elementary calculus results which will be used in the
sequel.

Lemma 3.2. Suppose that α > −1, and β > 0. Then

I(α, β) :=

∫
|ξ|αe−β|ξ|4/3

dξ = C(α)β− 3
4
(α+1).

Proof. The assertion of the lemma follows from the fact that

I(α, β) = β− 3
4
(α+1)

∫
|τ |αe−|τ |4/3

dτ.

�

Lemma 3.3. Suppose that α > −1, β > 0, and t > 0. Then

I(α, β, t) :=

∫
|ξ|αe−t[ξ2−β|ξ|4/3]dξ ≤ C(α, β)

[
e

4
27

β3t + t−
α+1

2

]
.
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Proof. It is elementary to check that ξ2 − βξ4/3 ≥ − 4
27β

3 for all ξ ∈ R, and

ξ2 − βξ4/3 ≥ ξ2/2 for ξ ≥ (2β)3/2. Then

I(α, β, t) ≤ 2
[ ∫ (2β)3/2

0

ξαe
4
27

β3tdξ +

∫ +∞

(2β)3/2

ξαe−
t
2
ξ2

dξ
]

≤ C(α, β)
[
e

4
27

β3t +

∫ +∞

0

(2

t

)α
2

uαe−u2

√
2

t
du

]
,

where in the last inequality we have used the fact that α > −1. The result now
follows. �

Lemma 3.4. Suppose that g ∈ W 1,1(R), and l ∈ L∞(R). If f := g ∗ l, then
f ∈ C1(R) ∩W 1,∞(R), and f ′(x) = (g′ ∗ l)(x) for all x ∈ R.

Proof. Since g ∈ L1(R) and l ∈ L∞(R), it follows from Young’s inequality that
f ∈ L∞(R). Moreover, since |f(x + h) − f(x)| ≤ ‖g(· + h) − g(·)‖L1‖l‖L∞ for all
x ∈ R, and ‖g(·+ h)− g(·)‖L1 → 0 as h tends to zero, it folows that f ∈ C(R). Let
x ∈ R. Since W 1,1(R) ⊂ AC(R), we see that

∣∣∣f(x+ h) − f(x)

h
−

∫
g′(x− y)l(y)dy

∣∣∣ =

∣∣∣
∫ ∫ 1

0

(
g′(x− y + th) − g′(x− y)

)
l(y)dtdy

∣∣∣

≤ ‖l‖L∞

∫ 1

0

‖g′(· + th) − g′(·)‖L1dt→ 0 as h→ 0,

where the last expression is a consequence of the dominated convergence theorem.
�

The following five lemmas provide more explicit estimates than the corresponding
results mentioned in [1]. The next lemma gives an upper bound, which goes to
infinity as t tends to 1, for ‖G(·, 1 − t1/3)‖L1 when t ∈ [0, 1).

Lemma 3.5. Let t0 ∈ (0, 1). Then, for all t ∈ [0, t0], the function G(·, 1 − t1/3)
given by (3.12) belongs to L1(R) ∩ C∞(R). Moreover,

‖G(·, 1 − t1/3)‖L1 ≤ C
[
(1 − t1/3)3/4 + (1 − t1/3)−3/4

]
≤ C · (1 − t

1/3
0 )−3/4, (3.13)

for all t ∈ [0, t0], where C is a positive constant independent of t.

Proof. Let t ∈ [0, 1). We define g(ξ, t) := e−(1−t1/3)ξ4/3Φ(ξ) for ξ ∈ R. It follows
that g(·, t) is continuous. Furthermore,

∂ξg(ξ, t) = −4

3
(1 − t1/3)ξ1/3Φ(ξ)e−(1−t1/3)ξ4/3Φ(ξ), for ξ 6= 0. (3.14)

Then |∂ξg(ξ, t)| → 0 as |ξ| → +∞, and ∂ξg(0
+, t) = 0 = ∂ξg(0

−, t). Moreover,

∂2
ξg(ξ, t) =

[
− 4

9
(1 − t1/3)ξ−2/3Φ(ξ) +

(4

3
(1 − t1/3)ξ1/3Φ(ξ)

)2]

×e−(1−t1/3)ξ4/3Φ(ξ), for ξ 6= 0.



10 BORYS ALVAREZ-SAMANIEGO AND PASCAL AZERAD

We see that g(·, t) ∈ C∞(R)∩C2(R\{0}). In addition, ‖g(·, t)‖L1 = C ·(1−t1/3)−3/4,
and ‖∂ξg(·, t)‖L1 = 4. Furthermore,

‖∂2
ξg(·, t)‖L1 ≤ C · (1 − t1/3)

∫
|ξ|−2/3e−(1−t1/3)aξ4/3

dξ

+C · (1 − t1/3)2
∫

|ξ|2/3e−(1−t1/3)aξ4/3

dξ

≤ C · (1 − t1/3)3/4,

where the last inequality is a consequence of Lemma 3.2 above. The result now
follows from Lemma 3.1. �

Lemmas 3.6 and 3.9 below provide estimates for ‖K(·, t)‖L1 and ‖∂xK(·, t)‖L1,
for any t > 0.

