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On the time to reach maximum for a variety of constrained Brownian motions

We derive

, the joint probability density of the maximum ) , ( m t M P M and the time at which this maximum is achieved, for a class of constrained Brownian motions. In particular, we provide explicit results for excursions, meanders and reflected bridges associated with Brownian motion. By subsequently integrating over m t M , the marginal density is obtained in each case in the form of a doubly infinite series. For the excursion and meander, we analyse the moments and asymptotic limits of in some detail and show that the theoretical results are in excellent accord with numerical simulations. Our primary method of derivation is based on a path integral technique; however, an alternative approach is also outlined which is founded on certain 'agreement formulae' that are encountered more generally in probabilistic studies of Brownian motion processes.

Introduction

Brownian motion (the Wiener process) is the most important and widely studied continuous-time stochastic process and, as such, has generated a huge literature. Despite this attention, however, it is still possible to identify problems relating to Brownian motion which are relatively easy to pose but not that well understood. Such problems are often directly linked to areas of application in the physical or social sciences, wherein their solution is of immediate relevance.

Within this overall context, there has been a recent renewal of interest in studying functionals of constrained Brownian motion. This has been driven by problems which arise quite naturally in, e.g., financial transactions [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF], data storage in computer science [START_REF] Flajolet | [END_REF], queueing dynamics [3], interface fluctuations [4] and extreme statistics in time series analysis [5]. For an overview, see [6][7][8]. The question we seek to answer in this paper is similarly motivated and finds its roots in the following classic problem. Given . This is Lévy's famous 'arcsine law' [9]. It is somewhat counterintuitive; the density has a minimum at the midpoint and peaks at the end points and 2 / t t m = 0 = m t t t m = , showing that Brownian motion is inherently 'stiff' [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF][START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]. The corresponding result for a Brownian bridge (which has the additional constraint that 0

) ( = t x
) is also known, namely , which one may call the 'uniform law' [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]. Recently, an expression for for a Brownian motion up to its first-passage time was also presented [START_REF] Majumdar | [END_REF], adding to the results on first-passage Brownian functionals given in [13,14]. The main focus of the present paper is to derive for three other cases: (i) a Brownian excursion, (ii) a

Brownian meander, and (iii) a reflected Brownian bridge. We include the latter since it appears naturally in the context of establishing certain probability laws related to the excursion and the meander (see the discussion in section 4). 
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Our primary aim is to compute these functions explicitly. For convenience, we summarise the main findings here;
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The primary method we employ to derive these results is based on a path-integral technique (in essence, the Feynman-Kac formula). In section 2 we describe how the approach leads naturally to expressions for the joint probability density . By subsequently integrating over ) , ( m t M P M one can then obtain expressions for the marginal densities , and hence obtain the functions , and defined above.

In section 3 we concentrate on analysing and in terms of their moments

) ( m t P ) (x f ) (x g ) (x h ) (x f ) (x g
and asymptotic tails, and show that the results are in excellent accord with numerical simulations. In section 4 we return to the results obtained for to show that they may also be obtained by considering certain probabilistic laws known as 'agreement formulae'. These laws are associated with random variables which have been defined and analysed by probability theorists in the study of Brownian motion processes. Finally, in section 5, overall conclusions are drawn.
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Deriving the probability densities

The basic approach outlined in this section has been described in detail in [6,7].

The central idea is that the probability measure [ ]

) (τ x P associated with an unconstrained Brownian path ) (τ x over the time interval t ≤ ≤ τ 0 satisfies [ ] ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - ∝ ∫ t d d dx x P 0 2 2 1 exp ) ( τ τ τ . ( 4 
)
From this observation one can systematically construct solutions to the problems of interest by interpreting the 'Lagrangian path-integral' formalism of (4) in terms of an equivalent 'Hamiltonian propagator' formalism within which the constraints on the motion may be accommodated quite naturally. We proceed on a case-by-case basis.

