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1 Introduction and main results
I a) Let (Bt, t ≥ 0) denote a one-dimensional Brownian motion starting
from 0, and let

Et = exp

(
Bt −

t

2

)
, (t ≥ 0)

A reduced form of the celebrated Black-Scholes formula is the following.

(1K) E[(Et −K)+] = N
(
−`n K√

t
+

√
t

2

)
−KN

(
−`n K√

t
−
√

t

2

)
where K ≥ 0, and as usual:

N (x) =
1√
2π

∫ x

−∞
dy exp

(
−y2

2

)
In fact, formula (1K) may be split into two parts:

(1+
K) E[Et 1Et>K ] = N

(
−`n K√

t
+

√
t

2

)

(1−K) K P (Et > K) = KN
(
−`n K√

t
−
√

t

2

)
As noted in Section 5 of [1], formula (1±K) is obtained in an elementary
manner, after performing the change of probability:

P ′
|Ft

= Et•P|Ft

which transforms (Bt) in (Bt + t) hence
(
Bt − t

2

)
in
(
Bt + t

2

)
.

I b) In this Note, we give and discuss a different representation of (1±K).

Theorem 1. For any K ≥ 0, there are the representations:

(2−K) E[Et 1(Et>K)]−K P (Et > K) = P
(
G

(1/2)
(`n K) ≤ t

)
(K ≥ 0)

(2+
K≥1) E[Et 1Et>K ] + K P (Et > K) = P

(
T

(1/2)
(`n K) ≤ t

)
(K ≥ 1)

(2+
K≤1) E[Et 1Et<K ] + K P (Et < K) = P

(
T

(1/2)
(`n K) ≤ t

)
(0 ≤ K ≤ 1)
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or, equivalently:

(2++
K≤1) E[Et 1Et>K ] + K P (Et > K) = K + P

(
T

(1/2)
(`n K) > t

)
(0 ≤ K ≤ 1)

where, for ν ∈ R, and B
(ν)
t ≡ Bt + νt, we write:

T (ν)
a = inf{t : B

(ν)
t = a} ; G(ν)

a = sup{t : B
(ν)
t = a}

Comment and Complements about Theorem 1:
(i) Our motivation to prove formulae such as (2−K) was our desire to ob-
tain an expression on the RHS showing in a clear manner that the LHS
(= E((Et −K)+)) is an increasing function of t.
This is not clear from (1K), although this property of increase is a conse-
quence of the submartingale property of (Et −K)+; see Section 4 for a more
extended discussion.

(ii) Obviously, an equivalent presentation of the "system" (2±K) is, for K ≥ 1:

(3+
K≥1) E[Et 1(Et>K)] =

1

2

{
P
(
T

(1/2)
(`n K) ≤ t

)
+ P

(
G

(1/2)
(`n K) ≤ t

)}

(3−K≥1) K P (Et > K) =
1

2

{
P
(
T

(1/2)
(`n K) ≤ t

)
− P

(
G

(1/2)
(`n K) ≤ t

)}
=

1

2
P
(
T

(1/2)
(`n K) ≤ t ≤ G

(1/2)
(`n K)

)
and, for 0 ≤ K ≤ 1:

(3+
K≤1) E[Et 1(Et>K)] =

1

2

{
1 + K − P

(
T

(1/2)
(`n K) ≤ t ≤ G

(1/2)
(`n K)

)}

(3−K≤1) K P (Et > K) =
1

2

{
1 + K −

[
P
(
T

(1/2)
(`n K) ≤ t

)
+ P

(
G

(1/2)
(`n K) ≤ t

)]}
(iii) In order to give formulae (2±K) an "explicit" character, we now recall
the distributions of

T (ν)
a = inf{t : B

(ν)
t = a} and G(ν)

a = sup{t : B
(ν)
t = a} ,

for ν > 0, and a > 0 (these formulae will then be used with ν = 1
2

and
a = `n K): denoting by p

(ν)
t (a) the density of B

(ν)
t , we have:

(4) P (T (ν)
a ∈ dt) =

(a

t

)
p

(ν)
t (a)dt ≡ a√

2πt3
exp

(
− 1

2t
(a− νt)2

)
dt
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whereas

(5) P (G(ν)
a ∈ dt) = νp

(ν)
t (a)dt ≡ ν√

2πt
exp

(
− 1

2t
(a− νt)2

)
dt

Formula (4) may be obtained from the combination of (4) for ν = 0, which is
very well known, followed by an application of the Cameron-Martin relation-
ship between the laws of B(ν) and B. Formula (5) is a particular case of a
more general formula for last passage times of transient diffusions, obtained
in Pitman-Yor [3].