Lemma 3.6. Suppose that t > 0. Then the function K(·, t) ∈ L1(R)∩C∞(R), and

‖K(·, t)‖L1 ≤ C ·
(
1 + t2e

4
27

a3t
)
, (3.15)

where C is a positive constant independent of t.

Proof. Let t > 0. It follows from (3.4) that

∂ξK̂(ξ, t) = −t
[
2ξ − 4

3
ξ1/3Φ(ξ)

]
K̂(ξ, t), for ξ 6= 0,

and

∂2
ξ K̂(ξ, t) =

{
− t

[
2 − 4

9
ξ−2/3Φ(ξ)

]
+ t2

[
2ξ − 4

3
ξ1/3Φ(ξ)

]2}
K̂(ξ, t), for ξ 6= 0.

Then K̂(·, t) ∈ C∞(R) ∩C2(R \ {0}). Moreover, |∂ξK̂(ξ, t)| → 0 as |ξ| → +∞, and

∂ξK̂(0+, t) = 0 = ∂ξK̂(0−, t). Furthermore,

‖K̂(·, t)‖L1 = 2

∫ +∞

0

e−t[ξ2−aξ4/3]dξ ≤ C
[
e

4
27

a3t +
1√
t

]
,

where the last inequality is a consequence of Lemma 3.3. Again using Lemma 3.3,
we see that

‖∂ξK̂(·, t)‖L1 ≤ C
[
1 + t1/3 + t e

4
27

a3t
]
, and

‖∂2
ξ K̂(·, t)‖L1 ≤ C

[√
t+ t5/6 + t7/6 + (t+ t2)e

4
27

a3t
]
≤ C

[√
t+ t2e

4
27

a3t
]
.

Lemma 3.1, applied to h(·) = K̂(·, t), implies that

‖K(·, t)‖L1 ≤ C
[ 1√

t
+ t2e

4
27

a3t
]
, for all t > 0. (3.16)

Suppose now that t ∈ (0, 1). Then
∫

|K(x, t)|dx =
1√
t

∫ ∣∣K(·, 1) ∗G(·, 1 − t1/3)
∣∣(x/

√
t)dx

=

∫
(1 + y2)1/2

∣∣K(·, 1) ∗G(·, 1 − t1/3)
∣∣(y)

(1 + y2)1/2
dy

≤ C
∥∥K̂(·, 1)Ĝ(·, 1 − t1/3)

∥∥
H1 , (3.17)
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where the first equality above comes from (3.11). From the fact that e−(1−h1/3)aξ4/3 ≤
1, for all h ∈ [0, 1), ξ ∈ R, and equation (3.14) we have that |Ĝ(ξ, 1 − h1/3)| ≤ C,

and |∂ξĜ(ξ, 1 − h1/3)| ≤ C|ξ|1/3 for all ξ ∈ R. Now, from Lemma 3.3, we obtain

‖K̂(·, 1)Ĝ(·, 1 − h1/3)‖H1 ≤ ‖K̂(·, 1)Ĝ(·, 1 − h1/3)‖L2

+‖∂ξK̂(·, 1)Ĝ(·, 1 − h1/3)‖L2 + ‖K̂(·, 1)∂ξĜ(·, 1 − h1/3)‖L2 ≤ C, (3.18)

for all h ∈ [0, 1). The assertion of the lemma now follows from (3.16)-(3.18). �

The following result gives an upper bound for ‖∂xK(·, t)‖L1 when t ∈ (0, 1).

Lemma 3.7. Let t ∈ (0, 1). Then, K(·, t) ∈ L1(R)∩C1(R)∩W 1,∞(R). In addition,
∂xK(·, t)(x) = t−1

(
∂xK(·, 1) ∗ G(·, 1 − t1/3)

)
(t−1/2x) for all x ∈ R, ∂xK(·, t) ∈

L1(R) ∩ C∞(R), and

‖∂xK(·, t)‖L1 ≤ C√
t

[
(1 − t1/3)3/4 + (1 − t1/3)−3/4

]
, (3.19)

where C is a positive constant independent of t.

