
HAL Id: hal-00257372
https://hal.science/hal-00257372v1

Submitted on 19 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topological Model for 3D Image Representation:
Definition and Incremental Extraction Algorithm

Guillaume Damiand

To cite this version:
Guillaume Damiand. Topological Model for 3D Image Representation: Definition and Incremental
Extraction Algorithm. Computer Vision and Image Understanding, 2008, 109 (3), pp. 260-289.
�10.1016/j.cviu.2007.09.007�. �hal-00257372�

https://hal.science/hal-00257372v1
https://hal.archives-ouvertes.fr


Topological Model for 3D Image

Representation: Definition and Incremental

Extraction Algorithm

Guillaume Damiand

SIC, bât SP2MI, BP 30179, 86962 Chasseneuil Cedex, France

Abstract

In this paper, we define the three-dimensional topological map, a model which rep-
resents both the topological and geometrical information of a three-dimensional
labeled image. Since this model describes the image’s topology in a minimal way,
we can use it to define efficient image processing algorithms. The topological map
is the last level of map hierarchy. Each level represents the region boundaries of the
image and is defined from the previous level in the hierarchy, thus giving a simple
constructive definition. This model is an extension of the similar model defined for
2D images. Progressive definition based on successive map levels allows us to extend
this model to higher dimension. Moreover, with progressive definition, we can study
each level separately. This simplifies the study of disconnection cases and the proofs
of topological map properties. Finally, we provide an incremental extraction algo-
rithm which extracts any map of the hierarchy in a single image scan. Moreover, we
show that this algorithm is very efficient by giving the results of our experiments
made on artificial images.

Key words: topological model, 3D image representation, intervoxel boundaries,
combinatorial map, structure for image processing

1 Introduction

In this paper we present a combinatorial structure which describes intervoxel
boundaries of a three-dimensional labeled image: the topological map. First we
give a formal definition of the topological map, then we propose an incremental

⋆ Article published in Computer Vision and Image Understanding, 109(3), pp. 260-
289, March 2008, doi:10.1016/j.cviu.2007.09.007

Email address: damiand@sic.univ-poitiers.fr (Guillaume Damiand).



algorithm which builds this structure from a labeled image by a single image
scan.

The goal of such structuring is to propose efficient algorithms for image pro-
cessing. Indeed, the efficiency of such algorithms depends on the data struc-
ture used and depends on the way that information can be retrieved. It is
indeed necessary to be able to efficiently compute the geometrical or topologi-
cal features that are used during algorithms. This is the case in many different
applications, such as image segmentation, feature extraction, or indexing tech-
niques based on matching algorithms. . .

There are many approaches that have studied the definition of such a struc-
ture to describe 2D images [44,35,24,12,42,7,9,4]. Topological data structures
describe the image as a set of elements and their relations. The most famous
example is the Region Adjacency Graph (RAG) [44] which is a graph which
describes each region by a vertex, and where neighboring regions are connected
by an edge. This neighboring information is crucial for example to implement
an algorithm of image segmentation based on region growing. Indeed, with a
RAG, one step of the segmentation algorithm can be computed in O(n + m)
(with n the number of vertices and m the number of edges), while the same
algorithm has O(n2) complexity without RAG 1 .

Moreover, topological data structures can also be used for matching algo-
rithms, for recognition purposes. In this type of application, we need to char-
acterize objects in order to recognize them. For that, many different features
need to be combined: some geometrical features (like the shape of the object,
its size, its color. . . ) and some topological features (like the number of faces
which compose the object, its number of neighbors, the Euler characteristic
of each surface. . . ).

In order to characterize each object as precisely as possible and to facilitate
the distinction between objects, the topological data structure must contain
as much information as possible. It is not the case with RAG which does
not describe multiple adjacencies (so there is no difference between a region
adjacent once or twice to another region). It does not make the difference
between adjacency and inclusion, does not describe the order of the edges
around a vertex. It does not describe the faces but only vertices and edges.
For all of these reasons, it is not unique, i.e. two different images could be
described by the same RAG [34].

To solve these problems, the RAG model has been extended, for instance in the
dual-graph structure [35,37]. This structure is composed of two multi-graphs
describing inclusion relations. The first graph is equivalent to the RAG, but

1 With a RAG, given one region, we can run through its neighboring regions in
linear time, while we need to consider all regions without a RAG.

2



it has got multi-edges and self-loops in order to describe multi-adjacency. The
second graph is the dual of the first one. In order to avoid disconnection,
edges are added between distinct boundaries of the same region in the pri-
mal graph. These special edges become loops in the dual graph. This allows
the differentiation between relations of inclusion and relations of adjacency.
Moreover, dual graphs allow, in general cases, to retrieve the order of regions
around a given region. But this is not the case for particular configurations,
and thus two images that are not topologically equivalent can have the same
dual graphs. Another drawback of this structure is that each operation has to
be applied twice (once to the primal graph and a second time to the dual one)
in order to maintain the correspondence between both graphs. Finally, this
structure is only defined in 2D and its extension in 3D is not straightforward.
We can cite also approaches based on Reeb graph [43], a graph which allows
to represent the topology of a surface. But these approaches cannot be used
to represent the topology of labeled images, only to deal with the surface of a
single 3D object. Indeed, a Reeb graph represents the topological skeleton of
the 3D object. Moreover, Reeb graph depends also on the shape of the object
and thus does not depend only on its topology.

There are many different approaches [21,23,24,11,12,7,1,10,17] that have been
proposed in order to give a solution to the problem of defining a structure,
describing all the information which results from region segmentation by us-
ing combinatorial maps. The basic principle of these approaches is to use a
combinatorial map to describe the topology of the image. Indeed, the com-
binatorial map is a good model to describe a space subdivision. It is defined
in any dimension and describes all the cells of the subdivision and all the
relations of adjacency. Moreover, the combinatorial map can be linked to a
geometrical model in order to describe the object’s geometry. Lastly, it is an
efficient model for retrieving and for updating information contained in the
image.

These different structures have been first defined in 2D, but the need to work
with images of higher dimension and specially in 3D has led to study how to
extend previous works to higher dimensions. There are mainly two approaches
that have been proposed to solve this problem. The first one [9,8] proposes a
data structure based on a combinatorial map, that allows to describe a labeled
image. This approach has different drawbacks: the first one is that it uses an
implicit description of the map, which induces a topological model which is not
minimal in the number of cells. This is an important drawback since the map
is not representative of a given object. Another drawback is that some specific
configurations of voxels cannot be encoded (if two voxels with same label are
adjacent by an edge) and must be rearranged before extracting the topological
map. This requires heavy pre-processing which is both time-consuming and
unsatisfactory as it modifies the initial image.

3



The second approach is the one that we present in this paper, and which
was already partially presented in [2,3]. This approach is also based on the
combinatorial map, but we use an explicit description which allows to obtain
the minimal model in the number of cells that we call a topological map.
Moreover, this model does not depend on the geometry of described objects.
This is important in order to characterize objects by topological invariant. At
last, our model can describe any type of image without any pre-processing.
The only limit used in this work is to describe images with 6-connected labeled
regions. But this is only an optimization used to retrieve directly, from a given
voxel, its belonging region without additional structure. This limit can be
removed and we have already extended this work in order to describe any type
of image. Moreover, given an image, it is possible to relabel each 6-connected
region with a distinct label without modifying the initial image.

This paper is organized as follows. Firstly, in Section 2, we give a brief presen-
tation of the 3D combinatorial map which is the basic model used in this work,
and we also introduce the notations used in this paper. Then, in Section 3, we
present the removal operations which are the basic operations used to define
the topological map. This definition is given in Section 4 by using the notion
of simplification level. This model is mainly a topological model, but we also
want to keep the description of the shape of regions. We show in Section 5
how the topological map is linked with a geometrical model, here a matrix of
intervoxel elements. Then we present an incremental extraction algorithm in
Section 6 which computes the topological map with only one image scan. We
present some experimental results in Section 7. Finally we conclude this paper
in Section 8 and give some perspectives for future works.

2 Combinatorial Maps and Images

2.1 Combinatorial Maps

The subdivision of a 3D topological space is a partition of the space into
4 subsets whose elements are 0D, 1D, 2D and 3D cells (respectively called
vertices, edges, faces and volumes, and noted i -cell for a i -dimensional cell).
Boundary relations are defined between these cells, where the boundary of
a i -cell is a set of (j<i)-cells. Two cells are incident if one cell belongs to
the boundary of the other cell, and two i -cells are adjacent if they are both
incident to the same (i-1)-cell.

A combinatorial map is a mathematical model describing the subdivision of
a space, based on a planar map [22,48,29,13,14]. A combinatorial map en-
codes all the cells of the subdivision and all the relations of incidence and

4



A B C D

Fig. 1. The successive decompositions of a 3D space subdivision to obtain the corre-
sponding 3-map. (A) A 3D space subdivision. (B) Disjoined volumes. (C) Disjoined
faces. (D) Disjoined edges.

adjacency between the different cells, and so describes the topology of this
space. A combinatorial map can be defined formally for any dimension, and
we call n-map an n-dimensional combinatorial map. An n-map can encode
an orientable quasi-manifold 2 subdivision of an n-dimensional space without
boundary. Combinatorial maps were generalized in [38,40] in order to encode
all n-dimensional subdivisions whether they are orientable or not and whether
they are with or without boundary ([39] established a connection between
maps and several other models).

A combinatorial map can be obtained intuitively by successive breakdowns as
we can see in Fig. 1. To describe the 3D space subdivision shown in Fig. 1A,
we first decompose the volumes of this subdivision (Fig. 1B) then the faces
of these volumes (Fig. 1C) and then the edges of these faces (Fig. 1D). At
each step, we keep the adjacency information between the broken down cells
(drawn by black segments, only partially for the last step). The elements
obtained after the last decomposition are called darts and are the basic only
elements used in the definition of combinatorial map. In order to obtain the
map, each adjacency relation is reported onto darts. βi is the relation between
two darts which describes an adjacency between two i -dimensional cells. Let
us see now the formal definition of a 3D combinatorial map that we can find
for example in [39]:

Definition 1 (3D combinatorial map) A 3D combinatorial map, (or 3-
map) is a 4-tuple M = (D, β1, β2, β3) where:

(1) D is a finite set of darts;

2 Intuitively, a n-dimensional quasi-manifold, called sometimes n-pseudomanifold,
is an nD space subdivision which can be obtained by gluing together n-dimensional
cells along (n-1)-dimensional cells. In such subdivision, an (n-1)-cell cannot belong
to the boundary of more than two n-cells.

5



(2) β1 is a permutation 3 on D;
(3) β2 and β3 are two involutions 4 on D.
(4) β1 ◦ β3 is an involution 5 .

The different constraints of the 3-map definition (β1 is a permutation, other βi

are involutions and β1◦β3 is an involution) ensures the quasi-manifold property
of a described subdivision. For example, intuitively the last constraint says
that two volumes cannot be partially adjacent. If two volumes are adjacent
with regard to a face, then they are also adjacent with regard to each edge of
the face.

Two darts d1 and d2 are i -sewn iff βi(d1) = d2 (1 ≤ i ≤ n). The i -sewing
operation puts two darts d1 and d2 in relation to βi by keeping the property
of involution for i > 1. Indeed, in this case, i -sewing operation involves two
modifications : βi(d1) = d2 and βi(d2) = d1, while for i = 1 there is only the
first modification since β1 is a permutation.

Note 1 In the following, we denote:

(1) β0 for β−1

1 ;
(2) βji for βi ◦ βj (we first apply βj then βi, the permutations are applied in

the same order as read in the notation βji).

We present an example of a 3-map in Fig. 2B, and the corresponding subdi-
vision in Fig. 2A. The β1 relation connects an oriented edge and the following
oriented edge incident to the same face and the same volume, the β2 relation
connects the two faces incident to the same edge and the same volume, and
the β3 relation connects the two volumes incident to the same edge and the
same face. In order to simplify the figures, we use the graphical convention
presented in Fig. 2B where the βi are not explicitly drawn. Each dart is drawn
by an arrow that shows the face orientation. With this orientation we can
retrieve for each dart, the following dart on the same face and so deduce the
β1 permutation. Moreover, two darts 2-sewn or 3-sewn are drawn near and
parallel and in reverse orientation, and thus the involutions can be deduced
from the graphical convention.

Within the combinatorial map framework, all cells of the subdivision are de-
scribed implicitly using the notion of orbit :

Definition 2 (orbit) Let Φ = {f1, . . . , fk} be a finite set of permutations on
D. We denote < Φ > the permutation group generated by Φ. This is the set

3 A permutation on a set S is a one to one mapping from S onto S.
4 An involution f on a set S is a one to one mapping from S onto S such that
f = f−1.
5 β1 ◦ β3 is the composition of both permutations: (β1 ◦ β3)(x) = β1(β3(x)).

6



4

1

3

2

A B

Fig. 2. A 3D combinatorial map example. (A) A 3D subdivision. (B) Implicit draw-
ing of the corresponding combinatorial map. βi applications are not explicitly drawn
but can be (generally) deduced from the shape of the darts. Darts are drawn by
black arrows which give the faces’ orientation (arrows are only partially drawn in
this figure). Two darts 1-sewn are drawn consecutively, two darts 2-sewn or 3-sewn
are drawn near, parallel and in reverse orientation. If necessary, βi applications are
explicitly drawn (for example if an application cannot be deduced from the shape
of darts). In this example, without the explicit description, we can retrieve that
β1(1) = 2, β2(1) = 3 and β3(2) = 4.

of permutations obtained by any composition and inversion of permutations
contained in Φ. The orbit of a dart d with respect to Φ is defined by < Φ >

(d) = {φ(d)|φ ∈< Φ >}.

Intuitively, an orbit < f1, . . . , fk > (d) is the set of darts that can be reached,
starting with d, and using all combinations of all the fi permutations. Given
a 3-map and a dart d, we can retrieve all the cells incident to d by using
particular orbits. The vertex (0-cell) incident to d is defined by < β21, β31 >

(d), the edge (1-cell) by < β2, β3 > (d), the face (2-cell) by < β1, β3 > (d), and
the volume (3-cell) by < β1, β2 > (d). A dart is said to be incident to a cell if
it belongs to the set of darts of the corresponding orbit. Moreover, two cells
are incident if the two corresponding orbits have a non-empty intersection.

Based on the cell definition, we can define the classical cell degree notion which
will be useful during this work.

Definition 3 (cell degree) The degree of a i-cell c is the number of distinct
(i+1)-cells incident to c.

Note that in a n-dimensional space, the degree is only defined for i -cells with
0 ≤ i < n. Indeed, (n+1)-cells do not exist in such a space. In this work,
we need another notion which is more specific to combinatorial models with
multiple incidence: the notion of local degree.

7



Definition 4 (local cell degree) The local degree of a i-cell c, is the sum
of the number of times of each distinct (i+1)-cell c’ incident to c, is incident
to c.

Intuitively, this notion corresponds to the classical notion of cell degree, but
considering cells locally, that is to say only in a small neighborhood around
the cell. To compute the degree of a cell, we count the number of distinct
(i+1)-cells incident to c, while to compute the local degree we count also the
number of times each distinct (i+1)-cell is incident to c.

