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Muon Anomaly from Lepton Vacuum Polarization

and the Mellin–Barnes Representation
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IFIC, Universitat de València-CSIC Apt. Correus 22085, E-46071 València, Spain

We evaluate, analytically, a specific class of eighth–order and tenth–order QED contributions to
the anomalous magnetic moment of the muon. They are generated by Feynman diagrams involving
lowest order vacuum polarization insertions of leptons l = e, µ, and τ . The results are given in the
form of analytic expansions in terms of the mass ratios me/mµ and mµ/mτ . We compute as many
terms as required by the error induced by the present experimental uncertainty on the lepton masses.
We show how the Mellin–Barnes integral representation of Feynman parametric integrals allows for
an easy analytic evaluation of as many terms as wanted in these expansions and how its underlying
algebraic structure generalizes the standard renormalization group properties. We also discuss the
generalization of this technique to the case where two independent mass ratios appear. Comparison
with previous numerical and analytic evaluations made in the literature, whenever pertinent, are
also made.

PACS numbers:

I. INTRODUCTION

The present experimental world average of the anomalous magnetic moment of the muon aµ, assuming CPT–
invariance, viz. aµ+ = aµ− , is

a(exp)
µ = 116 592 080 (63) × 10−11 (0.54 ppm) , (1.1)

where the total uncertainty includes a 0.46 ppm statistical uncertainty and a 0.28 ppm systematic uncertainty,
combined in quadrature. This result is largely dominated by a series of precise measurements carried out at the
Brookhaven National Laboratory (BNL) during the last few years, by the E821 collaboration, with results reported in
ref. [1] and references therein. The prediction of the Standard Model, as a result of contributions from many physicists
is [31]

a(SM)
µ = 116 591 785 (61) × 10−11 , (1.2)

where the error here is dominated at present by the lowest order hadronic vacuum polarization contribution uncertainty
(±46.6 × 10−11), as well as by the theoretical uncertainty in the hadronic light–by–light scattering contribution,
estimated to be ±40 × 10−11. Errors here have also been combined in quadrature. The results quoted in (1.1) and
(1.2) imply a 3.4 standard deviation in the difference

a(exp)
µ − a(SM)

µ = (295 ± 88) × 10−11 . (1.3)

This 3.4 σ deviation deserves attention. Ideally, and before one can attribute the present discrepancy to new
Physics, one would like to reduce the theoretical uncertainties as much as possible, parallel to a new experimental
effort toward an even more precise measurement of aµ [3, 4]. It is also important to reexamine critically the various
theoretical contributions to Eq. (1.2); primarily the hadronic contributions of course, but also the higher order QED
and electroweak contributions. It would be reassuring to have, at least, two independent calculations of some of these
contributions, as well as of the higher order estimates. The purpose of this article is a first step (albeit a small one)
in this direction.
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We shall be concerned with a specific class of eighth–order and tenth–order QED contributions to aµ illustrated by
the Feynman diagrams shown in Fig. 1 and Fig. 2 below. The contribution from the diagrams in these figures with
no τ vacuum polarization insertions i.e., diagrams (A), (B) and (C) in Fig. 1 and diagrams (A), (B), (C) and (D) in
Fig. 2, have been estimated numerically by Kinoshita and Nio in refs. [5] and [6] (see also ref. [7]). There are also
analytic results of the same diagrams, published by Laporta [8, 9], in the form of analytic expansions in terms of the
electron to muon mass ratio me

mµ
. To our knowledge, the diagrams in Fig. 1 (D) and Fig. 2 (E) involving a tau loop

vacuum polarization insertion have not been considered before. We find for these contributions the following results:

a(eeτ)
µ =

(α

π

)4

0.002 748 6(9) and a(eeeτ)
µ =

(α

π

)5

0.013 057 4(4) , (1.4)

where the errors are the ones induced by the present accuracy in the determination of the lepton masses. As one can
see from the other results reported in the Appendix, the contribution from the diagrams in Fig. 2 (E) is of the same
size as the one from the diagrams in Fig. 2 (D).