Proof. Let f denote the function given by f(ξ) := ξK̂(ξ, 1) for all ξ ∈ R. Then
f ∈ C∞(R) ∩ C2(R). Furthermore,

f ′(ξ) =
[
1 − ξ

(
2ξ − 4

3
ξ1/3Φ(ξ)

)]
K̂(ξ, 1), for ξ 6= 0,

and

f ′′(ξ) =
{[

−4ξ+
16

9
ξ1/3Φ(ξ)

]
−

[
1−ξ

(
2ξ− 4

3
ξ1/3Φ(ξ)

)][
2ξ− 4

3
ξ1/3Φ(ξ)

]}
K̂(ξ, 1),

for ξ 6= 0. By using Lemma 3.3, it follows that ‖f‖L1 ≤ C, ‖f ′‖L1 ≤ C, and
‖f ′′‖L1 ≤ C. Moreover, |f ′(ξ)| → 0 as |ξ| → +∞, and f ′(0+) = 1 = f ′(0−). Thus,
Lemma 3.1 implies that ∂xK(·, 1) ∈ C∞(R) ∩ L1(R). Therefore, using Lemma 3.6,
we have that K(·, 1) ∈W 1,1(R). Let t ∈ (0, 1). Lemma 3.2 implies that

‖G(·, 1 − t1/3)‖L∞ ≤ C · (1 − t1/3)−3/4. (3.20)

Thus, applying Lemma 3.4 to equation (3.11), taking into account (3.20), one
sees that K(·, t) ∈ C1(R) ∩W 1,∞(R), and ∂xK(·, t)(x) = t−1

(
∂xK(·, 1) ∗ G(·, 1 −

t1/3)
)
(t−1/2x) for all x ∈ R. Furthermore,

‖∂xK(·, t)‖L1 = t−1/2

∫
|∂xK(·, 1) ∗G(·, 1 − t1/3)|(y)dy

≤ Ct−1/2
[
(1 − t1/3)3/4 + (1 − t1/3)−3/4

]
,

where in the last step we have used Young’s inequality and Lemma 3.5. �

Next lemma will be useful to study ‖∂xK(·, t)‖L1 for t ≥ t0, where t0 > 0.

Lemma 3.8. Suppose that t > 0. Then, ∂xK(·, t) ∈ L1(R) ∩C∞(R), and

‖∂xK(·, t)‖L1 ≤ C
[1

t
+ t2e

4
27

a3t
]
, (3.21)

where C is a positive constant independent of t.
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Proof. Let t > 0. For ξ ∈ R, we define h(ξ, t) := ξK̂(ξ, t). Then

∂ξh(ξ, t) =
[
1 − t

(
2ξ2 − 4

3
ξ

4
3 Φ(ξ)

)]
K̂(ξ, t), for ξ 6= 0,

and

∂2
ξh(ξ, t) = −t

{[
4ξ− 16

9
ξ

1
3 Φ(ξ)

]
+

[
1− t

(
2ξ2− 4

3
ξ

4
3 Φ(ξ)

)][
2ξ− 4

3
ξ

1
3 Φ(ξ)

]}
K̂(ξ, t),

for ξ 6= 0. We see that h(·, t) ∈ C∞(R) ∩ C2(R), |∂ξh(ξ, t)| → 0 as |ξ| → +∞, and
∂ξh(0

+, t) = 1 = ∂ξh(0
−, t). Moreover, by Lemma 3.3, we have that

‖h(·, t)‖L1 ≤ C
[1

t
+ e

4
27

a3t
]
,

‖∂ξh(·, t)‖L1 ≤ C
[ 1

t1/2
+

1

t1/6
+ (1 + t)e

4
27

a3t
]
, and

‖∂2
ξh(·, t)‖L1 ≤ C

[
1 + t1/3 + t2/3 + (t+ t2)e

4
27

a3t
]
.

The proof of the lemma is now completed by applying Lemma 3.1. �

The next result provides a unified upper bound for ‖∂xK(·, t)‖L1 for any t > 0,
which takes the best of the corresponding bounds obtained in Lemmas 3.7 and 3.8.

Lemma 3.9. Suppose that t > 0. Then the function ∂xK(·, t) ∈ L1(R) ∩ C∞(R).
Moreover,

‖∂xK(·, t)‖L1 ≤ C
[ 1√

t
+ t2e

4
27

a3t
]
, (3.22)

where C is a positive constant independent of t.

The following lemma will be used in the proof of Lemma 3.11 below.

Lemma 3.10.

lim
A→+∞

∫

|y|>A

∣∣K(·, 1) ∗G(·, 1 − h1/3)
∣∣(y)dy = 0, uniformly in h ∈ [0, 1). (3.23)

Proof. We recall that

K̂(ξ, 1) = e−[ξ2−ξ4/3Φ(ξ)], and Ĝ(ξ, 1 − h1/3) =
1√
2π
e−(1−h1/3)ξ4/3Φ(ξ).

From (3.18) we see that
∫

|y|>A

∣∣K(·, 1) ∗G(·, 1 − h1/3)
∣∣(y)dy

≤
( ∫

|y|>A

dy

1 + y2

) 1
2
(∫

(1 + y2)
∣∣K(·, 1) ∗G(·, 1 − h1/3)(y)

∣∣2dy
) 1

2

≤ C√
A

‖K̂(·, 1)Ĝ(·, 1 − h1/3)‖H1 ≤ C′
√
A
.