The local degree of a i -cell c is always greater or equal to the degree of the
same i -cell, and both values are equal if there is no (i+1)-cell several times
incident to c. For example, if a vertex v is incident to a loop (a loop is an edge
incident twice to the same vertex, by using the notion already given of i -cell
and incidence relations in combinatorial map), the degree of v is 1 while the
local degree of v is 2.

A combinatorial map only describes the topology of the subdivision, and not
its geometry. But it is easy to add some geometric elements to some (even all)
orbits of the combinatorial map 6 . The separation of topological and geomet-
rical models is one of the main advantages of the combinatorial map. Indeed,
operations become easier to define if the modifications of the topological and
the geometrical model are separated. Indeed, we can usually breakdown an
operation into two distinct steps: first the topological modifications then the
geometrical ones.

2.2 Using Combinatorial Maps for Image Description

Let us here recall some notions. A voxel is a point of discrete space Z
3 associ-

ated with a value which could be a color, a grey level. . . . A three-dimensional
image is a finite set of voxels. In this work, we use combinatorial maps to
describe voxel sets of labeled images having the same values and which are 6-
connected. We use the classical notion of 6-connectivity because combinatorial
maps cannot describe non-manifold and so the 18 or 26-connectivity cannot
be considered without tricks. The label of a voxel is given by a label function
l : Z

3 ⇒ L which gives for each voxel its label (a value in the finite set L).

Definition 5 (labeled image) A labeled image is a set of labeled voxels
such as two voxels with the same label l belong to the same 6-connected com-
ponent of voxels with label l.

6 One example of a geometrical model associated with a combinatorial map consists
in linking to each dart of each topological vertex of the map, the coordinates of an
Euclidean space point.

8



Note that we can describe any type of image simply by labeling all the sets
of 6-connected voxels that have the same value, for example with a classical
connected component labeling algorithm. Considering only labeled images is
an optimization that allows us to retrieve immediately, given the label of a
voxel, the connected component it belongs to (but this work can be extended
without any problem in order to consider other types of images, and we have
already done this in some other works in 2D as for example in [16]).

We speak about region for a maximal set of voxels with the same labels.

Definition 6 (region) A region in a labeled image is a maximal set of voxels
having the same label.

Since we consider only labeled images, each region is a 6-connected set of
voxels. Two voxels with the same label belong to the same region, and two
different regions have two different labels. Note that we use only this property
for the inclusion tree (cf. Section 6.2) in order to use the label of regions as a
unique identifier.

To avoid any specific processing of voxels in the image border, we consider an
infinite region R0 that surrounds the image. Intuitively, this region contains
all the voxels of Z

3 that do not belong to the image. This infinite region allows
us to process any type of image, not only rectangular ones without holes. This
infinite region is also useful to define the notion of inclusion.

Definition 7 (inclusion) A region Ri is included in a region Rj if and only
if any 26-connected path going from a voxel of Ri to a voxel of R0 pass through
Rj.

Note that each region is at least included in the infinite region, and that this
relation is a partial order relation. We need to use the 26-connectivity to define
the inclusion relation since it is well known that in order to study the topology
of a region R with 6-connectivity, it is necessary to consider the complement
of R with 26-connectivity. This is necessary to get a correspondence between
the topology of R and the topology of its complement (see for example [33]).

A combinatorial map describes the boundaries of the regions contained in an
image. Several studies have been carried out on the notion of boundaries in a
discrete image and have shown that using a topology based on the intervoxel
notion [34,30,32,26,23] enables to define these boundaries so that they verify
classical topological properties, such as the Jordan theorem [33].

With the intervoxel framework, an image is not considered only as a matrix of
voxels, but as a subdivision of a 3-dimensional space in a set of unit elements:
voxels are unit cubes of the image, surfels the unit squares in between two
voxels, linels the unit segments in between two surfels (also called cracks),

9



pointel

surfel

voxel

linel

Fig. 3. All the type of elements in the intervoxel 3-dimensional space.

���
���
���
���

���
���
���
���

����
����
����

����
����
����

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

R1

R2
R3

R4

Fig. 4. Intervoxel boundaries. Region R1 is composed of 3 intervoxel boundaries:
an external boundary (light grey surfels, some of them are drawn in wire-frame in
order to see the interior of the region) and two internal boundaries: the first one
which is around regions R2 and R3 and the second one which is around region R4.

and pointels the point in between linels (or points). These different types of
elements can be seen in Fig. 3.

With these intervoxel elements, the boundary of a region is defined as a set of
adjacent surfels (see [34,30,45,27] for more precisions about intervoxel spaces
and about discrete surfaces). :

Definition 8 (intervoxel boundary) An intervoxel boundary B of a re-
gion R is a maximal connected 7 set of surfels such that each surfel of B is
between a voxel that belong to region R and a voxel that does not belong to R.

With this definition, each region R is composed of at least one intervoxel
boundary which corresponds to the exterior surface of R, and eventually some
intervoxel boundaries which correspond to inner surfaces of R, each one de-
scribes a cavity of R (see example in Fig. 4).

7 A set of surfels S is connected iff for any surfel s1 and s2 of the set, there is a
path of surfels, all in S, such that each couple of successive surfels of the path are
adjacent.

10



These intervoxel boundaries allow to link combinatorial maps and labeled
images.

Definition 9 (Combinatorial map describing a labeled image) A com-
binatorial map M describes a labeled image I iff:

(1) there is exactly one volume in M corresponding to each intervoxel bound-
ary of I;

(2) if two regions R1 and R2 of I are adjacent, there is at least one face in
M which describes this adjacency relation;

(3) each volume of M is subdivided in faces, edges and vertices. Let #f (resp.
#e and #v) the number of faces (resp. edges and vertices), #v − #e +
#f = χ gives the Euler characteristic of the corresponding intervoxel
boundary.

Intuitively, this definition allows to describe the topology of the labeled image.
The first item links the volumes of the map with the intervoxel boundaries
of the image. Given a region R, it is composed of one volume for its external
boundary, and one volume for each cavity. The second item ensures that each
adjacency relation is described in the map. The last item guarantees that
the topology of each surface is correctly described in the map: this gives the
number of tunnels for each volume.

Given a labeled image I, there are several maps which describe I. We want to
distinguish a particular combinatorial map among these different maps: this
is the minimal map in number of cells.

Definition 10 (Minimal combinatorial map describing a labeled image)
A combinatorial map M which describes a labeled image I is minimal iff there
is no combinatorial map which describes I with a smaller number of cells.

The main interests of this map is first to allow to retrieve topological informa-
tion on regions by looking at only a few elements in the map, since the map
is minimal. Another advantage concerns the memory space which is much less
important for the minimal map than for other maps. The last advantage is to
be more representative of the labeled image. Indeed, given a labeled image,
the corresponding minimal map does not depend on the geometry of the image
and thus is characteristic of the topology of the subdivision.

3 Removal Operations for Combinatorial Maps

The i -dimensional removal operation (noted i -removal) consists in removing
an i -cell. This leads to the merging of the two (i+1)-cells incident to the

11



d

A B

Fig. 5. 2-removal of the face incident to dart d. (A) Initial configuration with two
adjacent volumes incident to d. (B) Map obtained after face removal: the two initial
volumes are merged.

removed cell. This operation can be applied only if the local degree of the
i -cell is two 8 . Indeed, it is not possible otherwise to automatically decide how
to connect the different cells around the removed cell.

In 3D, we can remove a face or 2-cell (2-removal, see an example in Fig. 5),
an edge or 1-cell (1-removal, see an example in Fig. 6) or remove a vertex or
0-cell (0-removal, see an example in Fig. 7). We only present here the main
notions of these operations. A more complete description can be found in [18]
where we give general definitions of removal and contraction 9 operations in
nD.

In this section, operations are presented in the general framework of combi-
natorial maps, without any link with images. In this general framework, a
combinatorial map can be empty, composed of only one face, or can be com-
posed of several connected components. In the following sections of this paper,
we will use these operations to define the topological map and add some addi-
tional constraints in order to keep new properties necessary to the new specific
framework of image representation (see Section 4).

3.1 Face Removal

We can remove any face in a 3-map without constraint (see example in Fig. 5
where we remove the face incident to dart d). Indeed, in a 3D space, any

8 If the local degree of an i -cell c is two, c is either a degree two cell with two
distinct (i+1)-cells, each one incident once to c, either a degree one cell with one
(i+1)-cell incident twice to c.
9 Contraction is the dual of the removal operation. It consists in contracting an
i -cell into an (i-1)-cell.

12



2-cell is a local degree two cell (by definition of quasi-manifold). Algorithm 1
performs this operation for a given dart d that identifies the face to remove.

Algorithm 1: Face removal

Input: A map M ;
A dart d.

Result: M is modified: the face incident to d is removed.

foreach dart cur of the orbit < β1 > (d) do
2-sew(β2(cur), β32(cur));
Remove darts cur and β3(cur) from M ;

This algorithm is local because each dart of the orbit < β1 > (d) is processed
independently and without any order. For each dart cur of this orbit, we just 2-
sew the darts d1 and d2 that were previously 2-sewn to cur and β3(cur). Then,
darts cur and β3(cur) can be removed from the combinatorial map since they
are now useless. At the end of this algorithm, the two volumes around the
removed face are merged into a single volume, and the face is destroyed. We
can prove this operation is correct whatever the initial configuration and the
face to remove (even in degenerated cases, as for instance the removal of a
dangling face adjacent to an unique volume, see [18]).

3.2 Edge Removal

The 1-removal (removal of an edge) is possible only for local degree two edges.
We present in Algorithm 2 the edge removal algorithm.

Algorithm 2: Edge removal

Input: A map M ;
A dart d incident to a local degree two edge.

Result: M is modified: the edge incident to d is removed.

d0 ← β0(d); d1 ← β21(d); d2 ← β20(d); d3 ← β1(d);
1-sew(d0, d1); 1-sew(β3(d1), β3(d0));
1-sew(d2, d3); 1-sew(β3(d3), β3(d2));
Remove darts d, β2(d), β3(d) and β23(d) from M ;

We can see in Fig. 6 an example of edge removal. We first sew together the
darts which were previously sewn to the edge incident to dart d (the edge is
composed of 4 darts, two for each volume). Then, darts d, β2(d), β3(d) and
β23(d) can be removed from the combinatorial map since they are now useless.
As with face removal, we can prove that this operation is correct whatever the

13



d

A B

Fig. 6. 1-removal of the edge incident to dart d. (A) Initial configuration with two
adjacent faces incident to d. (B) Map obtained after edge removal: the two initial
faces are merged.

initial configuration and the edge to remove (even in degenerated cases, as for
instance the removal of a loop or a dangling edge, see [18]).

3.3 Vertex Removal

The last possible removal operation is vertex removal. As for edge removal, this
operation is only possible for local degree two vertices. We give in Algorithm 3
the vertex removal algorithm.

Algorithm 3: Vertex removal

Input: A map M ;
A dart d incident to a local degree two vertex.

Result: M is modified: the vertex incident to d is removed.

inv ← 2; cur ← d; end← β1(d);
repeat

next← β1(βinv(cur)); d0 ← β0(cur); d1 ← β1(cur);
1-sew(d0, d1); (inv)-sew(d0,β0(next));
if inv = 2 then inv ← 3;
else inv ← 2;
Remove dart cur from M ;
cur ← next;

until cur = end ;

We can see an example in Fig. 7 where we remove the vertex incident to
dart d. The operation is performed with a similar algorithm to the one for
face removal. But we can see that this algorithm is slightly more complicated.
This is due to the inhomogeneous definition of combinatorial maps, where β1

14



e1 e2

v
d

A B C

Fig. 7. 0-removal of the vertex incident to dart d. (A) Drawing of the cellular
subdivision. We want to remove vertex v incident to edges e1 and e2. This vertex is
incident to the three faces drawn in grey. (B) Initial configuration with two adjacent
edges incident to the vertex identified by d. This figure shows only the three faces
incident to the removed vertex. (C) Map obtained after vertex removal: the two
initial edges are merged.

d0

d1cur

next

d0

d1cur

next

d0

d1cur

next

A B C

Fig. 8. One step of 0-removal operation where the current dart is labeled cur. (A) Ini-
tial configuration. (B) Map obtained after 1-sewing(d0, d1). (C) Map obtained after
2-sewing(d0, β0(next)).

is a permutation while the others βi for i 6= 1 are involutions. This algorithm
is local and processes each dart incident to the removed vertex by following
the orbit < β21, β31 > (d) (we apply successively β21 then β31). For each dart
cur, we first 1-sew the dart which is 0-sewn to cur (called d0 in the algorithm)
with the dart which is 1-sewn to cur (called d1). This sewing removes locally
the vertex incident to d.

But we need also to update the β2 and β3 relations. Indeed, the darts that
are 2 and 3-sewn to cur do not belong to the vertex incident to d, and so
they are not removed during the algorithm. But since they were sewn to cur,
their relations become invalid after the removal of cur. We can see in Fig. 8
a zoom on the removed vertex of Fig. 7. This edge is like a bundle of darts,
consecutively sewn by β2 (drawn in grey in this figure) then β3 (in black on
this figure).

In Fig. 8A, we can see the current dart of the algorithm (called cur), and

15



its neighbors for β0 and β1 (called d0 and d1). First, we 1-sew(d0, d1). We
obtain the map shown in Fig. 8B. We can observe the problem raised by the
two relations β2 and β3 if we remove the dart cur. We obtain a map where a
dart is sewn with a dart that has disappeared (for example β02(next) = cur).
To solve this problem, we 2-sew(d0, β0(next)). We obtain the map shown in
Fig. 8C. In the next step of the algorithm, we process the dart next and now
modify the β3 relation.

4 Topological Map Definition and Properties

Combinatorial maps are well suited to describe intervoxel boundaries since
they describe space subdivisions and all the incidence relations between the
different cells. For this reason they were used in 2D in several previous works
[24,12,42,7,9,4]. In this paper we extend to 3D the notion of simplification
levels introduced in 2D in [15,17]. These levels allow us to give a simple and
constructive definition of the 3D topological map. The topological map is the
last simplification level since it is minimal in number of cells; other levels are
only intermediate steps. Note that it is possible to use additional interme-
diate levels, depending on the particular needs of each application, without
modifying the final level (see for example [3,15] where we use five different
levels).

Firstly, we only present the topological part of this work without considering
the link to a geometrical model. This helps to understand our model and
allows us not to mix up the two parts. The link with a geometrical model is
the purpose of Section 5. The main idea of our approach is firstly to build
a combinatorial map that describes all the intervoxel elements of the image,
and then progressively to simplify it as much as possible, while keeping a map
which describes the image (in the sense of Def. 9). This construction scheme
allows us, in the end, to define the minimal map that describes the image (in
the sense of Def. 10). This map describes all the intervoxel boundaries and all
the relations of adjacency and incidence between regions. At every step of the
process, we only need to verify that each item of Def. 9 is preserved in order to
ensure the validity of the new map. To perform the successive simplifications,
we use the removal operations presented in Section 3.