Brownian excursion

Let us first consider the case of the Brownian excursion. With reference to Figure 1 we insist that from the outset. This problem can be circumvented by the following procedure [6,7]. We assume that the process starts at , then impose the constraint

0 ) 0 ( = x 0 ) 0 ( 0 > = x x 0 ) ( > τ x
for 0 > τ without any problem, and only take the limit 

) (τ x 0 ) 0 ( x x = t x t x = ) ( ε - = M t x m ) ( M x < < ) ( 0 τ t ≤ ≤ τ 0 . 0 0 → x at
π = m m t M n n t H e M M n M x n M M e x 2 2 2 2 1 0 0 ) ( sin sin 2 π ε π π ε - ∞ = - ∑ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = - . (5) 
0 → x K + - = - - - ∞ = + ∑ ) ( 2 2 1 , 2 2 6 2 0 2 4 2 2 2 2 2 2 ) 1 ( 4 ) , ( m m t t M m t M n n m n m m e n m M x A t M P π π ε π (6)
where K denotes the higher order terms in ε and . The amplitude (i.e. constant of proportionality) 0 x A , which is a function of ε and , may be determined by the normalisation condition . The integrals are straightforward to evaluate and to complete the calculation we make use of the following results;
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These results are simple to derive by appropriately differentiating or integrating the basic geometric series for

) 1 /( 1 α α α - = ∑ ∞ = n n 1 < α
. This idea of introducing α and letting 1 -→ α is not just a useful computational aid; it is an important regularisation procedure which gives a precise meaning to certain sums which arise in the analysis.

With the help of ( 7) one therefore finds that, for a Brownian excursion, the joint probability density is given by,
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We are primarily interested in this paper in the marginal density . This may be obtained by integrating (8) over

) ( m t P M , i.e.
. Before doing so, however, we make a brief detour by considering the other marginal density associated with the maximum of a Brownian excursion, namely . This is well known in the literature [15][16][17];

dM t M P t P m m ) , ( ) ( 0 ∫ ∞ = m t m dt t M P M P ) , ( ) ( 0 ∫ = ⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ = ∑ ∞ = - 1 2 2 3 2 / 3 2 / 5 2 2 2 1 2 ) ( n t M n e n M dM d t M P π π (9) 
with moments given by,
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where ) (k ζ is the Riemann zeta function. By integrating (8) over one should obtain an expression for which is equivalent to (9). Interestingly, by doing so one obtains a representation which is quite different;
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It is by no means obvious that ( 9) and ( 11) are equivalent, but in the Appendix we shall prove that this is the case. It follows that the moments calculated using (11) must agree with [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF] . For the third moment, however, using [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] and comparing with (10) one obtains (when suitably regularised) an unusual and interesting identity,
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ζ is Apéry's constant. We have checked this numerically to high precision and it is correct, although a direct proof of ( 12) eludes us.

Let us now return to considering the marginal density for a Brownian excursion. By integrating (8) over
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where the scaling function is given by,
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This is our first main result. Specifically, is the probability density for the time to reach maximum for a Brownian excursion on the interval
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One may easily check that ( 14) is correctly normalised over this interval, i.e.

. Thus,
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where we have used the results in (7) when making the final step. In the next section we will consider the low-order moments and asymptotics of , and also make comparison with numerical simulations.

) (x f 2.2 Brownian Meander

Turning now to the case of a Brownian meander, it is straightforward to adapt the above analysis for the excursion and we therefore only present the outline details. The key difference between the meander and the excursion is that there is no constraint on the final co-ordinate of the motion, , other than

t x M x t ≤ ≤ 0
(see Figure 1). Thus one must integrate over this co-ordinate using the result,
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)
Proceeding exactly as before one then derives in the limit 0 → ε and ,
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Again the unknown amplitude B may be determined by the normalisation condition . A useful result in this regard is, 1 ) , (
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)
This may be proved by representing the sum in (18) as an integral by first using the identities and and then interchanging the order of summation and integration. The final result for the joint probability density for a Brownian meander is given by,
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From this result, one can obtain in passing an expression for the marginal density by integrating over ;
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There is a standard, well known expression for , namely [18,19],
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with moments [20]
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As before, we prove in the Appendix that the two representations ( 20) and ( 21) are equivalent, as indeed they must be. Using (20) one can determine that the second moment is given by 3 /

2 2 t M π =
, which agrees with [START_REF] Biane | [END_REF]. More interestingly, using (20) to determine the first moment and comparing with the result given by ( 22),

namely 2 ln 2 t M π =
, one obtains the following identity;
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Again, we have not been able to prove this result directly, but we have checked it numerically to high precision and are satisfied that it is correct.