This concludes the proof. �

The next lemma shows that (E(t))t≥0 is a C0-semigroup on the Banach space
Y and also on the Banach space X .
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Lemma 3.11. i.) If u0 ∈ Cb(R), then u(t) := E(t)u0 ∈ Cb(R) for every t ≥ 0. In
addition,

‖E(t)‖L(Cb(R)) ≤ C ·
(
1 + t2e

4
27

a3t
)
, for all t > 0. (3.24)

Moreover, (E(t))t≥0 is a C0-semigroup on Y .
ii.) (E(t))t≥0 is a C0-semigroup on X. Furthermore, (3.24) remains true if the
space Cb(R) is replaced by C1

b (R).

Proof. i.) Let u0 ∈ Cb(R), and t > 0. Since u(x, t) = E(t)u0(x) = 1√
2π

∫
K(x −

y, t)u0(y)dy, it follows that

‖u(t)‖L∞ ≤ 1√
2π

‖u0‖L∞‖K(·, t)‖L1 ≤ C ·
(
1 + t2e

4
27

a3t
)
‖u0‖L∞ ,

where the last inequality is a consequence of Lemma 3.6. Moreover,

|u(x+ h, t) − u(x, t)| ≤ ‖u0‖L∞√
2π

‖K(· + h, t) −K(·, t)‖L1 → 0 as h→ 0.

Thus, we have proved that if u0 ∈ Cb(R), then u(t) ∈ Cb(R) for all t ≥ 0. In
addition, one can see that E(t+ s)φ = E(t)E(s)φ, for all t, s ≥ 0, and φ ∈ Cb(R).

Suppose now that t = 0, u0 ∈ Y \ {0}, and h ∈ (0, 1). Since K̂(0, h) =
1√
2π

∫
K(z, h)dz = 1, and using (3.11) we have that

|u(x, h) − u0(x)| =
1√
2π

∣∣∣
∫
K(z, h)

(
u0(x− z) − u0(x)

)
dz

∣∣∣

=
1√
2π

∣∣∣
∫
h−1/2

(
K(·, 1) ∗G(·, 1 − h1/3)

)
(h−1/2z)

(
u0(x− z) − u0(x)

)
dz

∣∣∣

=
1√
2π

∣∣∣
∫ (

K(·, 1) ∗G(·, 1 − h1/3)
)
(y)

(
u0(x− y

√
h) − u0(x)

)
dy

∣∣∣. (3.25)

Let ǫ > 0. By Lemma 3.10, there exists A > 0, such that for every h ∈ [0, 1),
∫

|y|>A

∣∣K(·, 1) ∗G(·, 1 − h1/3)
∣∣(y)dy <

√
2πǫ

4‖u0‖L∞

. (3.26)

Since u0 is uniformly continuous, there exists δ > 0 such that for all z, w ∈ R,

if |z − w| < δ, then |u0(z) − u0(w)| <
√

2πǫ/(2C‖K(·, 1)‖L1), (3.27)

where C is a positive constant such that ‖G(·, 1 − h1/3)‖L1 ≤ C for all h ∈ [0, 1/2)

(see Lemma 3.5). Let h ∈ (0,min{ 1
2 ,

δ2

A2 }). Using (3.25)-(3.27), we get

|u(x, h) − u0(x)| ≤
2‖u0‖L∞√

2π

∫

|y|>A

∣∣K(·, 1) ∗G(·, 1 − h1/3)(y)
∣∣dy

+
1√
2π

∫

|y|≤A

∣∣K(·, 1) ∗G(·, 1 − h1/3)(y)
∣∣ ∣∣u0(x− y

√
h) − u0(x)

∣∣dy

≤ ǫ

2
+

ǫ

2C‖K(·, 1)‖L1

‖K(·, 1) ∗G(·, 1 − h1/3)‖L1 ≤ ǫ,

for all x ∈ R, where the last inequality is a consequence of Young’s inequality.
Therefore,

lim
h→0

‖u(h)− u0‖L∞ = 0. (3.28)

We notice that if u0 ∈ Y , then u(t) = E(t)u0 ∈ Y for all t ≥ 0. In fact, assume
t > 0 and let ǫ > 0 be given. Since u0 is uniformly continuous, there exists δ > 0
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such that if |h| < δ, then |u0(x + h) − u0(x)| < ǫ
√

2π/‖K(·, t)‖L1, for any x ∈ R.
Suppose |h| < δ, then

|u(x+h, t)−u(x, t)| ≤ 1√
2π

∫ ∣∣K(y, t)
∣∣∣∣u0(x−y+h)−u0(x−y)

∣∣dy ≤ ǫ, for all x ∈ R.