4.1 Level 0: Maximal Map

The map of level 0 is the starting point of our process and describes all the
intervoxel elements of a given labeled image. Note that this map does not
really depend on the labeled image since it encodes the whole set of voxels of

16



y x

z

1d

2d
3d

4d

6d

5d

Fig. 9. Creation of a cube in a combinatorial map. A cube is a volume, made of 6
square faces, each one made of 4 darts. The 4 darts of each face are successively
1-sewn, and faces are 2-sewn (represented by little grey segments in the figure). For
example, d1 is 2-sewn with d2, ans β1(d1) is 2-sewn with d3. By using the cartesian
coordinate system (x,y,z), the face incident to d1 (resp. d2, d3, d4, d5 and d6) is
called the upper (resp. right, front, left, back and bottom) face of the cube.

R1 R2

R3

R0

A B

Fig. 10. (A) A 3D image. (B) The corresponding level 0 map (partial drawing
without the infinite region).

the image domain.

Definition 11 (level 0 map) The level 0 map corresponding to an n1×n2×
n3 voxel labeled image, is the map having n1 × n2 × n3 cubes 3-sewn between
them, each cube corresponding to a voxel, plus an enclosing volume which
describes the infinite region.

We can see in Fig. 9 the way a cube is created in the map in order to represent
a voxel.

Fig. 10B shows the level 0 map of the labeled image shown in Fig. 10A (in this
image, different labels are drawn with different grey levels). For an n1×n2×n3

image, this map is composed of (n1×n2×n3)+1 volumes. n1×n2×n3 cubes,
each one describing one voxel of the image, plus an additional volume that
describes the infinite region. In this paper, most of the time, we do not draw
the infinite region in order to make figures clearer and more understandable.

17



��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��
�
�

�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
�
�
�
�

�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
�����

���
���
���
���
���

���
���
���
���
���
���

A B

Fig. 11. (A) Level 1 map. (B) The corresponding intervoxel boundaries.

4.2 Level 1 Map

The level 0 map describes all the intervoxel elements of an image. In order
to obtain a combinatorial map which describes the image, it is necessary to
remove all the surfels that are between two voxels having the same label.
This operation is achieved by using the face removal operation for each face
corresponding to such surfels (these faces are called inner faces, i.e. faces
incident to the same region twice).

Definition 12 (level 1 map) The level 1 map is the map obtained from the
level 0 map by removing each face between two voxels having the same label.

We can see in Fig. 11A, the level 1 map of our 3D image, and in Fig. 11B,
the corresponding intervoxel boundaries. We can verify that each face of the
level 1 map corresponds exactly to one surfel of an intervoxel boundary. Indeed,
each surfel between two voxels having different labels belongs to an intervoxel
boundary (see Def. 8) and the level 1 map describes all of these surfels since
level 0 describes all surfels of the subdivision and between level 0 and level 1,
we have only removed inner faces.

4.3 Inclusion Tree

The level 0 map describes each intervoxel element of the image. This map
is obviously connected, but can be disconnected during the construction of
level 1 (see example in Fig. 12).

This type of disconnection occurs during face removal, if a volume is included
in another one. That is why we call this kind of disconnection a volume dis-
connection. In this case, we have lost the topological information that allows
to position each connected component relatively to each other. Indeed, each
region is described in the level 1 map by an external boundary and zero of

18



A B

Fig. 12. (A) Level 1 map during its construction. At this step, this map is connected.
(B) After the 2-removal of the dark face, the map is now made up of two distinct
connected components.

R2R1
R1 R2

R2R1

R

A B C

Fig. 13. Problem of interlaced rings. Both configurations (A) and (B) are described
with the same inclusion tree shown in (C) (R being the region which contains both
regions R1 and R2). The inclusion tree does not contain information on interlacing.

several internal boundaries.

In the example shown in Fig. 12, the 1×1×1 cube is included in the 3×3×3
cube. During the level 1 map construction, we remove progressively inner faces.
After some removals, the current map can be the one shown in Fig. 12A which
is connected. After the removal of the dark grey face, we obtain the map shown
in Fig. 12B which is made up of two distinct connected components (one for
the external boundary of the 3× 3× 3 cube, and a second one for the internal
boundary which corresponds to the 1× 1× 1 cube).

We need to keep additional information in order to place the different con-
nected components. For that, we introduce a region inclusion tree (more pre-
cisely described in Section 6.2). This tree has one node for each region of the
image. Its root is the infinite region R0, and the set of regions included in a
given region R defines the sons of R in the tree. This tree allows us to retrieve
the inclusion information and so to retrieve all the interior boundaries of a
given region.

Note that the problem of interlaced rings (e.g. Fig. 13) is not taken into

19



account by the inclusion tree. Indeed, if two rings R1 and R2 are interlaced,
and included in a region R, the inclusion tree does not contain information
about the interlacing. Thus, we cannot differentiate this case (Fig. 13A) and
the same case where the two rings are not interlaced (Fig. 13B). Note that
even if this information is not contained in the topological map, it can be
retrieved by using the shape of the volumes and intersection algorithms (by
using for example [25]).

4.4 Level 2 Map

The level 1 is the first map of our constructive definition that describes the
labeled image 10 . But this level contains too many darts which are not useful to
describe adjacency relations between regions. To obtain the minimal map, we
decrease the number of cells that describe the intervoxel boundaries. Firstly,
we merge faces by using edge removal. For that, we need to remove local
degree two edges, and for two reasons: firstly because it is not possible to
remove edges with local degree higher than two due to the precondition of the
1-removal operation. Secondly, this is in order not to depend on the order of
removal operations.

When we remove a degree two edge, this merges the two incident faces which
describe the same adjacency information between the same two regions Ri

and Rj (otherwise the degree of the edge is not equal to two). But this is not
enough to obtain the minimal model. Indeed, a degree two edge can become a
degree one edge after some edge removals. We can see, in Fig. 14A, the level 1
which is the starting point of the level 2 map, and in Fig. 14B, the level 2 map
during its construction. In this map, we have removed some local degree 2
edges but not all of them yet. The bold edge in this figure is a degree one edge
(incident twice to the same face), but was a degree two edge in the level 1 map.
We need to remove this edge in order not to depend on the order of removal
operations. Moreover, this edge does not describe an adjacency relation and
so has to be removed to obtain the minimal map.

Edge removal can involve a disconnection (called face disconnection) when we
remove a degree one edge (indeed, the 1-removal of a degree two edge cannot
lead to a disconnection). In such a case, before the removal, a face is described
in the map by an orbit < β1 > (d), and this orbit is cut into two different
orbits < β1 > after the removal. This is a problem because this disconnects
the region into two connected components and thus the first point of Def. 9
is no longer verified (there is exactly one volume in M corresponding to each
intervoxel boundary of I ) since there are two volumes for the same intervoxel
boundary.

10 Indeed, the level 0 map describes all the intervoxel elements of the image.

20



A B

Fig. 14. (A) Level 1 map. (B) Level 2 map during its construction.

In order to solve this problem of disconnection, we keep an edge which links the
two distinct orbits. This edge is a degree one edge which is normally removed
during level 2 building, and which is only kept now to avoid a disconnection.
Moreover this edge does not describe the boundary of a face unlike the other
edges of the level 2 map. For this reason, we call this edge a fictive edge and
on the contrary we call the other edges real edges.

Definition 13 (fictive edge) A fictive edge is a degree one edge whose re-
moval involves a face disconnection or completely removes a face.

We need to add the second condition (completely removes a face) to avoid the
entire disappearance of a face composed of a single edge (which is the case
of a minimal subdivision of the sphere). Indeed, in such a case, this involves
losing an adjacency relation by completely removing the face.

With these fictive edges, each face is always connected. This can be proved by
showing that each face is homeomorphic to the unit disk and thus the problem
of face disconnection is now solved (see Section 4.7).

Definition 14 (level 2 map) The level 2 map is the map obtained from the
level 1 map by removing successively each local degree two edge that does not
involve a face disconnection and that does not completely remove a face.

With this definition, we are sure that a fictive edge is never removed, thanks
to the additional conditions “does not involve a face disconnection” and “does
not completely remove a face”.

We can see the level 2 map of our image in Fig. 15. In this map, the number of
faces is minimal (because the topological map is minimal in number of cells,
and the number of faces is constant between level 2 and level 3 maps, see
Section 4.7 for proofs). Indeed, we cannot remove an additional edge, since
the local degree of each real edge is higher than two, and it is not possible
to remove a fictive edge since this involves a face disconnection or completely
removes a face. Moreover, we can show that this map still represents the

21



���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

A B

Fig. 15. (A) Level 2 map. (B) The corresponding subdivision.

labeled image, which proves that no information is lost by our simplifications
(see Section 4.7 for proofs).

4.5 Level 3 Map

The level 2 map has the minimal number of faces. To obtain the minimal map
in number of cells, we decrease the number of edges (and therefore the number
of vertices since these two numbers are linked 11 ) by using vertex removal.

We can remove each degree two vertex incident to two non-loop edges with-
out modifying the topology of described regions. Indeed, given such a vertex,
both incident edges describe the same adjacency information and they can
be merged into a single edge. But this is not enough to obtain the minimal
map. Indeed, keeping a fictive edge during level 2 construction modifies the
degree of the incident vertex, and can prevent its removal during level 3 con-
struction. That is unsatisfactory because we do not obtain the minimal map:
we keep some vertices that could eventually be removed depending on the
configuration of the fictive edges.

In order to solve this problem, we need to consider the degree of each vertex
without taking into account fictive edges. This is the notion of real degree.

Definition 15 (real degree of a vertex) The real degree of a vertex v is
the number of distinct real edges incident to v.

Note that the real degree of a vertex is always less or equal to the degree of the
same vertex, and that both values are equal if there is no fictive edge incident
to the vertex.

11 When we remove a degree two vertex, this decreases the number of vertices by
one, and decreases also the number of edges by 1 since the two incident edges are
merged.

22



1

2 4

3 v

v v

v
2

3

4

1

v

A B

Fig. 16. Different types of vertices depending on their real degrees (fictive edges are
drawn with dotted lines). (A) There are, for example, two vertices to remove: v2

which is a real degree two vertex and v4 which is a real degree zero vertex, and two
vertices to keep: v1 which is a real degree three vertex and v3 which is a real degree
one vertex. (B) In this map, the only vertex v is incident to 2 loops which are fictive
edges. This vertex must not be removed. We can verify that each edge of this map
is fictive by simulating edge removal. For example, if we remove the edge {1, 3},
we obtain the map made up of the two darts {2, 4} with β1(2) = 2 and β1(4) = 4.
Before edge removal, we have only one orbit < β1 > which is cut into two orbits
after removal.

Now we can consider each vertex v depending on its real degree d :

• d > 2 (there are at least 3 real edges incident to v): v cannot be removed
(case of vertex v1 in Fig. 16A) due to the precondition of 0-removal;
• d = 2 (there are two real edges and eventually some fictive edges incident to

v): v needs to be removed, if both incident real edges are not loops, in order
not to depend on the fictive edge position. But vertex removal is defined
only for local degree two vertex and cannot be applied for a real degree
two vertex v if some fictive edges are incident to v. In order to use vertex
removal, firstly we shift all the fictive edges incident to v on a neighbor
vertex of the same face. After this operation, the local degree of v is now
two and we can apply the vertex removal operation (case of vertex v2 in
Fig. 16A).

If one real edge incident to v is a loop, v must not be removed since the
loop corresponds to a face and thus describes adjacency information. If we
remove v, this involves the disappearance of the face described by the loop
and thus this means losing some topological information.
• d = 1 (there is only one real edge and eventually some fictive edges incident

to v): the real edge is a loop and v has to be kept (case of vertex v3 in
Fig. 16A) for the same reason as the previous case.
• d = 0 (there is no real edge incident to v, so there are only fictive edges): v

needs to be removed if at least one incident fictive edge is not a loop. Indeed,

23



���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

A B

Fig. 17. (A) Level 3 map. (B) The corresponding subdivision.

such a vertex does not describe topological information, since a fictive edge
is only necessary in order to solve the problem of face disconnection. If we
shift all the fictive edges incident to v except the one which is not a loop,
we keep the connectivity. Then the degree of v is now one and it can be
removed without loss of any topological information (case of vertex v4 in
Fig. 16A).

If v is incident to only one edge, or if v is only incident to 2k loops (case
of vertex v in Fig. 16B), v is not removed since this case corresponds either
to the case of the sphere, or to the minimal representation of a torus with
k holes. If we remove v, this involves the removal of a face and thus means
losing topological information.

Note that we can shift fictive edges only if there is a non-loop edge which is
not shifted (see the cases above for real degree zero or two vertices). This edge
gives the direction to shift the fictive edges. The fact that this edge is not a
loop guarantees that fictive edges are moved into a different vertex.

Now we can define the level 3 map by using fictive edge shifting to remove
real degree two vertices:

Definition 16 (level 3 map) The level 3 map is the map obtained from the
level 2 map by removing successively:

• each real degree two vertex v incident to two non-loop edges, after having
shifted all fictive edges incident to v;

• each real degree zero vertex v incident to at least one non-loop edge e, after
having shifted all fictive edges incident to v, except e.

With this definition, the level 3 map is the minimal map which describes the
initial image (see Section 4.7 for proof). We can see the level 3 map of our
image in Fig. 17. Now, this map also has the minimal number of edges because
it is impossible to remove additional vertex without losing any information.
This map is composed of 2 vertices, 4 edges, 6 faces and 4 volumes (if we count
the infinite region).

24



d d d
d

A B C D

Fig. 18. The four possible configurations of a face around a degree one edge by
considering the degree of the two vertices incident to the edge. Only the first case
involves a face disconnection when we remove the edge incident to d. (A) Both de-
grees are greater than 1. β0(d) 6= β2(d) and β1(d) 6= β2(d). (B) and (C) are the same
configuration but with different positions of dart d. One degree is greater than 1 and
the other is equal to 1. (B) β0(d) = β2(d) and β1(d) 6= β2(d). (C) β1(d) = β2(d) and
β0(d) 6= β2(d). (D) Both degrees are equal to 1. β0(d) = β2(d) and β1(d) = β2(d).

The topological map of a labeled image is composed of the level 3 map of the
image, plus the inclusion tree of regions contained in the image.

Definition 17 (topological map) The topological map corresponding to a
labeled image I, is composed of:

(1) the level 3 map corresponding to I;
(2) the inclusion tree of regions contained in I.

This map is called a topological map since it describes all the topological
information in a minimal way (minimal in number of cells). Moreover, this
map depends only on the topology of the described image and not on its
geometry.

4.6 Fictive Edge Management

A fictive edge is a degree one edge. We can see in Fig. 18 all the possible
configurations of a degree one edge, considering the degree of its both extrem-
ities. For each vertex v incident to the edge, there are two cases to consider: if
the degree of v is one or if it is greater than 1. This gives four possible cases.
In the first case (Fig. 18A), the removal of the edge incident to d involves
a face disconnection. The two next cases cannot disconnect the face and so
the edge can be removed. The last case (Fig. 18D) does not involve a face
disconnection but the entire disappearance of the face since it was composed
of one edge only.

Therefore, the only case of face disconnection is if we remove a degree one edge
with its two incident vertices having a degree greater than one (case shown in
Fig. 18A). Detecting this case can be achieved by testing if d (a dart of the
edge to remove) and β2(d) belong to the same face (for example by exploring

25



the face, starting from d and searching for β2(d)). Moreover, testing the degree
of both vertices can be achieved locally by verifying if β0(d) 6= β2(d) and if
β1(d) 6= β2(d) (see Fig. 18A).