Returning to the main theme, to obtain the marginal density for a

Brownian meander we integrate (19) over [START_REF] Biane | [END_REF] where
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One can write this in a slightly neater form by noting that only the terms where m is odd contribute, i.e. when is even. Thus,
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This is our second main result. Specifically, is the probability density for the time to reach maximum for a Brownian meander on the interval [ . Again it is useful to check using (25) that is correctly normalised;
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where we have used the results in (7) and (18) in the final step. In the next section we will consider the low-order moments and asymptotics of , together with , with comparisons made against numerical simulations. It is perhaps worth stressing in
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advance that, unlike the function which is symmetric about , the function is manifestly asymmetric; indeed it diverges as .

) (x f 2 / 1 = x ) (x g 1 → x 2.

Reflected Brownian bridge

One can easily adapt the above path-integral method to calculate for other Brownian motion processes. Anticipating the discussion in section 4, there are good mathematical reasons for studying the reflected Brownian bridge alongside the excursion and meander. The only significant modification to the calculation involves considering a Brownian motion ) , (

m t M P ) (τ x
which is constrained to lie in the box

M x M < < - ) (τ for t ≤ ≤ τ 0
. We do not give the details of the derivation here, but simply present the results. One finds that, .
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By integrating [START_REF] Prudnikov | Integrals and Series[END_REF] over one therefore has that
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which is equivalent (see the Appendix) to the conventional expression [20] 
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More pertinently, by integrating (28) over M one obtains the marginal density where the scaling function is given by, ) / ( ) (
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(31) This is our third main result. It is straightforward to check that is correctly normalised, i.e. ∫

.
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Analysis and numerical simulations

In this section we concentrate on analysing two of the key results in this paper; the probability density ( f r the time to reach maximum for a Brownian excursion on the interval [ ] (26). We begin by considering the excursion. In Figure 2 we plot the function ) (x f alongside the results of numerical simulations of the excursion process (based on 7 10 sampl .

The results are indistinguishable. We can determine the asymptotic behaviour of to write as given by ( 14) in an equivalent form;
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By such means one achieves a convenient factorisation, although it comes at a price in that one has to carry out at some stage the parametric integration over the dummy variable . Next, to study the limit we substitute

y 0 → x x z y / =
in (33) to give 
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we consider the second summation in (34) first, in the limit this is If 0 → x dominated by the 1 = m term, thus,
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)
o deal with the first summation in (34) we use a key identity known from the theory T of Jacobi theta functions [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]; (
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his means that by substituting ( 35) and ( 37) into (34) one obtains T
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sing Laplace's (saddle point) method to approximate this integral as one U 0 → x therefore finds the asymptotic behaviour

x e x x f / 4 / 9 2 2 / 1 2 ) ( π π - . ( 39 
)
his is also plotted in Figure 2, and again the agreement with the numerical T simulations is excellent. By symmetry, the asymptotic behaviour of

) (x f as 1 → x is
given by (39) with the replacement x x -→1 .

One can also consider the moments of . We have calculated the first three mom ) (x f ents explicitly using (14) 

= - = = - = = π π x x x ( 40 
)
The first moment follows on the grounds of symmetry, and the third moment may be deduced from the first two moments on the grounds of symmetry. From the simulation results we obtain the numerical estimates: ... 
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o study the limit we substitute T 0
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s , to approximate the first summation in (42) we can use the result (37), A 0 → x whilst for the second summation in (42) we need retain only the 0 = m term so that
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nce again by using Laplace's method to approximate the integral as we O 0 → x obtain the asymptotic behaviour of ) (x g for 0 → x ;
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)
his is plotted in Figure 3 and agrees very well with the simulations. Turning now to T the limit 1 → x , we cannot rely on symmetry arguments as was the case for the excursion, so we substitute
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onsidering the second summation in (46) first, we can manipulate the fundamental C theta function identity (36) to show that in the limit 1
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For the first summation in (46) one has to be careful; it turns out that all the terms in it contribute to the integral to the same order as . Thus one has that, 1

→ x ∑ ∫ ∑ ∞ = + ∞ - - ∞ = + - - = - - 1 1 0 1 / 2 1 1 ) 1 ( 1 
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The summation requires proper regularisation for its correct interpretation, and gives
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Thus the asymptotic behaviour of as turns out to be very simple;
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Again this accords well with the simulations, as shown in Figure 3. The square root divergence is the same, except for the pre-factor, as that found for the case of unconstrained Brownian motion, as discussed in the introduction.