Hence, u(t) is uniformly continuous, for all t > 0.
Assume now that t > 0, and u0 ∈ Y . It follows from (3.28) and the semigroup

property that

lim
h↓0

‖E(t+ h)u0 − E(t)u0‖L∞ = 0.

On the other hand, for h > 0, one can see that

|u(x, t− h) − u(x, t)| =
1√
2π

∣∣∣
∫
K(x− y, t− h)

(
u0(y) − u(y, h)

)
dy

∣∣∣

≤ 1√
2π

‖K(·, t− h)‖L1‖u(h) − u0‖L∞

≤ C ·
(
1 + (t− h)2e

4
27

a3(t−h)
)
‖u(h)− u0‖L∞ ,

where the last inequality is a consequence of Lemma 3.6. Equation (3.28) and the
last inequality imply that

lim
h↓0

‖E(t− h)u0 − E(t)u0‖L∞ = 0.

ii.) Let u0 ∈ X . By item i.) above, we already know that u ∈ C([0,+∞);Y ),
where u(t) = E(t)u0 for all t ≥ 0. We will now prove that ∂xu(t) ∈ Cb(R), ∂xu(t)
is uniformly continuous, and limh→0 ‖∂xu(t + h) − ∂xu(t)‖L∞ = 0, for all t ≥ 0.
Suppose first that t > 0. Then

∣∣∣u(x+ h, t) − u(x, t)

h
− 1√

2π
K(·, t) ∗ u′0(x)

∣∣∣

=
1√
2π

∣∣∣
(
K(·, t) ∗ u0(· + h) − u0(·)

h

)
(x) −K(·, t) ∗ u′0(x)

∣∣∣

≤ 1√
2π

∫ ∣∣K(x− y, t)
∣∣
∣∣∣u0(y + h) − u0(y)

h
− u′0(y)

∣∣∣dy.

The dominated convergence theorem and Lemma 3.6 imply that the last expression
tends to zero as h goes to zero. Then there exists

∂xu(x, t) =
1√
2π
K(·, t) ∗ u′0(x), for all x ∈ R, and t > 0. (3.29)

It is easy to see that the last expression is also valid if we only require that u0 ∈
C1

b (R). It follows from (3.29) and Lemma 3.6 that

‖∂xu(·, t)‖L∞ ≤ C ·
(
1 + t2e

4
27

a3t
)
‖u′0‖L∞ , for all t > 0.

Using the fact that u′0 is uniformly continuous, (3.29), and Lemma 3.6, it follows
that ∂xu(·, t) is uniformly continuous, for all t > 0.

Finally, since (E(t))t≥0 is a C0-semigroup on the space Y and using (3.29), we
see that limh→0 ‖∂xu(t+ h) − ∂xu(t)‖L∞ = 0, for all t ≥ 0. �
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3.2. Local Theory in the Space X. In this Sub-section we will use the Banach
fixed-point theorem on an appropriate complete metric space to find a local-in-time
solution to the integral equation associated to the IVP (3.1). The following lemma
will be helpful during the proof of Theorem 3.1 below.

Lemma 3.12. Suppose that u ∈ C([0, T ];X). We define

D(·, t) :=

∫ t

0

K(·, t− s) ∗ 1

2
∂xu

2(·, s)ds, for t ∈ [0, T ]. (3.30)

Then D ∈ C([0, T ];X).

Proof. i.) Let t ∈ (0, T ]. Now we first prove that D(t) ∈ X . In fact,

‖D(·, t)‖L∞ ≤ sup
s∈[0,T ]

‖u(·, s)‖2
C1

b

∫ t

0

‖K(·, t− s)‖L1ds

≤ C‖u‖2
C([0,T ];X)

∫ t

0

(
1 + (t− s)2e

4
27

a3(t−s)
)
ds,

where the last inequality is a consequence of Lemma 3.6. Then

‖D(·, t)‖L∞ ≤ C′ ‖u‖2
C([0,T ];X) ν(t), (3.31)

where

ν(r) := r + r2e
4
27

a3r, for all r ≥ 0. (3.32)

Moreover,

‖D(·+ h, t)−D(·, t)‖L∞ ≤
∫ t

0

‖K(·, t− s)‖L1‖1

2
∂xu

2(·+ h, s)− 1

2
∂xu

2(·, s)‖L∞ds.