Algorithm 4 gives the algorithm that tests if an edge has to be removed or
not. The first test of this algorithm (β23(d) 6= β32(d)) allows to test if the local
degree of the edge incident to d is greater than two. In that case, the edge is
not removed and so the algorithm returns false.

Algorithm 4: Test if an edge has to be removed

Input: A map M ;
A dart d.

Output: true iff the edge incident to d has to be removed.

if β23(d) 6= β32(d) then return false;
if β0(d) = β2(d) then

if β1(d) = β2(d) then return false;
else return true;

if β1(d) = β2(d) then return true;
if β2(d) belongs to the orbit < β1 > (d) then

return false;
return true;

Then, we know that we have a local degree two edge. The three following tests
identify the three configurations shown in Fig. 18B, Fig. 18C and Fig. 18D.
For the cases of Fig. 18B and Fig. 18C, we return true since dangling edges
must be removed, and for the last case we return false to avoid the entire
disappearance of a face.

After these tests, we have either a degree two edge that needs to be removed,
or a degree one edge with a configuration similar to Fig. 18A that has to be
kept and which is a fictive edge. In order to distinguish these two cases, we
have to test if d and β2(d) belong to the same < β1 > orbit or not (this is the
test which allows to find the fictive edges. For example, in Fig. 16B, the edge
{1, 3} is fictive because β2(3) = 1 and 1 ∈< β1 > (3) = {1, 2, 3, 4}, and thus
Algorithm 4 return false: the edge cannot be removed).

To distinguish the two cases, it can be possible to check all the darts of the
orbit < β1 > (d). If one of them is equal to β2(d), then the edge is a degree
one. Otherwise, it is a degree two. Another possibility (which is the one chosen
in this work) is to use union-find trees [47] to improve the complexity. We link
each face of the map to a union-find tree which describes the face (the tree
is created and linked to each surfel in the level 0 map). When we remove an
edge, we just merge both corresponding trees. With this technique, testing if
d and β2(d) belong to the same < β1 > orbit is simply achieved by testing if

26



ddest

1d

d3

d2

=

fictifd

2d

1d
destd

3d

=

fictifd
destd

2d

3d

fictifd

A B C

Fig. 19. The two steps of the algorithm that shift one fictive edge. (A) The initial
configuration. (B) 1-sewing of d1 and d2. (C) Sewing of the edge incident to dfictif .

find(d) equals find(β2(d)).

With union-find trees, the complexity of this algorithm can be bounded by 5
(indeed, it is well known that the amortized cost of a series of m union-find
operations on n elements can be done in time O(n.α(m, n)) with α(m, n) being
the inverse Ackermann function, which is less than 5 in practical cases. See [47]
for the demonstration about the complexities). Moreover, in several cases (edge
with a local degree greater than two or edges in particular configurations) our
algorithm has O(1) complexity since we do not need to make the last test in
Algorithm 4.

Algorithm 5 allows to shift the fictive edge incident to the dart dfictif . This
edge is shifted between the darts β0(ddest) and ddest. The edge is shifted in two
steps as we can see in Fig. 19.

Algorithm 5: shiftOneFictiveEdge

Input: A map M ;
A dart dfictif incident to a fictive edge;
A dart ddest incident to a non-loop edge.

Result: M is modified: the edge incident to dfictif is shifted between
β0(ddest) and ddest.

d1 ← β0(dfictif ); d2 ← β21(dfictif); d3 ← β0(ddest) ;

1-sew(d1, d2); 1-sew(β3(d2), β3(d1));

1-sew(d3, dfictif); 1-sew(β2(dfictif), ddest);
1-sew(β3(dfictif), β3(d3)); 1-sew(β3(ddest), β23(dfictif));

In order to shift all the fictive edges incident to a given vertex v, it is only
necessary to apply Algorithm 5, which shifts a given edge, for each fictive edge
incident v. This is achieved by Algorithm 6.

Proposition 18 Given a map M and a dart d incident to a non-loop edge e,
and to vertex v, at the end of Algorithm 6, there is no fictive edge incident to

27



Algorithm 6: Shifting of all the fictive edges incident to a given vertex

Input: A map M ;
A dart d incident to a non-loop edge e, and to vertex v.

Result: M is modified: all the fictive edges incident to v, except e, are
shifted on the vertex incident to β2(d).

actu← d ;
repeat

toShift← β02(actu) ;
while isFictiveEdge(toShift) and toShift 6= actu do

next← β02(toShift);
shiftOneFictiveEdge(toShift, β1(actu)) ;
toShift← next;

actu← β23(actu) ;
until actu = d ;

v, e expected.

PROOF. Algorithm 6 walks through the darts of the edge incident to the
given dart d, and for each dart to shift all the fictive edges incident to the
considered vertex by using shiftOneFictiveEdge algorithm.

Given a dart actu of the edge e, the second loop starts from the dart β02(actu),
in order not to shift the initial edge incident to actu. If the incident edge is
fictive, this edge is shifted on the second vertex of the non-loop edge e. This
decreases the number of fictive edges incident to e by one.

At the end of the second loop, there is no fictive edge incident to v (e excepted)
in the face incident to actu. Indeed, this loop is stopped when we obtain either
a non-fictive edge, or go back to the starting dart. Note that the last case only
occurs when the considered vertex has a real degree equal to zero. Indeed,
otherwise, we are sure that there are two real edges incident to v.

Since the first loop runs through all the darts incident to edge e, we apply
the second loop on each face incident to e. Thus, at the end of the algorithm,
there is no fictive edge incident to v, e excepted. 2

Note that we can shift all the fictive edges incident to a vertex without in-
volving any topological modification, since the position of a fictive edge is
not important. Indeed, the role of a fictive edge is only to keep each face
homeomorphic to the unit disk, and fictive edge shifting keeps this property.

28



4.7 Topological Map Properties

In this section, we study and prove the main properties of the topological map.
The first property is that topological map describes the labeled image (in the
sense of Def. 9). For that, we prove each part of Def. 9: there is exactly one
volume in the map corresponding to each intervoxel boundary of the image;
when two regions are adjacent, there is at least one face in the map which
describes this adjacency relation; and each volume of the map is subdivided
into faces, edges and vertices in such a way that the Euler formula gives the
Euler characteristic of the corresponding surface. The second property is that
the topological map is minimal in number of cells, according to Def. 10. We
also prove that each face of the map is homeomorphic to the unit disk. This
proves that the face disconnection has not occurred as if a face is disconnected
into two orbits < β1 >, it is not homeomorphic to the unit disk because one of
the two orbits describes a hole in the face. Lastly, we prove that the topological
map does not depend on the shape of regions contained in the image. This
last property is particularly interesting if we want to use a topological map to
characterize the topology of regions. To prove these properties, we often use
the fact that the volumes are constant between level 1 and level 3 maps and
that the faces are constant between level 2 and level 3 maps. Thus we start
by proving these two properties.

Proposition 19 Given a labeled image I, there is a bijection between faces of
the level 2 map corresponding to I and faces of the level 3 map.

PROOF. To prove this proposition, we have to prove that between level 2
and level 3, there is no face creation, nor face destruction. To do so, we show
firstly that for each face of the level 2 map, there is no face disconnection.
Indeed, such disconnection involves breaking an orbit face in two, and thus a
face of the level 2 map becomes two faces in the level 3 map. Then, we show
that no pair of faces are merged between the two levels. Lastly, we show that
no face disappeared directly. Due to the level 3 map definition, we are sure
that no face is directly created and thus this case cannot occur.

Firstly, there is no face disconnection. Indeed, to build the level 3 map, we
remove each real degree zero and two vertex (see Def. 16). This cannot involve
a disconnection, since in both cases we remove a degree one or two vertex,
an operation that cannot involve a disconnection. Moreover, the fictive edge
shifting operation cannot involve a disconnection either, since each edge is
only shifted along a non-loop edge.

Secondly, no pair of faces of the level 2 map can be merged in the level 3
map. This can be directly proved since to build the level 3 map, the only

29



operations used are vertex removal and fictive edge shifting, and neither of
these operations can involve merging two faces.

Lastly, no face of the level 2 map can disappear in the level 3 map. Indeed,
we remove vertices and thus a face can disappear only if it is composed of a
vertex only. In such a case, the incident edge is a loop and the vertex is not
removed by level 3 map definition and the additional condition (see Def. 16).
2

Proposition 20 Given a labeled image I, there is a bijection between volumes
of the level 1 map corresponding to I and volumes of the level 2 map (resp.
level 3 map).

PROOF. The proof is similar to the previous one but now for volumes. We
have to prove that between level 1 and the two following levels, there is no
volume creation, nor volume destruction. To do so, we show firstly that for
each volume v of the level 1 map, there is no volume disconnection. Indeed,
this would involve breaking an orbit volume in two, and thus a volume of
the level 1 map becomes two volumes in following levels. Then, we show that
no pair of volumes are merged. Lastly, we show that no volume disappeared
directly.

Firstly, there is no volume disconnection. A volume can be disconnected in
two orbits, even directly, or by cutting a face in two parts. Firstly, the face
disconnection is avoided in the level 2 map construction by definition of this
map (see Def. 14) and this is not possible for level 3 maps as we have seen
in the previous proof. Secondly, the volume disconnection can occur directly
only by using face removal, an operation which is not used to build level 2
and level 3 maps.

Secondly, no pair of volumes of the level 1 map can be merged in the following
levels. This can be directly proved since to build level 2 and level 3 maps,
the operations used are edge removal, vertex removal and fictive edge shifting,
and none of these three operations can involve merging two volumes.

Lastly, no volume of the level 1 map can disappear in the following levels.
For the level 2 map, we remove edges sequentially and thus, a volume can
disappear only if it is composed of an edge only, and this case is avoided by
the level 2 definition (see Def. 14). For level 3, we remove vertices and thus a
volume can disappear only if it is composed of just a vertex. In such a case,
there is at least one edge of the volume, and this edge is a loop. But in such
a case, the vertex is not removed by the level 3 map definition (see Def. 16).
2

30



Proposition 21 In the topological map corresponding to a labeled image I,
each volume corresponds to an intervoxel boundary of I.

PROOF. The proof is achieved in two steps: firstly we prove that the prop-
erty is true for the level 1 map, and secondly that it is kept for other levels.

Let us take the level 1 map corresponding to I, and let us suppose that the
property is not true. We show that this leads to a contradiction with the level 1
map definition. There are two possible cases in which the property is not true:
firstly if two different volumes v1 and v2 describe a same intervoxel boundary
b of a region R, and secondly if a volume v describes two different intervoxel
boundaries b1 and b2 of a region R. The case where a volume describes two
different intervoxel boundaries of two different regions is impossible since each
volume of a level 1 map is obtained by merging adjacent cubes of a same
region from the level 0 map.

Let us suppose that two different volumes v1 and v2 describe a same intervoxel
boundary b of a region R. These two volumes are necessarily adjacent since
they describe the same intervoxel boundary, which is a connected set of surfels.
Moreover, each face between these two volumes is an inner face (i.e. a face
incident twice to the same region) since volumes v1 and v2 are obtained by
merging voxels of R. This shows a contradiction with the level 1 map definition
where each inner face is removed.

Now, let us suppose that a volume v describes two different intervoxel bound-
aries b1 and b2 of a region R. In this case, some faces of v describe b1 and
other faces describe b2. Since b1 and b2 are not connected (by definition of
intervoxel boundary) and since v is connected (otherwise there is more than
one volume), there is at least one face of v which links the two boundaries b1

and b2, and this face is an inner face. This shows also a contradiction with the
level 1 map definition where each inner face is removed.

This proves the Prop. 21 for the level 1 map. Thus, this property is also true
for level 2 and level 3 maps. Indeed, by using Prop. 20, we know that there is
a bijection between volumes of the level 1 map and the ones of the level 2 and
level 3 maps, and this proves the property for the other levels. This proves the
proposition for the topological map. 2

Proposition 22 Let I be a labeled image and M the corresponding topological
map. If two regions R1 and R2 are adjacent in I, there is a face in M between
one volume of R1 and one volume of R2.

PROOF. This property is obviously true in the level 0 map corresponding
to I since this map contains all the faces corresponding to a surfel. If regions

31



R1 and R2 are adjacent, there is at least one surfel between these two regions
and this surfel is present in the level 0 map.

This property is always true in level 1 maps since removed faces between the
two levels are inner faces, and faces which describe adjacency between R1 and
R2 are not inner faces.

This property is preserved for level 2 maps since when we remove an edge e
during the level 2 construction, e is either a dangling edge, or a degree two
edge (the two cases in which the local degree is two and the removal does not
involve a face disconnection or completely remove a face). If e is a dangling
edge, this cannot involves the disappearance of the incident face by definition
of level 2 where this case is avoided. If e is a degree two edge, this cannot
involves losing a face which describes an adjacency relation. Indeed, in such
a case, the two faces incident to e are between the same two regions R1 and
R2 (otherwise the degree of e would be greater than 2). These two faces are
merged into one face by the removal of e, and this new face is between one
volume of R1 and one volume of R2 which proves the property.

Lastly, the property is always true for level 3 maps since there is a bijection
between faces of level 2 and faces of level 3 (see Prop. 19). This proves the
proposition for the topological map. 2

Proposition 23 In the topological map M corresponding to a labeled image
I, each volume of M is subdivided into faces, edges and vertices. Let #f (resp.
#e and #v) the number of faces (resp. edges and vertices), #v−#e+#f = χ

gives the Euler characteristic of the corresponding surface.

PROOF. Firstly, let us consider each volume v of the level 1 map corre-
sponding to I. Such a volume is subdivided in faces, edges and vertices (with
#f , #e and #v the number of faces edges and vertices), where each face is a
square corresponding to a surfel, and the volume corresponds to an intervoxel
boundary of I. It is well known that the Euler characteristic of a polyhedron
can be computed by using the Euler formula #v − #e + #f = χ (see for
example [31]), and the surface of v in the level 1 map is a polyhedron. To
prove the proposition, we show that the different simplifications made during
topological map construction do not modify the Euler characteristic of the
corresponding surface.

During the construction of level 2 maps, we remove each local degree two
edge that does not involve a face disconnection and that does not completely
remove a face. When we remove a degree two edge, we merge two distinct faces
into a single one, so the number of faces decreases #f ′ = #f − 1, one edge is
removed so the number of edges decreases #e′ = #e − 1 and the number of

32



vertices remains unchanged. Therefore, the new Euler characteristic is equal
to the old one since we have χ′ = #v′−#e′+#f ′ = #v−(#e−1)+(#f−1) =
#v−#e+#f = χ. When we remove a degree one edge (with no disconnection),
the number of faces does not change #f ′ = #f , the number of edges decreases
#e′ = #e− 1 and the number of vertices decreases since there is exactly one
vertex of #e which is incident only to the removed edge (see possible cases in
Section 4.6). This vertex is thus removed by the operation and #v′ = #v− 1.
That is why the new Euler characteristic is again equal to the old one.