For completeness, we have also calculated the first two moments of explicitly using (25), with the result that, ) (x g , which again are fully consistent.

For the reflected Brownian bridge, one can follow similar procedures to derive the asymptotic behaviour of the function and calculate the moments. We omit the details here. The derivation of presented in the previous section serves primarily to make a connection with what follows.

) (x h ) (x h

An alternative derivation via 'agreement formulae'

The results derived above for the joint probability density for the excursion (8), meander (19), and reflected bridge (28) have a particular mathematical structure which can be understood from a different perspective. In this section we show, in outline form only, that these results are manifestations of probabilistic laws associated with three random variables which have previously been studied in the Brownian motion literature; see [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] and, in particular, [START_REF] Biane | [END_REF][START_REF] Pitman | Ito's Stochastic Calculus and Probability Theory[END_REF][START_REF] Biane | [END_REF] and references therein.

Such work builds upon the initial path decomposition work of Williams [25], which in turn provides another interpretation of the findings presented in [START_REF] Majumdar | [END_REF] for the maximum of a Brownian motion up to its first-passage time, and upon the results presented in [26]. By such means one can provide an alternative, although less physically intuitive, method of derivation of the main results in this paper. First consider three variables , and [START_REF] Biane | [END_REF]27]; where etc. and the series expansions on the right hand side of (52), ( 53) and (54) are well known identities [START_REF] Prudnikov | Integrals and Series[END_REF]. From these identities it follows that the probability densities can be written as, 
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)
With this preamble, the structure of ( 8), ( 19) and ( 28) can be deduced by considering certain so-called 'agreement formulae' [START_REF] Biane | [END_REF][START_REF] Pitman | Ito's Stochastic Calculus and Probability Theory[END_REF][START_REF] Biane | [END_REF]. These are identities in law between two-dimensional random variables which relate to various fundamental processes defined on the interval and which are valid for an
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Reflected bridge. (60)

In these formulae, the variables , S T and C are the random variables described above with probability densities given by (55), ( 56) and (57) respectively, whilst M and have the same meaning (in relation to the named process) as they have had 
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)
One may easily check using (55), ( 56) and ( 57) that ( 64), ( 65) and (66) reproduce in full the earlier results derived using the path-integral method. An expanded version of the discussion in this section will be given in a subsequent publication.

Conclusions

By way of conclusion, we have succeeded in deriving expressions for the probability density for the time to reach maximum for a Brownian excursion (14), a Brownian meander (26) and a reflected Brownian bridge (31). This has been achieved first by using a path-integral technique, suitably adapted to each case in turn, with the key feature of introducing appropriate cut-offs which are then allowed to tend to zero. The derivation is reasonably transparent and, of course, can be adapted to give comparatively simple derivations of the 'arcsine law' and the 'uniform law' mentioned in the introduction. Indeed, this was one of the earliest applications of the Feynman-Kac formula. In passing, we have also derived in each case an expression for the probability density associated with the distribution of the maximum.

The representations for thus obtained are quite different from the standard representations found in the literature but we have been able to prove their equivalence (see the Appendix). By considering the moments, therefore, this leads to new, non-trivial identities (such as ( 12) and ( 23)) which we have verified numerically to high precision. For the excursion and meander, we have also analysed the moments and asymptotic limits of in some detail and demonstrated that the theoretical results are in complete accord with numerical simulations. Finally, the 'agreement formulae' (58), ( 59) and (60) provide an alternative route to the derivation of the main

) ( m t P ) (M P ) (M P ) ( m t P
results. At a fundamental level, this points to fascinating and deep connections with other problems and is a promising avenue for further study.

Appendix: Establishing the equivalence of certain probability densities

The expression for the probability den ) (M P for the maximum of a Brownian excursion obtained using the path integral method, (9), is quite different from the conventional expression, [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]. Here we establish the equivalence. After simplifying both ( 9) and [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] this is tantamount to having to Next we take the Laplace transform of both sides of (A2) with respect to x to give,

sity prove that [ ] ∑ ∑ ∑ ∞ = - ∞ = - - - ∞ = + + - = - - - 1 4 1 2 ? 1 , 2 2 2 2
∑ ∑ ∞ = ∞ ≠ = + + = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + + - -
It is now helpful to 'add back' the n m = term on the left hand side and to the right hand side also. After some simple algebra (A3) then reduces to It is now elementary to show that the left hand side and the right hand side of (A6) are equal. It follows that since the Laplace transforms of ( 9) and ( 11) are equal, then the functions themselves are equal, and the proof is complete.