(iv) Although this is not strictly necessary at this point (but will be useful
in our proof of Theorem 1), we also present the distributions of T

(−ν)
a and

G
(−ν)
a , for a ≥ 0.

In fact, they may be obtained easily from those of T
(ν)
a and G

(ν)
a thanks to

the Cameron-Martin absolute continuity relationships:

(6)
W

(−ν)
|FTa∩(Ta<∞) = exp(−2νa) •W

(ν)
|FTa

W
(−ν)
|FGa∩(Ga>0) = exp(−2νa) •W

(ν)
|FGa

where, here, W (µ) denotes the law of (Bt + µt, t ≥ 0) on canonical space,
and Ta, resp. Ga, is the first, resp. last, hitting time of a by the coordinate
process.
Thus, we deduce from formulae (6), (4) and (5) that:

P (G(−ν)
a > 0) = P (T (−ν)

a < ∞) = exp(−2νa)

whereas:

(7)
P (T

(−ν)
a ∈ dt) =

(
a
t

)
p

(−ν)
t (a)dt = a√

2πt3
exp

(
− 1

2t
(a + νt)2) dt

P (G
(−ν)
a ∈ dt) = νp

(−ν)
t (a)dt = ν√

2πt
exp

(
− 1

2t
(a + νt)2) dt

I c) Organisation of the remainder of the paper:

• In Section 2, we prove Theorem 1, independently from formulae (1±K)

• In Section 3, we give an elementary proof of the agreement between
formulae (1±K) and (3±K)

• Section 4 concludes, by setting the matter in a broader context.
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2 Proof of Theorem 1
Clearly, in order to prove Theorem 1, it now suffices to prove (2−K), (3−K≥1)
and (2+

K≤1).

I a) Proof of (2−K) (for any K ≥ 0)
We shall show that

E[(Et −K)+] =
(i)

K P
(
0 < G

(−1/2)
(`n K) ≤ t

)
=
(ii)

P
(
G

(+1/2)
(`n K) ≤ t

)
The proof of (ii) follows from the relationship between the laws of G

(−ν)
a and

G
(ν)
a as discussed in Section 1; namely:

P (G(−ν)
a > 0) = exp(−2νa) and P (G(−ν)

a ∈ dt|G(−ν)
a > 0) = P (G(ν)

a ∈ dt)

For the proof of (i), we rely upon the following formula

(8) P (G(µ)
a ≥ t|Ft) =

(
exp(2µa)

exp(2µB
(µ)
t )

)
∧ 1

which is valid for all µ ∈ R; this is a particular case of the results for last
passage times of a transient real-valued diffusion, as discussed in Pitman-Yor
[3].
In particular, for µ = −ν, ν > 0, we get:

exp(2νa)P (0 < G(−ν)
a ≤ t|Ft) = (exp(2νB

(−ν)
t )− exp(2νa))+

This obviously proves (i), by taking a = (`n K), ν = 1/2.

I b) Proof of (3−K≥1) (for K ≥ 1)
Using again formula (8), we see that (3−K≥1) is equivalent to:

(9K) K P

(
Bt −

t

2
> (`n K)

)
=

1

2
E

(
1

(T
(1/2)
(`n K)

≤t)
•

(
K

exp
(
Bt + 1

2

) ∧ 1

))

We now use the Cameron-Martin relationship on both sides to reduce the
statement of (9K) to a statement about standard Brownian motion (Bt), for
which we denote: Mt = sups≤t Bs. Thus, we find that (9K) is equivalent to:

(10K) K E

(
1(Bt>(`n K)) • exp

(
−Bt

2

))
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=
1

2
E

(
1(Mt>(`n K)) •

(
K

exp(Bt)
∧ 1

)
• exp

(
Bt

2

))
We now decompose the RHS of (10K) in a sum of two quantities:

1

2


E
[
1(Mt>(`n K)) • 1(Bt>`n K) •K exp

(
−Bt

2

)]
+E

[
1(Mt>`n K) • 1(Bt<`n K) • exp

(
+Bt

2

)]


Thus, (10K) now gets simplified to the equivalent form:

(11K)
K

2
E

(
1(Bt>(`n K)) • exp

(
−Bt

2

))

=
1

2
E

(
1(Mt>(`n K)) • 1(Bt<`n K) • exp

(
Bt

2

))
which, taking x = (`n K), may be written as:

(12x) E

(
1(Bt>x) • exp

(
x− Bt

2

))
= E

(
1(Mt>x>Bt) • exp

(
Bt

2

))
We now show (12x), from the right to the left, as a consequence of the
reflection principle:
conditionally on FTx , and Tx < t, we have:

Bt − x = B̂(t−Tx) , with B̂ independent from FTx ;

hence, under this condition, the reflection principle boils down to:

(z) Bt − x
(law)
= −(Bt − x)

Thus, the RHS of (12x) is:

E

(
1(Tx<t) • 1(Bt−x<0) • exp

(
1

2
{x + (Bt − x)}

))
=

(from (z))
E

(
1(Tx<t) • 1(Bt−x<0) • exp

(
1

2
{x− (Bt − x)}

))
= E

(
1(Bt>x) • exp

(
x− Bt

2

))
, which is the LHS of (12x)

This proves (3K≥1), and, with (2−K), (2+
K≥1).
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I c) We now prove that (2+
K≥1) implies (2+

K≤1) (for 0 ≤ K ≤ 1):
We introduce the probability P ′ such that:

P ′
Ft

= Et •PFt

We note that, under P ′,
1

Et

:= Êt = exp

(
B̂t −

t

2

)
, for a new Brownian

motion (B̂t, t ≥ 0). Thus, the LHS of (2+
K≤1) writes:

P ′(Et < K) + K P ′(Êt − 1(Et<K))

= P ′
(
Êt >

1

K

)
+ K E ′

(
1(bEt>

1
K

)

)
= K E ′

(
1(bEt>

1
K

)

)
+

1

K
P ′
(
Êt >

1

K

)
= K P

(
T

(1/2)
(`n K) ≤ t

)
(from(2+

1
K

))

= K P
(
T

(−1/2)
(`n K) ≤ t

)
(by symmetry)

= P
(
T

(1/2)
(`n K) ≤ t

)
(from(6))

I d) Finally, we observe that (2+
K≤1) is equivalent to (2++

K≤1), since:

E(Et1(Et<K)) + K P (Et < K)

= 1− E(Et1(Et>K)) + K(1− P (Et > K)) (since E(Et) = 1)

= 1 + K − {E(Et1(Et>K)) + K P (Et > K)}

3 On the agreement between the classical Black-
Scholes formula (1±K) and our main result

I a) We now check in an elementary manner formulae (2±K) by comparing
their LHS, as given from the "traditional" Black-Scholes formulae (1±K), with
their RHS, as given by (4) and (5).

I b) The case K ≥ 1. Since both sides of (2−K) and (2+
K≥1) are equal to

0 for t = 0, we need only check that the derivatives in t are equal; thus, our
task is to show:

(13−K)
∂

∂t

{
N
(
−`n K√

t
+

√
t

2

)
−KN

(
−`n K√

t
−
√

t

2

)}
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=

(
K

2

)
1√
2πt

exp

(
− 1

2t

(
(`n K) +

t

2

)2
)

(13+
K≥1)

∂

∂t

{
N
(
−`n K√

t
+

√
t

2

)
+ KN

(
−`n K√

t
−
√

t

2

)}

= K(`n K)
1√
2πt3

exp

(
− 1

2t

(
(`n K) +

t

2

)2
)

(We also see on these expressions the relationships between p
(−1/2)
t (x) and

p
(+1/2)
t (x)).

To prove (13−K) and (13+
K≥1), we compute:

• ∂

∂t

(
N
(
−`n K√

t
+

√
t

2

))
=

√
K√
2π

exp

(
−1

2

(
(`n K)2

t
+

t

4

))(
∂

∂t

{
−(`n K)√

t
+

√
t

2

})
• K

∂

∂t

(
N
(
−`n K√

t
−
√

t

2

))
=

√
K√
2π

exp

(
−1

2

(
(`n K)2

t
+

t

4

))(
∂

∂t

{
−(`n K)√

t
−
√

t

2

})
and (13−K) and (13+

K≥1) are then obtained by elementary algebraic manipu-
lations. (In fact, it is these very manipulations which led us to believe in the
truth of Theorem 1!!).

I c) The case 0 ≤ K ≤ 1. Since both sides of (2++
K≤1) are equal to 1 + K for

t = 0, it suffices to prove, for K ≤ 1:

∂

∂ t

{
N
(
− log K√

t
+

√
t

2

)
+ KN

(
− log K√

t
−
√

t

2

)}
=

∂

∂ t
P
(
T

(1/2)
(`n K) > t

)
and this latter relation follows immediately from the computations done in
point b) above and from (7).
Note also that (2+

K≥1) and (2+
K≤1) coincide for K = 1.
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4 Further remarks and conclusion
I a) Easy variants of formulae (2±K) may be written, e.g. by using the scaling
property of Brownian motion, so that T

(ν)
a and G

(ν)
a appear on the RHS of

(2±K); however, writing down these variants would only complicate unneces-
sarily these formulae.