During the construction of level 3 maps, we use two operations. Firstly fictive
edge shifting, and secondly vertex removal. Fictive edge shifting does not mod-
ify anything for the Euler characteristic, since the number of cells (vertices,
edges and faces) remains unchanged. The second operation is the removal of
degree two vertices. For this operation, the number of faces is not modified
#f ′ = #f , the number of edges decreases since the vertex removal involves
the merging of the two incident edges into a single one #e′ = #e− 1 and the
number of vertices decreases since one vertex is removed #v′ = #v − 1. So
the new Euler characteristic is again equal to the old one. 2

Proposition 24 The topological map corresponding to a labeled image I is
minimal in number of cells.

PROOF. The topological map is minimal in number of cells. Firstly it is
minimal in number of volumes, since each volume corresponds to an intervoxel
boundary of I (see Prop. 21).

Secondly each volume is minimal in number of faces. Let us suppose it is not
the case, i.e. the number of faces is not minimal. We have thus two adjacent
faces that can be merged into a single face (otherwise the number of faces is
minimal). In that case, the edge between these two faces is a local degree two
edge and this is in contradiction with the definition of level 2 maps where all
local degree two edges are removed.

A similar argument can be used to prove that the number of edges is minimal.
Indeed, during the construction of level 3 maps, we only keep vertices with real
degree equal to one or greater than two. For the same reason, the number of
vertices is also minimal since no vertex of the topological map can be removed.
2

Proposition 25 In the topological map corresponding to a labeled image, each
face is homeomorphic to the unit disk 12 .

12 The unit disk B2, called also 2-balls, is the set of all points x ∈ R
2 for which

||x|| == 1, see [41].

33



PROOF. The level 0 map describes all the intervoxel elements of an image
and not the image partition. By removing each inner face, we obtain level 1
where each face describes a surfel, and is thus obviously homeomorphic to the
unit disk.

During the construction of level 2 maps, we remove each local degree two
edge that does not involve a face disconnection and that does not completely
remove the face. Let us consider the two types of removed edges during the
construction of level 2:

• degree two edge: in this case, there are two distinct faces incident to the
removed edge. These two faces, which are homeomorphic to the unit disk,
are merged into a single face which is obviously homeomorphic to the unit
disk;
• degree one dangling edge: in this case, the unique incident face, which is

homeomorphic to the unit disk, is still homeomorphic to the unit disk after
the removal of the dangling edge.

Thus, each face in level 2 maps is homeomorphic to the unit disk. And this
is also the case in level 3s map since vertex removal and fictive edge shifting
cannot involve a disconnection and thus cannot modify the topology of faces
(as explained in the previous section). 2

Proposition 26 The topological map corresponding to a labeled image I does
not depend on the shape of regions of I.

PROOF. The proof is direct by definition of the topological map. Indeed,
given an image I, the topological map is defined only by removing particular
cells in I, and these cells are only characterized by their degree or their real
degree, or by taking into account disconnections. None of these properties
depend on the shape of regions of the subdivision which proves the proposition.
2

5 Geometrical Part of the Topological Map

Topological map only represents the topological part of a labeled image. But
in most applications, it is also necessary to represent geometry (note that it
is not always the case. For instance, we need topology only to implement a
segmentation algorithm by region merging, if the unique problem is to re-
trieve the neighbors of a given region). There are several ways to associate
a geometrical model to a combinatorial map. In [2] we have given a solution
based on a hierarchical representation where each face in the topological map

34



��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��
�
�

�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
�
�
�
�

�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
�����

���
���
���
���
���

���
���
���
���
���
���

A B

Fig. 20. (A) Level 3 map. (B) The corresponding geometry in the intervoxel matrix,
composed of 2 pointels, 18 linels and 53 surfels.

is represented by a 2D combinatorial map, and where each edge is represented
by a 1D combinatorial map. The main advantage of this solution is to require
only small memory space. Indeed, each face is represented by just a few basic
elements. However, its main problem is the difficulty to retrieve, given a voxel,
which region it belongs to.

We present here another solution which uses a matrix representing all the in-
tervoxel elements of the corresponding image. We show the way to link the
topological map and the elements of the matrix, and the modifications that
have to be achieved during different removal operations in order to keep both
models coherent. This solution is close to the one proposed in [9,20] where
they also used a similar matrix to represent the geometry. The major dif-
ference between their work and our solution concerns the description of the
topology. Indeed, in [9,20], they use an implicit representation of the combi-
natorial map based only on the intervoxel matrix (see [6] for more details on
the comparison).

5.1 Links Between Topological Maps and Intervoxel Matrixes

We want to encode all the intervoxel elements that belong to intervoxel bound-
aries of the corresponding image. We can see in Fig. 20 the corresponding ge-
ometrical model associated with the topological map used during this paper.

The best way to implement all the intervoxel elements of an image is to use
a matrix of bytes where each value encodes the intervoxel elements shown in
Fig. 21. With this encoding, we need a matrix of (n1 + 1, n2 + 1, n3 + 1) bytes
to represent all the intervoxel elements for an image of size (n1, n2, n3). Given
an element at the position (i, j, k) of the matrix, each bit value is equal to
zero if the corresponding intervoxel element does not belong to an intervoxel
boundary, and otherwise it is equal to one.

35



−

76543210Bit

Celll 1

l 2

l 3

s1

s2

s3

l 3l 2 s2s1 s3l 1p

p

Fig. 21. Implementation used to represent each byte of the intervoxel matrix.

l2

l 1

p
s

2
p

l 1 l 3

s

A B

Fig. 22. Oriented surfel convention. (A) The triple (p, l1, s) and the corresponding
orientation of the surfel s obtained by the cross product ~l1 × ~l2. The triple (p, l2, s)
corresponds to the same surfel but with reverse orientation. (B) Different triples
could represent the same oriented surfel. Here (p, l1, s) and (p2, l3, s) represent the
same oriented surfel.

Each dart of the topological map is linked with a triple (p, l, s) that allows to
retrieve, given a dart d, the corresponding elements in the intervoxel matrix.
With p we can retrieve the pointel associated with d, and so the coordinates of
the corresponding vertex. With (p, l) we can retrieve the first linel associated
with d. This linel gives the initial direction of the edge associated with d.
Finally, with (p, l, s) we can retrieve the surfel associated with d that belongs
to the intervoxel boundary associated with the face incident to d. This is an
oriented surfel. The orientation is given by the cross product between ~l and
the second linel incident to p and s (see example in Fig. 22). This orientation
allows to distinguish the interior and the exterior of a volume incident to a
given dart. Indeed, by convention, we chose that the normal of the oriented
surfel associated to a given dart always corresponds to the normal of the
surface of the associated region directed in the exterior of the region.

The links between darts and triples are made during the construction of the
level 0 map which represents all the voxels of the image. Indeed, when we create
the cube corresponding to a given voxel, we know exactly the correspondence
between each dart and each element of the intervoxel matrix (partially given
in Fig. 23). Thus, it is easy to link each dart of level 0 with its corresponding
geometrical element in the intervoxel matrix as shown in Fig. 23.

36



p
8

l 4

l 5

l 7

l 8

l 10

s1

s2

s3

s4

s5

s6

p
1

p
2p

4

p
6

p
7

l 1

l 2

l 3
l 6

l 11

l 12

l 9

p
3

1d

5d

17d

9d

13d

21d

d1 (p1, l1, s1) d5 (p2, l6, s6) d9 (p8, l11, s3)

d13 (p8, l12, s5) d17 (p5, l9, s2) d21 (p8, l8, s4)

Fig. 23. Links between darts and triples (given only for some darts of the cube).
Note that the pointel p5 is the only one hidden in this figure. Links for other darts
are made in a similar way.

5.2 Intervoxel Matrix Modifications During Removal Operations

Each map level is computed starting from the previous level by applying some
particular removal operations. Since each dart of the level 0 map is linked
with its corresponding triple in the intervoxel matrix, this is enough to study
what modifications have to be achieved in the intervoxel matrix during each
particular removal operation in order to obtain the geometrical model of any
map level.

A face is removed during the construction of level 1. Since the starting map is
level 0, we know that each face of this map corresponds exactly to one surfel in
the intervoxel matrix. Thus, each face contains exactly 8 darts, all associated
to the same surfel (4 darts for a face of a given voxel, but there are two voxels
around each face).

When a face is removed, the corresponding surfel in the matrix does not belong
to an intervoxel boundary anymore. So we need to erase it from the matrix.
This is simply achieved by setting the corresponding value to 0 in the matrix.
Moreover, the 8 darts of the map that belong to the removed face are removed
from the map and destroyed, and thus there is no other modification to apply
for other darts.

An edge is removed during the construction of level 2. Since the starting map
is level 1, we know that each edge of this map corresponds exactly to one linel
in the intervoxel matrix. When an edge is removed, we just need to erase the
corresponding linel from the matrix (by setting the corresponding value to 0).
As for face removal, there is no other modification to apply for other darts.

37



A vertex is removed during the construction of level 3. As for other removal
operations, the single modification is to erase the corresponding pointel from
the intervoxel matrix.

5.3 What About Fictive Edges ?

A fictive edge is an edge with degree one, i.e. incident twice to the same face.
For that reason, there is no linel associated with such an edge in the intervoxel
matrix. Indeed, we only keep in the matrix elements that belong to a boundary
of faces (i.e. linels and pointels with degrees strictly greater than 2).

To do so, when we find a fictive edge during the construction of the level 2 map
(when removing the edge induces a face disconnection or completely removing
the face, see Def. 14), we remove the corresponding linel in the intervoxel
matrix (like the modification made for edge removal). For the same reason,
when during the construction of level 3, we find a vertex such as if we remove
it, this induces removing completely a face (i.e. a real degree 0 vertex incident
only to fictive edges that are loops, all the other cases cannot induce removing
completely a face), the corresponding pointel does not belong to a boundary
of the face and needs to be removed from the intervoxel matrix.

With these two modifications, if a region in the image has no adjacent region,
the boundary of this region is composed of exactly one face, one vertex, and
some edges (the number of edges depends on the Euler characteristic of the
corresponding surface). The corresponding geometry of such a region in the
intervoxel matrix is composed of surfels only. Indeed, there is no linel since all
the edges are fictive, and there is no pointel since the vertex is a real degree 0
vertex.

Note that sometimes it could be interesting to keep a triple in the matrix in
order to have a particular entry point which allows to retrieve a dart that
represents the corresponding volume in the topological map, starting from the
intervoxel matrix (for example to define a localization algorithm that retrieves
the region that contains a given voxel). This could be possible without partic-
ular difficulty, by adding “fictive triples” in the intervoxel matrix. Note that
with this solution, we do not link a geometrical element with a fictive edge but
only add a fictive triple on each face that allows to retrieve a corresponding
dart in the map.

It is also necessary to note that this choice of not linking fictive edges with
geometrical elements in the intervoxel matrix is necessary in order to be able
to obtain the minimal map. Indeed, another solution is to define a geometric
analogous for each cell of the map (like the solution proposed in [9,20]). But
with that choice, it is not possible to obtain the minimal map since we depend

38



A B

Fig. 24. (A) A 3D region whose surface is a torus with 4 holes. (B) The minimal
corresponding subdivision (1 face, 8 edges and 1 vertex) which is impossible to
represent in the intervoxel matrix.

on the shape of described regions, as we can see in the example in Fig. 24. In
that example, the surface of the region is a torus with 4 holes, without any
adjacent volume (except the region which contains the torus). The minimal
corresponding subdivision (shown in Fig. 24B) has thus one face, eight edges
(2 loops for each hole), and one vertex. But such a subdivision cannot be
represented in the intervoxel matrix. Indeed, to represent such a subdivision,
we would need 16 different linels around the pointel associated with the vertex
(2 different linels for each edge, one for each edge extremity, we cannot use the
same linel more than once since this induces the creation of another pointel)
which is impossible in a 3D intervoxel space.

For that reason, if we want to have a geometric analogous for each topological
cell, we obtain a topological model which is not minimal, and which depends
on the geometry of the subdivision. Moreover, with this solution, we sometimes
need to modify the topological model due to a geometrical modification on a
region (like the example in Fig. 25). These problems are too important from
our point of view, and that is why we choose not to link geometrical elements
to fictive edges.

6 Incremental and Generic Extraction Algorithm of Any Map Level

The successive definitions of each map level seen in Section 4 immediately
give a first extraction algorithm. Firstly, this algorithm builds the level 0 map
of the labeled image, then we progressively simplify the map by following
the level definitions. The main advantages of this algorithm are its simplicity,
since it follows the definitions of the different map levels, and its complexity
which is linear in number of voxels of the image. Its main problem is to build

39



R3

R1

R2

A B

R2
R3

R1

?

C D

Fig. 25. Example where a geometrical modification induces a topological modifica-
tion when we link fictive edges with geometrical elements. (A) Three 3D regions,
R1, R2 and R3, completely included in another one (not represented) without other
adjacency. (B) The corresponding minimal subdivision. (C) The same regions where
we have only modified the geometry of R3. (D) With this very basic modification,
it is now impossible to represent the fictive edge in the intervoxel matrix without
modifying the subdivision (for example by adding a vertex).

first level 0 map, which involves the creation of many darts that are eventu-
ally destroyed during the following simplifications (the number of destroyed
darts depends on the labelled image). That involves an important and useless
time consumption due to memory allocation and de-allocation. Moreover, the
memory cost necessary to represent a level 0 can be too important and can
prevent the creation of the topological map, even if this map requires much
less memory than for level 0. It is to solve these problems that we propose the
incremental algorithm.

40



6.1 Incremental Extraction Algorithm

The main principle of the incremental algorithm given in Algorithm 7 consists
in building the topological map incrementally by processing each voxel during
a single scan of the image. Image I, which is the input of this algorithm, is a
labeled image, with voxels having x-coordinates between 1 . . . n1, y-coordinates
between 1 . . . n2 and z-coordinates between 1 . . . n3 (other voxels belong to the
infinite region, see Section 2.2).

Before scanning the voxels of the image, we first create the upper border of
the map (line 1 of the algorithm). Indeed, the following invariant has to be
satisfied for each voxel of the image: the combinatorial map corresponding to
the voxels already scanned has already been built. With this invariant, we are
certain at any time that in the map, a dart belonging to the left face of the
current voxel exists (resp. upper face, back face). It is to satisfy this invariant
for the first voxel of the image (voxel with coordinates (1, 1, 1)), that we first
build a combinatorial map that represents the upper border of the image.

This initial border is important, since its correct definition allows us to solve
problems due to border voxels in the image, and also allows us to avoid par-
ticular processes for these voxels. For that, we identify voxels of coordinates
(n1 +1, y, z) with voxels of coordinates (0, y+1, z) (the last voxel of a line and
the first voxel of the next line) and identify voxels of coordinates (x, n2 +1, z)
with voxels of coordinates (x, 0, z + 1) (the last voxel of a given column and
the first voxel of the same column in the next plane). In order to take these
identifications into account, we use a modulo to compute the coordinates of
a voxel. When the current voxel is (i, j, k), we consider it has coordinates (i
modulo (n1 +1), (j +(i div (n1 +1))) modulo (n2 +1), k+(j +(i div (n1 +1)))
div (n2 +1)) which gives the correct voxel in regard to the different identifica-
tions. With these identifications, when we create the last cube of a given line,
this involves the creation of the left face of next line’s first voxel, and when we
create the last cube of a given column, this involves the creation of the back
face of same column’s first voxel in the next plane.