∑ ∑ ∑ ∞ = ∞ = ∞ = + + - + = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + + - 1 2 2 1 2 ? 2 2 2 2 1 , ) ( 1 2 1 ) )( ( ) ( ) 1 ( 2 n n n m n m s n s s n s n s m s n m . ( A4 
imum obtained using the path integral method, (20), is quite different from the conventional expression, [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]. To establish the equivalence we proceed in the same manner as above. First, it is a simple matter to reduce the task to one of proving that 
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  and , which are characterised by the Laplace transform of their respective probability densities

  (temporarily) to separate out the n m = term on the left hand side (which is evaluated by a limiting procedure) since it exactly cancels the second term on the right hand side. By further integrating both sides with respect to x this means that (A1) reduces to

  he remaining steps needed to establish that (A6) is a rigorous equality simply require T one to use the identities[START_REF] Prudnikov | Integrals and Series[END_REF] ) can be deduced from (A7) by differentiating both sides with respect to .Similarly for the meander, the expression for the probability density of the max w s

  the left hand side of (A12) yield additional simplifications F until finally the task is to establish the following; the results (A7) and (A8). Thus by subtracting (follows by direct substitution.Finally, for the reflected bridge, to establish the equivalence between (29) and (30) one can follow the above procedure, which requires one to show that

  the appropriate stage in the calculation. Similarly, we assume the process

	corresponding eigenvalues are given by	E n	n	2	2	2 / M	2	. One can easily evaluate the
	propagator in this eigenbasis;				
	ends at	x	( t	)	= t x	>	0	, eventually taking the limit	t x	→	0	. For computational
	convenience one can set	x t =	x	0	. Next, one considers the time	t	m	at which the
	excursion reaches its (almost surely unique) maximum	M . Again, we treat this as a
	limiting process by fixing the value of	x	( m t	)	to be	M	-	ε	whilst imposing the
	constraint that the actual maximum is less than M , with the limit	ε	→	0	only being
	taken at the appropriate stage. With these caveats, and with	t	m	and	M assumed fixed,
	one can decompose a given path		x	(τ	)	into a left hand segment, for which	0	≤ τ	≤	t	m	,
	and a right hand segment, for which	t m	≤ τ	≤	t	, wherein for both	0	<	x < ) ( τ	M	almost
	surely (see Figure 1). The statistical weight of, say, the left hand segment is
	proportional to the propagator	x	e	-	M 0 m t H	-	ε	, where the Hamiltonian
	ˆ2 2 2 1 H x + -= ∂ ∂	V	(	x	)	. The potential	V	(x	)	has infinite barriers at	x	=	0	and	x =	M	; this
	ensures that the process is constrained to satisfy	0	≤	x ≤ ) ( τ	M	for	0	≤ τ	≤	t	. The
	normalised eigenfunctions of H ˆ are simply	ψ	( n x	)	=	2 M	sin(	M n π	x	)	, whilst the

throughout the paper. All three results, namely (58), ( 59) and (60), are of the same

where α and µ are chosen accordingly and, crucially, on the right hand side the random variables U and V are independent. The first (58) and third (60) of these results are particular cases of a Bessel bridge process of dimension ) 1 ( 2

represented in terms of two independent Bessel processes considered up to their first hitting times of 1, and placed 'back-to-back' [START_REF] Pitman | Ito's Stochastic Calculus and Probability Theory[END_REF][START_REF] Biane | [END_REF]; see [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] for further references.

The second result (59) is not precisely found in the literature, but may be obtained as a consequence of (60) (the details will be presented in another publication). For now, if we denote the probability density of U by and the probability density of V by , one can use (61) to obtain a relationship between , the joint probability density of , and the pair . Again we skip the details, but in summary one can show that (61) implies that the function

Letting and , and then exploiting the scaling properties of the processes to consider the general interval rather than just the interval , it follows that the joint probability densities for the excursion, meander and reflected bridge are all of the form,

With reference to (58), ( 59) and (60), it therefore follows that (A16) which is the same as showing that

The right hand side of this expression may be rewritten using (A14) and (A15). The left hand side may then be shown to be equivalent using the result [START_REF] Prudnikov | Integrals and Series[END_REF]