Using the fact that ∂xu(·, s)u(·, s) is uniformly continuous on R, for all s ∈ [0, T ],
Lemma 3.6, and the dominated convergence theorem, it follows from the last in-
equality that D(t) is uniformly continuous on R. Now we claim that there exists
∂D
∂x (x, t) (in the classical sense), for all x ∈ R, and

∂D

∂x
(x, t) =

∫ t

0

∂x

(
K(·, t− s) ∗ 1

2
∂xu

2(·, s)
)
(x)ds

=

∫ t

0

∂xK(·, t− s) ∗ 1

2
∂xu

2(·, s)(x)ds, for all x ∈ R. (3.33)

We now establish the last claim. It follows from Lemmas 3.6, 3.9, and 3.4 that
K(·, t− s) ∗ 1

2∂xu
2(·, s) ∈ C1(R) ∩W 1,∞(R), and

∂x

(
K(·, t− s) ∗ 1

2
∂xu

2(·, s)
)
(x) =

(
∂xK(·, t− s) ∗ 1

2
∂xu

2(·, s)
)
(x), (3.34)

for all x ∈ R and s ∈ [0, t). Moreover,

∣∣∣D(x+ h, t) −D(x, t)

h
−

∫ t

0

∂xK(·, t− s) ∗ 1

2
∂xu

2(·, s)(x)ds
∣∣∣

=
∣∣∣
∫ t

0

(K(· + h, t− s) −K(·, t− s)

h
− ∂xK(·, t− s)

)
∗ 1

2
∂xu

2(·, s)(x)ds
∣∣∣.(3.35)
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In addition,
∥∥∥
(K(· + h, t− s) −K(·, t− s)

h
− ∂xK(·, t− s)

)
∗ 1

2
∂xu

2(·, s)
∥∥∥

L∞

≤ ‖u‖2
C([0,T ];X)

∥∥∥K(· + h, t− s) −K(·, t− s)

h
− ∂xK(·, t− s)

)∥∥∥
L1

≤ ‖u‖2
C([0,T ];X)

( 1

|h|
∣∣∣
∫ h

0

‖∂xK(· + y, t− s)‖L1dy
∣∣∣ + ‖∂xK(·, t− s)‖L1

)

≤ C‖u‖2
C([0,T ];X)

( 1√
t− s

+ (t− s)2e
4
27

a3(t−s)
)
∈ L1((0, t), ds), (3.36)

where the last inequality is a consequence of Lemma 3.9. The claim now follows
from (3.34)-(3.36) and the dominated convergence theorem.
It follows directly from (3.33) and Lemma 3.9 that

‖∂xD(·, t)‖L∞ ≤ C ‖u‖2
C([0,T ];X) µ(t), (3.37)

where

µ(r) :=
√
r + r2e

4
27

a3r, for all r ≥ 0. (3.38)

The fact that ∂xD(·, t) is uniformly continuous on R can be shown similarly to the
analogous result for D(·, t), using Lemma 3.9 instead of Lemma 3.6.

ii.) We will now prove that D ∈ C([0, T ];X). Let t ∈ [0, T ). We first assume
that h > 0. Then

‖D(·, t+ h) −D(·, t)‖L∞ ≤ I1(t, h) + I2(t, h),

where

I1(t, h) :=

∫ t

0

∥∥(
K(·, t+ h− s) −K(·, t− s)

)
∗ 1

2
∂xu

2(·, s)
∥∥

L∞
ds, and

I2(t, h) :=

∫ t+h

t

∥∥K(·, t+ h− s) ∗ 1

2
∂xu

2(·, s)
∥∥

L∞
ds.

We see that
∥∥(
K(·, t+ h− s) −K(·, t− s)

)
∗ 1

2
∂xu

2(·, s)
∥∥

L∞

≤ ‖u‖2
C([0,T ];X) ‖K(·, t+ h− s) −K(·, t− s)‖L1

≤ C‖u‖2
C([0,T ];X)

(
1 + T 2e

8
27

a3T
)

∈ L1((0, t), ds),

where the last inequality follows from Lemma 3.6 and the fact that h ∈ (0, T ).
Thus, using Lemma 3.11 and the dominated convergence theorem we have that

I1(t, h) =
√

2π

∫ t

0

∥∥(
E(h) − 1

)
E(t− s)

1

2
∂xu

2(·, s)
∥∥

L∞
ds→ 0, as h ↓ 0.

Moreover, using Lemma 3.6 we get like in (3.31) that

I2(t, h) ≤ C ‖u‖2
C([0,T ];X) ν(h) → 0, as h ↓ 0,

where ν(·) is given by (3.32). Hence,

lim
h↓0

‖D(·, t+ h) −D(·, t)‖L∞ = 0. (3.39)

On the other hand, it follows from (3.33) that

‖∂xD(·, t+ h) − ∂xD(·, t)‖L∞ ≤ J1(t, h) + J2(t, h),
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where

J1(t, h) :=

∫ t

0

∥∥(
∂xK(·, t+ h− s) − ∂xK(·, t− s)

)
∗ 1

2
∂xu

2(·, s)
∥∥

L∞
ds, and

J2(t, h) :=

∫ t+h

t

∥∥∂xK(·, t+ h− s) ∗ 1

2
∂xu

2(·, s)
∥∥

L∞
ds.