We can see in Fig. 26 this initial border for an image of size 3× 2× n3. This
initial border is composed of the upper faces of the image that correspond to
the boundary between voxels with 1 in z-coordinates and voxels of the infinite
region. These faces go from 1 to n1+1 in x-coordinates, and from 1 to n2+1 in
y-coordinates (indeed, the image scan is increased by one voxel in any of the 3
axis of the space in order to take into account the boundary surfaces with the
infinite region). The initial border also contains the faces behind the first line
of the image, and the face on the left of the first voxel of this first line. With
this initial border, the first voxel can be sewn with the three faces around it
(on the left, on top and at the back). The other voxels of the first line have a

41



Algorithm 7: Incremental extraction of a topological map

Input: I A labeled image of n1 × n2 × n3 voxels.
Output: The topological map corresponding to I.

1 Step 1: last← Build the upper border of the image;
Step 2:
for k = 1 to n3 + 1 do

for j = 1 to n2 + 1 do
for i = 1 to n1 + 1 do

2 tmp← new cube corresponding to voxel (i, j, k);
up← ComputeUpFromLast(last);
behind← ComputeBehindFromLast(last);

3 3-sew this cube along the three faces last, up and behind ;
Let v1, v2 and v3 the volumes incident to last, up and behind ;
Let f1, f2 and f3 the faces incident to last, up and behind ;
Let e1, e2 and e3 the edges incident to last, β0(up) and β0(behind);
Let v the vertex incident to last ;

4 if v1 (resp. v2, v3) belongs to the same region as the current
voxel then

Remove f1 (resp. f2, f3);

5 if the local degree of e1 (resp. e2, e3) is two then
if the removal of e1 (resp. e2, e3) does not involve a face
disconnection and does not remove completely the face
then

Remove e1 (resp. e2, e3);

else
Mark e1 (resp. e2, e3) as fictive edge;

6 if the real degree of v is two and the two real edges are
non-loop then

Shift all fictive edges incident to v;
Remove v;

last← tmp;

7 Step 3: Remove each real degree zero vertex incident to at least one
non-loop edge e, after having shifted all fictive edges incident to this
vertex, except e;

8 Step 4: Compute the region inclusion tree;

face at the back and on top, and each new voxel involves the creation of the
next voxel’s left face (see Prop. 27 for proof).

We can see in Fig. 26 how the extreme faces are sewn in order to identify
the voxels as explained beforehand. It is important to notice that this initial
border does not satisfy the combinatorial map definition since it is not closed.
Indeed, each dart is 3-free (a dart d is 3-free if there is no dart d′ in the map

42



y x

z last
1

2
1’

2’3
3’

4
4’

Fig. 26. The upper border created before starting the image scan, here for an image
of size 3 × 2 × n3 (for an image of size n1 × n2 × n3, the upper border size is
(n1 + 1, n2 + 1) due to the voxels of the infinite region). β2 relations are given for
some darts, either by drawing grey curves or by naming darts with same number i
and i′.

behind

up

last last behind

up

A B

Fig. 27. Darts last, up and behind in respect to the current voxel. This is a partial
drawing, where only a few dart orientations are given in order not to make the
figure unreadable. (A) Darts are drawn with the current voxel. (B) Only the darts
are represented.

such that β3(d
′) = d). But this is not a problem because we iteratively close

each dart by successively processing each voxel. Moreover, we only consider the
map locally around closed cells (as explained in the following) and we never
pass through a 3-free dart during an orbit scan. Moreover, we can notice that
the initial border is closed for other dimensions (0, 1 and 2).

After the upper border is created, the last dart is initialized in order to point
out a precise dart on the face on the left of the first image voxel. We also
need a particular dart on the faces behind and on top of the current voxel.
These particular darts are called respectively last, up and behind. We can see
in Fig. 27 the positions of these three particular darts. Note that the choice
of a dart for each face is purely arbitrary and that we can choose other darts.
The important point is to be coherent between the dart positions in each
algorithm.

During the image scan, we only keep the last dart as the other two darts
can be retrieved given last by using Algorithm 8 and Algorithm 9. These two

43



Algorithm 8: Computation of up dart

Input: A map M ;
last the dart on the left of the current voxel.

Output: up the dart on top of the current voxel.

up← β02(last);
while up is not 3-free do

up← β32(up))

up← β1(up);
return up;

Algorithm 9: Computation of behind dart

Input: A map M ;
last the dart on the left of the current voxel.

Output: behind the dart behind the current voxel.

behind← β2(last);
while behind is not 3-free do

behind← β32(up))

behind← β11(behind);
return behind;

algorithms are based on the same principle. In Algorithm 8, the up dart is
first initialized with β02(last). This dart belongs to the edge incident to the
two faces which contain last and up. Then, that is enough to turn around
this edge, by using β32, until obtaining a dart which is 3-free. Indeed, faces
between the one which contains last and the one which contains up all have
their darts which are not 3-free. So if the current dart is 3-free, that means
that it belongs to the face that contains up. That is then enough to apply β1

to find dart up. Algorithm 9 uses exactly the same principle but for a different
initial dart, and with a different movement at the end.

The complexity of Algorithm 8 is linear in the number of faces incident to the
edge between the face which contains last and the one which contains up (or
last and behind for Algorithm 9). This number of faces is always equal to 0, 1
or 2, since each face corresponds to a surfel (see Fig. 28 to see all the possible
configurations). So the complexity of these two algorithms is in constant time
in our particular case of discrete subdivision.

The main part of the incremental algorithm is the image scan. For each voxel,
a corresponding cube is created in the map (line 1 of Algorithm 7) and 3-sewn
with its neighbors using the three particular darts last, up and behind (line 3).
Then, we test the different new cells in order to know which ones need to be
simplified. But here, these tests are only done on the closed cells incident to
the new cube.

44



last

up

up

last

up

last

up

last

A B C D

Fig. 28. The four possible configurations of faces between the one which contains
last and the one which contains up.

The term “closed” cell is used here to speak about a cell in the combinatorial
map where no dart is 3 -free. Indeed, we know that the topological map is
closed for all dimension, but during its construction, the lower border of the
map is 3-free, and the corresponding cells cannot be simplified since we do not
know them completely.

At the end of the incremental algorithm, after the image scan of all the voxels
of the image, we retrieve the initial border below the topological map and
disconnected from it. This border is now useless and can thus be destroyed.
The last work consists in inclusion tree computation in order to be able to place
relatively the different connected components of the map. This is achieved
with Algorithm 10 given in Section 6.2 and the obtained structure is thus the
topological map corresponding to the initial image.

Note that in order to simplify the presentation of the algorithm, we have
chosen to make the removal of real degree zero vertices in a separate step
(line 7 of Algorithm 7), after the image scan. This separation allows us to
simplify the algorithm and explanations. Moreover, we will see in Section 7
that the additional time due to this step is not really important in comparison
to the time taken by the image scan. Finally, it is of course possible to optimize
this algorithm by applying the removal of real degree zero vertices in the same
step as the image scan. But this implies some additional tests in order to
guarantee not to miss a vertex.

Note also that this incremental algorithm is generic. Indeed, it is enough to
add a parameter to extract a precise level, and make removal operations only
if they correspond to the level wanted. We do not present this possibility here
in order to make Algorithm 7 shorter but this can be achieved immediately.

To prove that Algorithm 7 computes the topological map, we begin to prove
that the following invariant is true during the extraction:

Proposition 27 During Algorithm 7, before processing voxel (i, j, k):

45



Fig. 29. Proposition 27 ensures that different faces exist around the next voxel to
process v (drawn in wire frame). A face to the left of v (in light grey), faces behind
the last line of voxels (in dark grey), and faces above the voxels of the last plane
(in white).

(1) there is a face to the left of voxel (i, j, k);
(2) • ∀x, 1 ≤ x < i, there is a face behind voxel (x, j + 1, k);
• ∀x, i ≤ x ≤ n1 + 1, there is a face behind voxel (x, j, k);

(3) • ∀x, 1 ≤ x < i, there is a face above voxel (x, j, k + 1);
• ∀x, 1 ≤ x ≤ n1+1, ∀y, 1 ≤ y < j, there is a face above voxel (x, y, k+1);
• ∀x, i ≤ x ≤ n1 + 1, there is a face above voxel (x, j, k);
• ∀x, 1 ≤ x ≤ n1 + 1, ∀y, j < y ≤ n2 + 1, there is a face above voxel

(x, y, k);

This invariant ensures that whatever the current voxel (i, j, k), the border
of the map exists and allow to attach the future cubes. Items 2 and 3 of this
proposition are cut into different parts, because we need to consider differently
the previous voxels of the same line and the previous voxels of the same plane
and future voxels (see Fig. 29). Indeed, for example in item 2, the previous
voxels of the same line (∀x, 1 ≤ x < i, voxels (x, j, k)) have been already built
and not future voxels of the same line (∀x, i ≤ x ≤ n1, voxels (x, j, k)). For
the first type of voxels, we have to consider voxels on the next line (voxels
(x, j + 1, k)) while for the second type we consider voxels of the same line
(voxels (x, j, k)). This is the same for item 3 but with more cases since previous
voxels can be on the same line (first part of item 3) or on previous lines (second
part of item 3), and the same for future voxels.

PROOF. Proposition 27 is satisfied for the first voxel of the image (voxel
with coordinates (1, 1, 1)) due to the creation of the initial border (see Fig. 26).
Indeed, there is a face to the left of voxel (1, 1, 1). ∀x, 1 ≤ x ≤ n1 + 1, there is
a face behind voxel (x, 1, 1). Lastly, ∀x, 1 ≤ x ≤ n1 +1 and ∀y, 1 ≤ y ≤ n2 +1,
there is a face above voxel (x, y, 1).

Let us suppose that the invariant is true for the voxel v = (i, j, k) (with
1 ≤ i ≤ n1 + 1, 1 ≤ j ≤ n2 + 1 and 1 ≤ k ≤ n3 + 1) and prove that it is
already true for the next voxel v′ processed in the algorithm. There are four

46



y

z

x
xy

z

A B

Fig. 30. Configuration of the map during its construction. (A) Before processing
the last voxel of the first line. (B) And after. We can observe that the creation of
the last cube of a line involves the creation of the left face of the first voxel of the
following line.

cases to consider depending on the position of the current voxel in regard to
the three borders of the image:

(1) i ≤ n1; then v′ = (i + 1, j, k).
(2) i = n1 + 1 and j ≤ n2; then v′ = (1, j + 1, k).
(3) i ≤ n1 and j = n2 + 1; then v′ = (i + 1, j, k).
(4) i = n1 + 1 and j = n2 + 1; then v′ = (1, 1, k + 1).

(1) In the first case, v = (i, j, k) and v′ = (i+1, j, k). When we create the cube
corresponding to voxel (i, j, k), this creates a face to the left of v′, and this
proves item 1 of Prop. 27 for the next voxel v′. This also creates a face in
front of v which is behind voxel (i, j + 1, k). This proves the first part of
item 2 of Prop. 27 for v′. The second part of item 2 is already true since
the voxels concerned are not modified. Lastly, the cube creation creates
a face under v which is the face above voxel (i, j, k + 1). This proves the
first part of item 3 of Prop. 27 for v′. Other parts are already true since
other voxels are not modified by the creation of the cube corresponding
to v.

(2) In the second case, v = (n1 + 1, j, k) and v′ = (1, j + 1, k). The creation
of the cube creates the left face of the first voxel of the following line (see
example in Fig. 30. This proves item 1 of Prop. 27 for voxel v′.

The new cube involves the creation of a face in front of v which is
behind voxel (n1 + 1, j +1, k). Since the invariant is true for voxel v, and
with this additional face, we can conclude that ∀x, 1 ≤ x ≤ n1 + 1, there
is a face behind voxel (x, j + 1, k). This proves item 2 of Prop. 27 for
voxel v′ = (1, j + 1, k). The same type of proof can be made to prove the
third item of Prop. 27.

(3) In the third case, v = (i, n2 +1, k) and v′ = (i+1, n2 +1, k). The creation
of the cube creates the face behind the first voxel of the same column of
the following plane (see Fig. 31B). The invariant for v′ can be proven by

47



xy

z

xy

z

xy

z

A B C

Fig. 31. Configuration of the map during its construction. The arrows on darts are
not drawn to make figures more understandable. The faces corresponding to the
infinite regions are drawn in dark grey. (A) Before processing the last voxel of the
first column. (B) And after. We can observe that the creation of the last cube of a
column involves the creation of the face behind the first voxel of the same column
of the following plane. (C) Configuration obtained after having processed all the
voxels of the first plane.

using exactly the same arguments as for the first case.
(4) In the fourth case, v = (n1 + 1, n2 + 1, k) and v′ = (1, 1, k + 1). After

creating of the cube corresponding to v, we obtain a configuration similar
to the one shown in Fig. 31C. Indeed, the creation of the cube involves
the creation of the two faces to the left of the first voxel of the next
plane, and behind the last voxel of the first line of the next plane. We
can observe in Fig. 31C that the configuration we obtain is the same for
voxels of the next plane as the configuration of the initial border for the
voxels of the first plane. For this reason, we can continue the image scan
for the next plane and we can prove that Prop. 27 is true for the v′ which
is the first voxel of the next plane. 2

Thanks to Prop. 27, we are sure that during Algorithm 7, before processing
voxel v = (i, j, k), there is a face to the left, above and behind v. This point
is crucial to prove that Algorithm 7 computes the topological map.

Proposition 28 Given a 3D labeled image I, Algorithm 7 computes the topo-
logical map associated to I.

PROOF. To prove Prop. 28, we prove that each cell of the level 0 map asso-
ciated with I is created during the image scan, and that each cell is removed
if necessary depending on the topological map definition. This proves that the
map obtained is the topological map by definition of the different levels.

Algorithm 7 runs through each voxel v = (i, j, k), with 1 ≤ i ≤ n1 + 1,
1 ≤ j ≤ n2 + 1 and 1 ≤ k ≤ n3 + 1. Thanks to Prop. 27, we know that before
processing voxel v, there is a face to the left, above and behind v. This ensures

48



that when we create the cube corresponding to voxel v, it can be 3-sewn to
the three faces containing last, up and behind.

This closes some cells that were previously open and these cells can now be
tested and eventually simplified. The cells in question are the three faces in-
cident to last, up and behind, the three edges incident to last, β0(up) and
β0(behind), and the unique vertex incident to last.

Since this is done for each voxel of the image, this proves that each cell of the
level 0 map is created by Algorithm 7. However, there are some additional
cells which do not belong to the level 0 map and which are created by the
incremental algorithms: these cells are the faces between voxels that belong
to the infinite region (i.e. voxels (n1 + 1, j, k), voxels (i, n2 + 1, k) and voxels
(i, j, n3 +1). But these cells are necessarily removed by Algorithm 7 since they
are between two voxels that belong to the same region (i.e. the infinite region).

Thus, we are sure that Algorithm 7 creates exactly the same cells as the
ones of the level 0 map. Then, by processing, for each voxel, the three faces
incident to last, up and behind, the three edges incident to last, β0(up) and
β0(behind), and the unique vertex incident to last we have considered all the
cells corresponding to the level 0 map. Since we use exactly the same tests
during Algorithm 7 as for the definition of the different map levels in order to
remove (or not) each cell, and since each cell is checked once, this proves that
the final map obtained is the level 3 map corresponding to the initial image.