I b) We recall that, as a consequence of the time inversion property of
Brownian motion, there are the relations:

(T (ν)
a , G(ν)

a )
(law)
=

(
1

G
(a)
ν

,
1

T
(a)
ν

)
(see e.g., Pitman-Yor [3] for a more general discussion).
In particular, for a = 0, one gets:

G
(ν)
0

(law)
=

1

T
(0)
ν

(law)
=

B2
1

ν2

In particular, formula (2−K=1) becomes:

(141) E[(Et − 1)+] = E[(Et − 1)−] = P (4B2
1 ≤ t)

which allowed us to answer M. Qian’s question [4]:
is there a simple formula for:∫ ∞

0

θ(dt)E[(Et − 1)±]

where θ(dt) is a probability on R+ ?
From (141), we easily obtain:

(15)
∫ ∞

0

θ(dt)E[(Et − 1)±] = E[θ(4B2
1)]

where θ(x) = θ([x,∞)) is the tail of θ.
To particularise even more, we give the explicit form of the Laplace transform:

(16)
∫ ∞

0

dt e−λt E[(Et − 1)±] =
1

λ
E[exp(−λ(4B2

1))]

=
1

λ

1√
1 + 8λ

9



It is this question which set us on the general quest for a representation of

E[(Et −K)+]

as a cumulative distribution function in t.

I c) We come back to the time inversion property of BM, in order to throw
another light upon our main result (2−K), which relates the European call
price with the cumulative function of last Brownian passage times. (This
paragraph has been partly inspired by unpublished notes by Peter Carr [2].)
Indeed, a variant of (2−K) is the following:
for every t ≥ 0, K ≥ 0, and φ : C([0, t]) → R+, measurable,

(17) E[φ(Bu, u ≤ t)(K − Et)
+] = K E[φ(Bu, u ≤ t)1(GK≤t)]

where GK = sup{u : Eu = K}.
Writing (17) in terms of the Brownian motion (B̂v, v ≥ 0) such that: Bu =

uB̂(1/u), and setting s = 1/t, it is clearly seen that (17) is equivalent to:

K P (T̂
(−`nK)
1/2 ≥ s|B̂s) =

(
K − exp

(
1

s
B̂s −

1

2s

))+

where: T̂
(ν)
a = inf{u : B̂u + νu = a}.

Since hats are no longer necessary for our purpose, we drop them, and we
now look for an independent proof of:

(18) P (T
(−`nK)
1/2 ≥ s|Bs = x) =

(
1− 1

K
exp

(
x

s
− 1

2s

))+

On the LHS of (18), we may replace (Bs = x) by (Bs−s(`nK) = x−s(`nK)).
Now, as a consequence of the Cameron-Martin relationship, the conditional
expectation:

E[F (Bu − νu, u ≤ s)|Bs − νs = y]

does not depend on ν; hence, (18) is equivalent to:

P (T
(−`nK)
1/2 ≥ s|Bs = x− s(`nK)) =

(
1− 1

K
exp

(
x− 1

2

s

))+

which simplifies to:

P (sup
u≤s

Bu <
1

2
|Bs = y) =

(
1− exp

(
y − 1

2

s

))+

10



or, by scaling:

P (sup
u≤1

Bu <
1

2
√

s
|B1 =

y√
s
) =

(
1− exp

(
1√
s

(
y√
s
− 1

2
√

s

)))+

This is equivalent to:

(19) P (sup
u≤1

Bu < σ|B1 = y) = (1− exp(2σ(y − σ))+

for σ ≥ 0, and y ∈ R.
This formula is trivial for σ < y, and, for σ ≥ y, it follows from the classical
formula:

(20) P (sup
u≤1

Bu ∈ dσ,B1 ∈ da) =
da dσ√

2π
2(2σ − a)e−

(2σ−a)2

2 1{a<σ;σ≥0}

I d) In a future work, we plan to study more generally how quantities such
as the calls and puts:

E[(St −K)+] and E[(St −K)−]

associated with a general R+-valued continuous local martingale (St, t ≥ 0)
may be written in terms of cumulative functions.

I e) In [1], the authors present eight different approaches to the Black-
Scholes formula, among which the change of numéraire approach (Section
5 of [1]), and the local time approach (Section 6 of [1]). This local time
approach, together with (2−K) yields the relationship:

(21) P
(
G

(1/2)
(`n K) ≤ t

)
=

(
1

2

)
E[LK

t ]

where (LK
t , t ≥ 0) denotes the local time at level K of (Et, t ≥ 0). It is this

kind of relationship (21) which is central in the obtention in [3] of a general
expression for the law of a last passage time of a transient diffusion. However,
to our knowledge, despite the remarkable survey [1] of methods leading to
the Black-Scholes formula, no interpretation of this formula seems to have
been made in terms of last passage times distributions.
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