It follows directly from Lemma 3.9 that

J2(t, h) ≤ ‖u‖2
C([0,T ];X)

∫ h

0

‖∂xK(·, τ)‖L1dτ

≤ C ‖u‖2
C([0,T ];X) µ(h) → 0, as h ↓ 0,

where µ(·) is given by (3.38). To estimate J1(t, h) we first extend ∂xK for all times
in the following way:

H(·, s) :=

{
∂xK(·, s), if s ∈ [0, T ],
0, if s ∈ R \ [0, T ].

We note that H ∈ L1(R2). In fact, by Lemma 3.9 we get
∫ ∫

|H(x, s)|dxds =

∫ T

0

‖∂xK(·, s)‖L1ds ≤ C µ(T ).

Then

J1(t, h) ≤ ‖u‖2
C([0,T ];X)

∫ t

0

‖∂xK(·, τ + h) − ∂xK(·, τ)‖L1dτ

≤ ‖u‖2
C([0,T ];X)

∫ ∫
|H(x, τ + h) −H(x, τ)|dxdτ → 0, as h ↓ 0,

where the last assertion follows from the continuity of translations in L1(R2).
Hence,

lim
h↓0

‖∂xD(·, t+ h) − ∂xD(·, t)‖L∞ = 0. (3.40)

It follows from (3.39) and (3.40) that limh↓0 ‖D(·, t+ h) −D(·, t)‖C1
b

= 0.

The case when t ∈ (0, T ] and h < 0 can be shown similarly to the previous case.
This finishes the proof of the lemma. �

The next theorem is the main result of this section, it states local-in-time exis-
tence of the solution of the integral equation associated to the IVP (3.1).

Theorem 3.1. Suppose u0 ∈ X. Then there exist T = T (‖u0‖C1
b
) > 0 and a unique

function u ∈ C([0, T ];X) satisfying the integral equation

u(·, t) = E(t)u0(·) −
1

2

∫ t

0

E(t− s)∂xu
2(·, s)ds, (3.41)

where E(t) is defined by (3.6).

Proof. Let M := 1 + 2‖u0‖C1
b
. Let T > 0 be fixed. T will be suitably chosen later.

We now consider the nonlinear operator A given by

(Af)(·, t) := E(t)u0(·) −
1

2

∫ t

0

E(t− s)∂xf
2(·, s)ds,
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defined on the complete metric space

ΘM
T :=

{
f ∈ C([0, T ];X); sup

t∈[0,T ]

‖f(·, t)‖C1
b
≤M

}
.

Let f ∈ ΘM
T . It follows from Lemmas 3.11 and 3.12 that Af ∈ C([0, T ];X).

We will now prove that we can choose T = T̃ > 0 small enough such that
A(ΘM

T̃
) ⊂ ΘM

T̃
. Suppose f ∈ ΘM

T . By Lemma 3.11 we know that limh↓0 ‖(E(h) −
1)u0‖C1

b
= 0. Then there exists δ = δ(‖u0‖C1

b
) > 0 such that if 0 ≤ h ≤ δ, then

‖E(h)u0‖C1
b
≤ 1

2

(
1 + 3‖u0‖C1

b

)
. If T ≤ δ, using Lemmas 3.6 and 3.9, and (3.33),

we get

‖(Af)(·, t)‖C1
b
≤ 1

2

(
1 + 3‖u0‖C1

b

)

+
1

2
√

2π

∫ t

0

(
‖K(·, t− t′)‖L1 + ‖∂xK(·, t− t′)‖L1

)
‖f‖2

C([0,T ];X)dt
′

≤ 1

2

(
1 + 3‖u0‖C1

b

)
+M2C

∫ t

0

[ 1√
τ

+ τ2e
4
27

a3τ
]
dτ

≤ 1

2

(
1 + 3‖u0‖C1

b

)
+M2C µ(T ),

for all t ∈ [0, T ], where µ(·) is given by (3.38). Take T † > 0 such that M2C µ(T †) ≤
1
2

(
1 + ‖u0‖C1

b

)
. Thus, if T̃ ∈ (0,min{δ, T †}], then ‖(Af)(·, t)‖C1

b
≤ M for all

t ∈ [0, T̃ ].

Finally, we will prove that there exists T ′ ∈ (0, T̃ ] such that A is contractive on

ΘM
T ′ . Suppose that f, g ∈ ΘM

T̃
. Let t ∈ [0, T̃ ]. Then

‖(Af)(·, t) − (Ag)(·, t)‖C1
b

≤ C

∫ t

0

(
‖K(·, t− t′)‖L1 + ‖∂xK(·, t− t′)‖L1

)
‖∂xf

2(·, t′) − ∂xg
2(·, t′)‖L∞dt′

≤ C

∫ t

0

(
‖K(·, t− t′)‖L1 + ‖∂xK(·, t− t′)‖L1

)

×
[
‖f(·, t′)‖L∞‖∂x(f(·, t′) − g(·, t′))‖L∞ + ‖f(·, t′) − g(·, t′)‖L∞‖∂xg(·, t′)‖L∞

]
dt′

≤ CM‖f − g‖C([0,T̃ ];X) µ(t).