The last part of the proof consists in showing that the inclusion tree compu-
tation is correct. This is achieved by proving that Algorithm 10 computes the
inclusion tree, and the proof is given in Section 6.2.

This proves that the structure obtained is therefore the topological map cor-
responding to the initial image. 2

Proposition 29 The average complexity of Algorithm 7 is linear in the num-
ber of voxels of the input image.

PROOF. The average complexity of the incremental extraction algorithm is
linear in number of voxels n of the input image (of size n1 × n2 × n3). First,
the upper border creation has O(n1 × n2) complexity. Second, we scan each
voxel exactly once during the image scan. For each voxel, the cube creation
is in constant time, and each different removal operation is also in constant
time (since each face has exactly 8 darts, each edge at the most 8 darts and
each vertex at the most 24 darts). Moreover, testing if an edge removal in-
volves a disconnection can be bounded by a constant, thanks to the union-find
trees. Finally, fictive edge shifting and real vertex degree computation are lin-
ear in number of edges incident to the considered vertex. This number can

49



be bounded by 6 in the average case (see [28]). This is the reason why the
complexity of Algorithm 7 is not linear in the worst case but only in average.
Note that the worst case does not occur in practical cases as we can see in our
experiments (cf. Section 7). With all these complexities, we obtain that the
final average complexity is linear in number of voxels of the image. 2

6.2 Inclusion Tree

The computation of the inclusion tree is the last step of our extraction algo-
rithm, after the extraction of a level l map. This tree is necessary to keep a
relation between all the different connected components of the map. Indeed,
a region R in the input map can be made up of several disconnected surfaces
if there are some regions completely included in R. The inclusion relation
used here is the one presented in Section 2.2, but we only represent direct
inclusions (relations we cannot retrieve by transitivity). The inclusion tree is
always rooted with the infinite region. We keep relations between a node and
its sons and with its father, in order to be able to go through the tree from
root to leaves and from leaves to root.

To compute the inclusion tree, we run through all the darts of the map con-
nected component by connected component. Indeed, a connected component
is made up of regions which all have the same father. In order to retrieve the
different inclusions we need some specific information:

• Each dart is linked with its belonging region noted region(d): ∀ d and d’,
region(d)=region(d’) if and only if d and d’ belong to the same region;
• Each region R knows one dart of the map, belonging to this region. This

dart has to be the dart with the corresponding vertex on the upper left face
of this region. This property ensures us we can directly retrieve the region
containing R. We call such a dart the representative of its region;
• We also have to know the list of all the regions, without the infinite region.

This list must be sorted so that a region Ri is smaller than another region Rj

if and only if Ri is met before Rj during the image scan from top to bottom,
from back to front and from left to right. This order allows to guarantee,
when the current region is R, that its father was already created and placed
in the inclusion tree.

These properties are given by our extraction algorithm. Indeed, the list of
regions can be computed at the same time as the extraction since we use the
same image scan. During this scan, we can fix the representative dart of each
region when we meet a region for the first time. Assigning the region of each
dart is carried out at the same time as the cube is created (with a look-up table
that gives for each label the corresponding region, note that this is possible

50



only because each region is 6-connected, and this is the unique reason why this
work is limited to labeled images). When we meet a new region, we label the
new darts within this new region. Otherwise, we copy the label of the same
region’s existing darts without using the look-up table.

Algorithm 10: Inclusion tree computation

Input: M the map of a labeled image I ;
L The sorted list of regions of the image I.

Output: An inclusion tree T.

Unmark each region of L;
Create a node corresponding to the infinite region as root of T ;
foreach region R of L not marked do1

dinit ← representative(R);
father ← the node corresponding to region(β3(dinit));
foreach dart d of the connected component incident to dinit do2

if region(d) not marked then
Create a node corresponding to region(d);
Set this node as a son of father in T ;
Mark region(d);

return T

The computation of the inclusion tree is presented in Algorithm 10. This al-
gorithm’s input is a map of any level and a list of regions, sorted as explained
above, and its output is the corresponding inclusion tree. This algorithm is
made of two loops. The first loop runs through regions of list L and the sec-
ond loop processes each region that belongs to a same connected component,
and thus which are all included in the same region. This algorithm uses two
classical basic operations which allow to handle trees: a first operation which
creates a new node associated with a given region, and a second one which
sets a node n as son of a given node father. This operation only updates the
tree locally so that n becomes the son of father.

Proposition 30 Given a map M corresponding to a labeled image I, and L
the sorted list of regions contained in I (sorted so that a region Ri is smaller
than another region Rj if and only if Ri is met before Rj during the image scan
from top to bottom, from back to front and from left to right.), Algorithm 10
computes the inclusion tree associated with I.

PROOF. Proposition 30 can be proved by induction depending on the cur-
rent region R of the first loop. Let us suppose that each region before R in
the list L is correctly placed in the inclusion tree under construction. This is
obviously true for the first region of the list since there is no region before the
first region.

51



If R is marked, that is because it was already considered and placed in the
inclusion tree so we can process the next region on the list.

If R is not marked, we know that R is included in region(β3(representative(R))).
Indeed, since list L is sorted, when we meet the first region of a connected
component we know that this region has no region belonging to the same con-
nected component at its top, on its left and on back. So β3(dinit) is obviously
a dart of the region containing the current region (called father). Moreover,
each region belonging to the same connected component as R is also included
in the region father.

Thus, the second loop of the algorithm runs through each dart of the connected
component incident to dinit, and for each region not yet met, it puts this region
as son of father. Since we run through each dart of the connected component,
we consider exactly all the regions of this component, and not the included
regions which will be treated during a next round of the first loop.

This proves that after it was considered, region R, plus all the regions that
belong to the same connected component of R, are correctly added to the
inclusion tree. Since we can prove this for each region on the list, this proves
that at the end of our algorithm, we have computed the inclusion tree corre-
sponding to image I. 2

Proposition 31 Algorithm 10 has O(n) complexity, with n the number of
darts of map M.

PROOF. During Algorithm 10, we process each dart exactly once, because
we run through the connected components one by one, and two different con-
nected components are inevitably disjointed. We also process each region only
once because we run through the list of regions and we mark each treated re-
gion. Moreover, each basic operation used in this algorithm is done in constant
time. Based on these facts, we can deduce that Algorithm 10 has O(n + nR)
complexity, with nR the number of regions of the image. However, since the
number of regions is lower than the number of darts, the complexity is thus
linear in number of darts of the map. 2

We can note that Algorithm 10 works for every map level and not only the last
level. Moreover, its execution time decreases when the level increases, even if
the global complexity does not change. Indeed, the number of darts to run
through decreases more and more for higher levels.

52



7 Experiments and Analysis

We have implemented the incremental extraction algorithm of the topological
map and made some experiments in order to study time and memory required
by our approach. All our experiments were made on a classical personal com-
puter with an Athlon 2000MHz CPU with 512Mb of memory and a Linux
Debian System. Our computer software was developed in C++. We have cho-
sen to represent each dart by a structure where each βi relation is a pointer to
the dart i -sewn. This implementation is efficient in time since we can access
to each βi of a given dart in direct access, and we can also directly modify
each βi relation. But of course this is to the detriment of memory space occu-
pation. The intervoxel matrix is represented with a matrix, and we keep the
original image in a second matrix. The goal is, in our future works, to use our
program in segmentation algorithm, and for that it is necessary to keep the
initial image during the different segmentation steps.

We have made our experiments on artificial images in order to analyze the
memory space and the computation time independently of the image content.
We have worked on two types of images:

(1) cubic images where each region is a cube of size s ;
(2) random images where each region is randomly created.

For the first type of image, we have generated images of size between 323 and
2553, and for each size we have generated each image starting with s (the size
of each cubic region) equal to 4 and we multiply it by two until s is equal
to the size of the image. We have chosen to start with region of size 4, since
smaller regions are, most of the time, not interesting to consider in real images.
Moreover, even if in a real image there could be small regions, it is reasonable
to think that there are not many, and moreover that they are balanced by big
regions.

For the second type of image (random images), we have also generated images
of size between 323 and 2553, and for each size we have generated 10 random
images in order to compute an average of the results obtained. For each image,
the number of generated regions is a random number between 1 and the size
of the image. To obtain a 3D labeled image given a random image, we use a
basic connected component labeling algorithm.

In the following, we present average values for the time of our incremental
extraction algorithm, and for the memory space used to represent the topo-
logical map. Of course, each result depends on the image contents but our
experiments allow to verify the linearity of our extraction algorithm and the
linearity of the topological map in memory space. Table 1 and Table 2 show
information concerning regions, respectively for cubical images and for ran-

53



Table 1
Information about regions for cubic images. Each value is the average on all the
images of a same size. Nb Regs is the number of regions. Size is the region size. Std
Size is the standard deviation of the region size.

Size 323 643 1283 1603 1923 2243 2553

Nb Regs 146,2 936,2 6241,5 12193,3 21065,8 33454,5 49932

Size 224,1 280 336 335,9 335,9 335,9 332,1

Std Size 1431,9 4086,8 11580,5 9208,2 9199,3 9865,3 11446

Table 2
Information about regions for random images. The key is the same as for Table 1,
plus Depth Tree is the depth of the inclusion tree, Nb Tunnels is the number of
tunnels and Std Tunnels is the standard deviation of the number of tunnels.

Size 323 643 1283 1603 1923 2243 2553

Nb Regs 77,9 730 7457,4 15393,7 27144 47243 68951,2

Depth Tree 2 2,7 3 3 3 3 3

Size 420,6 359,1 281,2 266,1 260,7 237,9 240,5

Std Size 3164 8211,9 20615 28066 36668,8 43746,8 53737,3

Nb Tunnels 1,01 0,71 0,34 0,27 0,23 0,2 0,18

Std Tunnels 5,9 9,8 11,5 12,3 12,7 13,8 14,4

dom images: the number of regions, the depth of the inclusion tree (not given
for cubic images since it is always equal to one as there is no included region
in such types of images), the size of regions, the number of tunnels (not given
for cubic images since it is always equal to zero due to the type of gener-
ated images). Since these last both values are average values, we give also the
associated standard deviation.

We can observe in Table 1 and Table 2 that the standard deviation increases
when the size of image increases (for region sizes and for number of tunnels
for random images). This is due to the fact that for bigger images, differences
between regions are more important. For example for tunnels, we can have
regions with very small number of tunnels and with very big number of tunnels
(for image of size 2553, the number of tunnels is between 0 and more than
4000).

We can see in Table 3 the results of topological map extraction for cubic
images. In this table, we give the time required to extract the topological map
by using the incremental algorithm, and we have detailed each step of the
algorithm (construction of the upper border, scanning of the image, removal
of real degree zero vertices and inclusion tree computation). Similar results are
given for random images in Table 4. Finally, we have summarized the total

54



Table 3
Time (in seconds) required to extract the topological map by using the incremental
algorithm for cubic images. Times are detailed for the different steps of the algo-
rithm. Step 1: Border creation. Step 2: Image scan. Step 3: Removal of real degree
zero vertices. Step 4: Inclusion tree computation. The last line gives the total time
used for the extraction, including all the different steps.

Size 323 643 1283 1603 1923 2243 2553

Step 1 0 0 0,01 0,01 0,02 0,03 0,04

Step 2 0,15 1,09 7,67 14,93 25,79 41,29 61,89

Step 3 0 0 0,05 0,09 0,16 0,26 0,41

Step 4 0 0,01 0,11 0,23 0,42 0,67 0,87

Total 0,15 1,11 7,83 15,26 26,39 42,25 63,21

Table 4
Time (in seconds) required to extract the topological map by using the incremental
algorithm for random images. The key is the same as for Table 3.

Size 323 643 1283 1603 1923 2243 2553

Step 1 0 0 0,01 0,01 0,02 0,03 0,04

Step 2 0,16 1,09 7,1 12,99 21,87 34,22 49,83

Step 3 0 0,04 0,34 0,62 1,05 1,61 2,28

Step 4 0 0,01 0,13 0,24 0,4 0,64 0,91

Total 0,16 1,15 7,58 13,86 23,34 36,49 53,06

2243192316031283 2553
0

60

10

20

30

40

50

Time
in seconds

Size of images
in number of voxels

Time
in seconds

2243192316031283 25530

10

20

30

40

50

Size of images
in number of voxels

A B

Fig. 32. Total time (in seconds) required to extract the topological map by using the
incremental algorithm for different image sizes. This time includes all the different
steps of the extraction algorithm. (A) Time for cubic images. (B) Time for random
images.

time necessary to extract the topological map in Fig. 32.

If we look at the two curves of Fig. 32, we can first verify that the extraction

55



algorithm is actually linear. This allows to verify the theoretical complexity
which is only given in average in Section 6. We can also note that the time
required is not so long, particularly if we remember that our software is only a
prototype. By using some classical programming techniques (for example block
memory allocator) and also by using some optimizations of our algorithm (for
example by using precode notion [2]), we can obtain a faster program. Finally,
if we look at the time for each step of the algorithm (given in Table 3 and
Table 4), we can notice that the time required to remove the real degree zero
vertices is not important in comparison with the time of the image scan and
map construction. This shows that we do not waste much time by separating
these two steps, and we have won in simplification of our algorithm.

If we compare the two curves, we can observe that the time necessary to com-
pute the topological map is longer for cubic images than for random images.
This is due to the fact that cubic images generated with regions of small sizes
have many more regions than random images 13 . When the number of regions
is smaller, there are more local configurations that are completely inside a re-
gion. These configurations are processed faster than configurations in a region
boundary, since all the three faces incident to the new voxel are removed. After
these removals, there are no edges and no vertex to simplify. For this reason,
there are obviously no tests of disconnection and no fictive edge management.

Now we present in Table 5 the memory space occupation for the topological
map for cubic images. In this table, we give the total memory used to repre-
sent the topological map, and we have detailed different parts of our model
(combinatorial map, inclusion tree, image, intervoxel matrix and union-find
trees). Similar results are given for random images in Table 6. Finally, we
have summarized the total memory required to represent all the topological
map, including all the different parts, in Fig. 33.

If we look at the two curves of Fig. 33, we can verify that the memory space
used is also linear in number of voxels of the image. And if we compare the
two curves, we can observe that the memory space required to represent the
topological map is more important for random images than for cubic images.
This is due to the fact that for cubic images, regions are regular, and so there
are less darts to represent regular regions since each region (except those in the
border of the image) has exactly 6 different neighbors and thus exactly 6 faces.
This is not the case for random images where regions can have different types
of neighborhoods and so more faces. Note that in memory space occupation,
we have taken into account the space occupied by union-find trees, but this
memory space is only used during the extraction algorithm, and can be freed
after the extraction.

13 For example, 2553 cubic image with regions of size 43 is composed with 262144
regions and its extraction takes 123 seconds.

56



Table 5
Memory space used to represent the topological map for cubic images (units are
given in the table since they are not always the same: kb for kilo-bytes, and mb
for mega-bytes). Memory spaces are detailed for the different structures used in our
model. Map: Combinatorial map. Incl. tree: Inclusion tree. Image: Original image.
Intervoxel : Intervoxel Matrix. UF-trees: Union-find trees. The last line gives the
total memory space including all the different parts.

Size 323 643 1283 1603 1923 2243 2553

Map 185,1 kb 1228.8 kb 7,6 mb 14,9 mb 25,6 mb 40,5 mb 60,4 mb

Incl. tree 6,9 kb 43,9 kb 0,3 mb 0,6 mb 0,6 mb 0,7 mb 0,8 mb

Image 64,0 kb 512,0 kb 4,0 mb 7,8 mb 13,5 mb 21,4 mb 31,6 mb

Intervoxel 70,2 kb 536,4 kb 4,1 mb 7,9 mb 13,7 mb 21,7 mb 32,0 mb

UF-trees 114,0 kb 691,2 kb 4,3 mb 8,4 mb 14,2 mb 22,4 mb 32,7 mb

Total 440,3 kb 3012,3 kb 20,3 mb 39,6 mb 67,6 mb 106,8 mb 157,5 mb

Table 6
Memory space used to represent the topological map for random images. The key
is the same as for Table 5.

Size 323 643 1283 1603 1923 2243 2553

Map 312,5 kb 2150,4 kb 13,5 mb 23,8 mb 38,9 mb 59,3 mb 83,4 mb

Incl. tree 3,6 kb 32,7 kb 0,3 mb 0,7 mb 1,3 mb 2,1 mb 3,0 mb

Image 64,0 kb 512,0 kb 4,0 mb 7,8 mb 13,5 mb 21,4 mb 31,6 mb

Intervoxel 70,2 kb 536,4 kb 4,1 mb 7,9 mb 13,7 mb 21,7 mb 32,0 mb

UF-trees 116,9 kb 651,0 kb 3,6 mb 6,1 mb 9,8 mb 14,6 mb 20,4 mb

Total 567,2 kb 3882,5 kb 25,5 mb 46,3 mb 77,2 mb 119,2 mb 170,4 mb

1283 1603 1923 2243 2553

Memory
in mega−bytes

Size of images
in number of voxels

0

19

38

57

76

95

114

133

152

1283 2243 255319231603
0

19

38

57

76

95

114

133

152

171
Memory
in mega−bytes

Size of images
in number of voxels

A B

Fig. 33. Total memory (in mega-bytes) required to represent the topological map
for different image sizes. This memory size includes all the different parts of the
topological map. (A) Memory for cubic images. (B) Memory for random images.

57



8 Conclusion

In this paper we have presented a model that allows to describe 3D labeled
images, the topological map, and we have given an incremental extraction
algorithm which computes this model from a labeled image in linear time. The
main interest of this model is to explicitly represent structural information on
image regions. This information can be used in image processing when we
need to compute efficiently some particular criteria (for example retrieve all
the regions adjacent to a given region during a segmentation algorithm by
region merging, or compute Euler characteristics of a given surface).

Topological map definition is based on removal operations, and is carried out
in several successive simplification steps. This allows to simplify each step of
the construction, and to analyze each problem separately since we focus, for
one construction step, on a particular problem. Moreover, this also allows to
simplify the study of topological map properties, by studying separately each
operation used to build each level, and prove progressively the properties.

Thanks to these levels, we have proved in this work that the topological map
describes the represented labeled image by showing that no information is
lost during the different simplifications. We have also proved that this map is
minimal in number of cells because we cannot remove anything in this map
without changing the topology, and representative of the image topology since
the topological map does not depend on region geometry. For these reasons,
the topological map is a good model for image processing. Indeed, it allows to
retrieve most of the information needed by an image processing algorithm with
a low computational cost. Moreover, the topological map regroups topological
information (like adjacencies, that we can find in a RAG for example) and
geometrical information (for instance the shape of a surface is given by the
surfels which compose it) inside a single model.

Of course, all the information contained in the topological map can be retrieved
directly by using only the image. However, this information can be retrieved
efficiently by using the topological map. For example, if we want to retrieve
all the regions adjacent to a given region R, we need to traverse all the voxels
in the boundary of R in the image, while we can get this information only by
looking at the faces of R in the topological map, and there are only few faces
since our model is minimal.

We also have presented in this paper an incremental extraction algorithm
which allows to extract the topological map of a labeled image in a single
image scan. We have completely implemented this algorithm, and made several
experiments in order to show how it is efficient (complexity in time) and to
show the memory used to represent topological map.

58



Now we are working on using 3D topological maps for image processing. Some
first works in 2D [5] have shown that using topological maps in existing image
processing algorithms (for example segmentation algorithms) can improve the
final result. We have also proposed split and merge operations using 3D topo-
logical maps [19]. Now we are working to propose a 3D image segmentation
algorithm that only uses information computed from the topological map. We
want to use topological map properties during the segmentation process, for
example to compute topological features which can be used as criteria for the
segmentation.

Another advantage of our model is that it can be used for visualization, and
for interactive manipulation, for example to allow interactive correction of an
expert. Our goal is to propose a complete image processing chain which is
only based on the topological map and which allows to takes into account
topological information of the analyzed image during each step of the process.
Moreover, we are also working to extend this work in order to represent multi-
scale segmentation by using generalized pyramids [46]. This can be used for
example to handle a same image at different resolution levels, depending on
the needs of a particular operation.

We also are interested in defining the topological map in any dimension. Of
course some topological problems still remain since we do not know the topo-
logical classification of objects (as for example the problem of interlaced rings,
see [36] for a discussion about these problems and a possible solution). Never-
theless, we can define the topological map in any dimension and use this tool
in order to give a first characterization of discrete objects. It can be possible
to add fictive cells into the topological map in order to keep each i -cell home-
omorphic to an i -ball. This can be achieved without any particular problems,
thanks again to our progressive simplification levels, where we can control if a
removal operation leads to a topological modification. The problem is then to
study how the objects obtained can be interpreted and how modification algo-
rithms have to process these particular elements. Another problem concerns
the way that these fictive elements have to be managed in order to obtain the
minimal representation.

Acknowledgments

The author is very grateful to Valerie Gral for her careful reading and cor-
rection of this paper. Thanks also to Simon Thurston for his help concerning
the English. Lastly, we would like to give our special acknowledgements to
Yves Bertrand and Pascal Lienhardt for their encouragements and fruitful
discussions about this work.

59



References

[1] E. Ahronovitz, C. Fiorio, and S. Glaize. Topological operators on the topological
graph of frontiers. In Discrete Geometry for Computer Imagery, number 1568
in Lecture Notes in Computer Science, pages 207–217, Marne-la-Vallée, France,
1999.

[2] Y. Bertrand, G. Damiand, and C. Fiorio. Topological encoding of 3d segmented
images. In Discrete Geometry for Computer Imagery, number 1953 in Lecture
Notes in Computer Science, pages 311–324, Uppsala, Sweden, december 2000.

[3] Y. Bertrand, G. Damiand, and C. Fiorio. Topological map: Minimal encoding of
3d segmented images. In Workshop on Graph-Based Representations in Pattern
Recognition, pages 64–73, Ischia, Italy, may 2001. IAPR-TC15.

[4] Y. Bertrand, C. Fiorio, and Y. Pennaneach. Border map: a topological
representation for nd image analysis. In Discrete Geometry for Computer
Imagery, number 1568 in Lecture Notes in Computer Science, pages 242–257,
Marne-la-Vallée, France, 1999.

[5] P. Bourdon, O. Alata, G. Damiand, C. Olivier, and Y. Bertrand. Geometrical
and topological informations for image segmentation with monte carlo markov
chain implementation. In Vision Interface, pages 413–420, Calgary, Canada,
may 2002.

[6] A. Braquelaire, G. Damiand, J-P. Domenger, and F. Vidil. Comparison
and convergence of two topological models for 3d image segmentation. In
Workshop on Graph-Based Representations in Pattern Recognition, number
2726 in Lecture Notes in Computer Science, pages 59–70, York, England, june
2003.

[7] J.-P. Braquelaire and L. Brun. Image segmentation with topological maps
and inter-pixel representation. Journal of Visual Communication and Image
Representation, 9(1):62–79, march 1998.

[8] J.-P. Braquelaire, P. Desbarats, and J.-P. Domenger. 3d split and merge with
3-maps. In Workshop on Graph-Based Representations in Pattern Recognition,
pages 32–43, Ischia, Italy, may 2001. IAPR-TC15.

[9] J.-P. Braquelaire, P. Desbarats, J.-P. Domenger, and C.A. Wüthrich. A
topological structuring for aggregates of 3d discrete objects. In Workshop on
Graph-Based Representations in Pattern Recognition, pages 193–202, Austria,
may 1999. IAPR-TC15.

[10] J.-P. Braquelaire and J.-P. Domenger. Representation of segmented images
with discrete geometric maps. Image and Vision Computing, 17(10):715–735,
1999.

[11] L. Brun and J.-P. Domenger. A new split and merge algorithm with topological
maps and inter-pixel boundaries. In The fifth International Conference in
Central Europe on Computer Graphics and Visualization, february 1997.

60



[12] L. Brun, J.-P. Domenger, and J.-P. Braquelaire. Discrete maps : a framework for
region segmentation algorithms. In Workshop on Graph-Based Representations
in Pattern Recognition, Lyon, april 1997. IAPR-TC15. published in Advances
in Computing (Springer).

[13] R. Cori. Un code pour les graphes planaires et ses applications. PhD thesis,
Université Paris VII, 1973.

[14] R. Cori. Un code pour les graphes planaires et ses applications. In Astérisque,
volume 27. Soc. Math. de France, Paris, France, 1975.

[15] G. Damiand. Définition et étude d’un modèle topologique minimal de
représentation d’images 2D et 3D. Thèse de doctorat, Université Montpellier
II, décembre 2001.

[16] G. Damiand and D. Arrivault. A new contour filling algorithm based on 2d
topological map. In Workshop on Graph-Based Representations in Pattern
Recognition, number 4538 in Lecture Notes in Computer Science, pages 319–
329, Alicante, Spain, June 2007.

[17] G. Damiand, Y. Bertrand, and C. Fiorio. Topological model for two-dimensional
image representation: definition and optimal extraction algorithm. Computer
Vision and Image Understanding, 93(2):111–154, february 2004.

[18] G. Damiand and P. Lienhardt. Removal and contraction for n-dimensional
generalized maps. In Discrete Geometry for Computer Imagery, number 2886
in Lecture Notes in Computer Science, pages 408–419, Naples, Italy, november
2003.

[19] G. Damiand and P. Resch. Topological map based algorithms for 3d image
segmentation. In Discrete Geometry for Computer Imagery, number 2301 in
Lecture Notes in Computer Science, pages 220–231, Bordeaux, France, april
2002.

[20] P. Desbarats. Structuration des images segmentées 3D discrètes. Thèse de
doctorat, Université Bordeaux 1, décembre 2001.

[21] J.P. Domenger. Conception et implémentation du noyeau graphique d’un
environnement 2D1/2 d’édition d’images discrètes. Thèse de doctorat,
Université Bordeaux I, avril 1992.

[22] J. Edmonds. A combinatorial representation for polyhedral surfaces. Notices
of the American Mathematical Society, 7, 1960.

[23] C. Fiorio. Approche interpixel en analyse d’images : une topologie et des
algorithmes de segmentation. Thèse de doctorat, Université Montpellier II,
novembre 1995.

[24] C. Fiorio. A topologically consistent representation for image analysis: the
frontiers topological graph. In Discrete Geometry for Computer Imagery,
number 1176 in Lecture Notes in Computer Science, pages 151–162, Lyon,
France, november 1996.

61



[25] S Fourey and Malgouyres R. A digital linking number for discrete
curves. International Journal of Pattern Recognition and Artificial Intelligence,
15(7):1053–1074, 2001.

[26] J. Françon. Topologie de Khalimsi et Kovalevski et algorithmique graphique.
Rapport de recherche 91-10, Université Louis-Pasteur, Centre de Recherche en
Informatique, Strasbourg, France, 1991.

[27] J. Françon. Discrete combinatorial surfaces. Graphical Models and Image
Processing, 57(1):20–26, January 1995.

[28] J. Françon and Y. Bertrand. Topological 3d-manifolds : a statistical study of
the cells. Theoretical Computer Science, 234(2):233–254, 2000.

[29] A. Jacques. Constellations et graphes topologiques. In Combinatorial Theory
and Applications, volume 2, pages 657–673, 1970.

[30] E. Khalimsky, R. Kopperman, and P.R. Meyer. Boundaries in digital planes.
Journal of Applied Mathematics and Stochastic Analysis, 3(1):27–55, 1990.

[31] R. Klette and A. Rosenfeld. Digital Geometry. Morgan Kaufmann, 2004.

[32] T.Y. Kong, R. Kopperman, and P.R. Meyer. A topological approach to digital
topology. American Mathematical Monthly, 98(10):901–917, 1991.

[33] T.Y. Kong and A. Rosenfeld. Digital topology: introduction and survey.
Computer Vision, Graphics, and Image Processing, 48(3):357–393, 1989.

[34] V.A. Kovalevsky. Finite topology as applied to image analysis. Computer
Vision, Graphics, and Image Processing, 46:141–161, 1989.

[35] W.G. Kropatsch. Building irregular pyramids by dual-graph contraction.
Vision, Image and Signal Processing, 142(6):366–374, december 1995.

[36] W.G. Kropatsch. Abstraction pyramids on discrete representations. In Discrete
Geometry for Computer Imagery, number 2301 in Lecture Notes in Computer
Science, pages 1–21, Bordeaux, France, april 2002.

[37] W.G. Kropatsch and H. Macho. Finding the structure of connected components
using dual irregular pyramids. In Discrete Geometry for Computer Imagery,
pages 147–158, invited lecture, september 1995.

[38] P. Lienhardt. Subdivision of n-dimensional spaces and n-dimensional
generalized maps. In 5th Annual ACM Symposium on Computational Geometry,
pages 228–236, Saarbrücken, Germany, 1989.

[39] P. Lienhardt. Topological models for boundary representation: a comparison
with n-dimensional generalized maps. Commputer Aided Design, 23(1), 1991.

[40] P. Lienhardt. N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. International Journal of Computational Geometry and Applications,
4(3):275–324, 1994.

[41] J.R. Munkres. Elements of Algebraic Topology. Perseus Books, 1984.

62



[42] J.-G. Pailloncy and J.-M. Jolion. The frontier-region graph. In Workshop on
Graph-Based Representations in Pattern Recognition, volume 12 of Computing
Supplementum, pages 123–134. Springer, april 1997.

[43] G. Reeb. Sur les points singuliers d’une forme de pfaff complètement intégrable
ou d’une fonction numérique. In Comptes Rendus de l’Académie des Sciences,
volume 222, pages 847–849, Paris, France, 1946.

[44] A. Rosenfeld. Adjacency in digital pictures. Information and Control, 26(1):24–
33, 1974.

[45] A. Rosenfeld, T.Y. Kong, and A.Y. Wu. Digital surfaces. Computer Vision,
Graphics, and Image Processing: Graphical Models and Image Processing,
53(4):305–312, july 1991.

[46] C. Simon, G. Damiand, and P. Lienhardt. Pyramids of n-dimensional
generalized maps. In Proceedings of 5th IAPR-TC15 Workshop on Graph-
based Representations in Pattern Recognition, volume 3434 of Lecture Notes
in Computer Science, pages 142–152, Poitiers, France, Avril 2005.

[47] R. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, 1975.

[48] W.T. Tutte. A census of planar maps. Canad. J. Math., 15:249–271, 1963.

63