Taking T ′ ∈ (0, T̃ ] such that CM µ(T ′) < 1, it follows that A is a contraction on
ΘM

T ′ . Therefore, the mapping A has a unique fixed point u ∈ ΘM
T ′ which satisfies

equation (3.41) with T ′ = T ′(‖u0‖C1
b
) > 0. The unicity of the solution of equation

(3.41) in the class C([0, T ′];X) is a consequence of Proposition 3.1 below. �

The next proposition shows the continuous dependance of the solutions of equa-
tion (3.41) on the initial data.

Proposition 3.1. Suppose that u, v ∈ C([0, T ];X) are solutions of equation (3.41)
with initial data u0, v0 ∈ X respectively. Then for all t ∈ [0, T ] we have

‖u(·, t) − v(·, t)‖C1
b
≤ C(T )eαt‖u0 − v0‖C1

b
, (3.42)

where α := C̃2B(1
2 ,

1
2 ) and C(T ) := C′(T )(1 + 2C̃

√
T ), where C′(T ) is given by

(3.45) and C̃ = C(T, ‖u‖C([0,T ];X), ‖v‖C([0,T ];X)) is given by (3.47). Here B(·, ·)
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denotes the beta function defined by

B(x, y) :=

∫ 1

0

tx−1(1 − t)y−1dt,

for ℜ(x),ℜ(y) > 0.

Proof. Let t ∈ [0, T ]. We write w(·, t) := u(·, t) − v(·, t). Then

‖w(·, t)‖C1
b
≤ ‖E(t)(u0 − v0)‖C1

b
+

1

2

∥∥∥
∫ t

0

E(t− t′)
(
∂xu

2(·, t′) − ∂xv
2(·, t′)

)
dt′

∥∥∥
C1

b

.

(3.43)
It follows from Lemma 3.11 that

‖E(t)(u0 − v0)‖C1
b
≤ C′(T )‖u0 − v0‖C1

b
, (3.44)

where

C′(T ) := C ·
(
1 + T 2e

4
27

a3T
)
. (3.45)

Moreover, by Lemmas 3.6 and 3.9, we get

1

2

∥∥∥
∫ t

0

E(t− t′)
(
∂xu

2(·, t′) − ∂xv
2(·, t′)

)
dt′

∥∥∥
C1

b

≤ ‖u‖C([0,T ];X) + ‖v‖C([0,T ];X)√
2π

×
∫ t

0

(
‖K(·, t− t′)‖L1 + ‖∂xK(·, t− t′)‖L1

)
‖w(·, t′)‖C1

b
dt′

≤ C ·
(
‖u‖C([0,T ];X) + ‖v‖C([0,T ];X)

)

×
∫ t

0

[
1 + (t− t′)2e

4
27

a3(t−t′) +
1√
t− t′

]
‖w(·, t′)‖C1

b
dt′

≤ C̃

∫ t

0

‖w(·, t′)‖C1
b√

t− t′
dt′, (3.46)

where

C̃ := C · (1 + T 5/2e
4
27

a3T )
(
‖u‖C([0,T ];X) + ‖v‖C([0,T ];X)

)
. (3.47)

Thus, it follows from (3.43), (3.44) and (3.46) that

‖w(·, t)‖C1
b
≤ C′(T )‖u0 − v0‖C1

b
+ C̃

∫ t

0

‖w(·, t′)‖C1
b√

t− t′
dt′.

Then

‖w(·, t)‖C1
b
≤ C′(T )‖u0 − v0‖C1

b

+C̃

∫ t

0

1√
t− t′

[
C′(T )‖u0 − v0‖C1

b
+ C̃

∫ t′

0

‖w(·, r)‖C1
b√

t′ − r
dr

]
dt′

≤ C′(T )(1 + 2C̃
√
T )‖u0 − v0‖C1

b
+ C̃2

∫ t

0

∫ t

r

‖w(·, r)‖C1
b√

t− t′
√
t′ − r

dt′dr

= C′(T )(1 + 2C̃
√
T )‖u0 − v0‖C1

b
+ C̃2B

(1

2
,
1

2

) ∫ t

0

‖w(·, r)‖C1
b
dr.

The proposition now follows by applying Gronwall’s inequality to the last expres-
sion. �
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3.3. Future Work. Some interesting problems remain, though: the study of the
global well-posedness for the IVP (3.1) with initial data belonging to the space X ,
and the nonlinear stability theory of the travelling-wave solution of equation (1.1).
These two problems will be addressed elsewhere.
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