In a previous paper [10], it has been shown how the Mellin–Barnes integral representation of Feynman parametric
integrals combined with the converse mapping theorem [11], allow for an easy evaluation of as many terms as wanted
in the asymptotic behaviour of Feynman diagrams in terms of a mass ratio. We shall show how this technique applies
to the evaluation of the class of diagrams considered here, and how to generalize it to the case where two independent
mass ratios, like me

mµ
and

mµ

mτ
in the diagrams in Fig. 1 (D) and Fig. 2 (E), enter into consideration. We shall do that

in a rather detailed way for various reasons:

• We find, regretfully, that many analytic calculations found in the literature provide very few details about the
techniques employed; yet it would be useful to compare the efficiency of different methods when planning new
more complex calculations.

• Giving details on some of the intermediate steps of complex calculations can only help to see the qualities and
limitations of the methods employed and, occasionally, to spot potential errors.

• As explained in ref. [12] many years ago, there is a large class of higher order contributions which can be estimated
using renormalization group arguments: powers of log

mµ

me
terms at a given order are algebraically related to lower

order contributions. Subsequent applications have been made by many other authors [32]; however, very little is
known about how to extend renormalization group arguments to subleading terms: constant terms and powers
of log

mµ

me
suppressed by me

mµ
powers. The Mellin–Barnes technique that we are advocating provides a precise

answer to that question: as we shall see, in the Mellin–Barnes representation, the asymptotic contributions at
a given order factorize in terms of well defined moments of lower order contributions.

• Having a powerful technique to obtain asymptotic expansions provides a useful alternative to the computation
of exact analytic expressions, which are often very complicated and cumbersome. After all, ratios of masses are
known from experiment only to a fixed accuracy; the associated error propagates into a numerical uncertainty of
the exact analytic result in any case. Computing as many terms in the corresponding asymptotic expansion, as
required by the experimental precision in the masses involved, provides an easier alternative to the computation
of an exact analytic result, with the same practical accuracy. The calculations in this paper have all been done
within this spirit.

• Finally, we think that it is important to have an independent way to check the precision of the contributions
evaluated numerically. Many of the multidimensional integrals involved in higher order calculations are far from
trivial, which has obliged the experts to develop skillful methods. The numerical results are often dominated by
a statistical error which is larger than the error induced by the experimental determination of the lepton masses.
As we shall see, within this limited precision, we find that all the results of Kinoshita and collaborators [5, 6, 7]
checked in this paper are correct, within less than one standard deviation of their estimated error, which is a
remarkable performance.

The paper has been organized as follows. The next section summarizes well known results about lepton vacuum
polarization and the way we choose to express the various contributions to the muon anomalous magnetic moment.
Section III gives a detailed description of the Mellin–Barnes technique and the converse mapping theorem as applied
to the eighth–order and tenth–order contributions that we are considering. We also discuss in this section the
underlying algebraic properties which generalize the usual renormalization group constraints previously discussed in
the literature. Section IV contains a discussion of the evaluation of the various moment integrals which appear in
the intermediate steps. They can all be done analytically and we give explicit expression for all of them; but we also
show how in practice, the evaluation of a finite number of terms in the ultimate expansion, only requires the explicit
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knowledge of approximate expressions for these moments. This is important to know, in view of more complicated
situations that one may very well encounter when considering other Feynman diagrams. The final evaluation of the
eighth–order diagrams is done in Section V and of the tenth–order diagrams in Section VI. Section VII is dedicated
to the generalization of the techniques discussed in previous sections to the case where three mass scales appear. The
calculation of the diagrams in Figs. 1 (D) and 2 (E) are non–trivial examples of applications of this new technology.
Finally, we collect in an Appendix all the results that we have computed in this paper.

II. PHOTON PROPAGATOR AND THE MUON ANOMALY

We are interested in the replacement of a free photon–propagator by the dressed propagator

Dαβ(q) = −i
(

gαβ − qαqβ
q2

)
1

q2
1

1 +
∑

l Π
(l)(q2)

− ia
qαqβ
q4

, (2.1)

where Π(l)(q2) denotes the proper vacuum polarization self–energy contribution induced by a lepton loop l = e, µ, τ
and a is a parameter reflecting the gauge freedom in the free–field propagator (a = 1 in the Feynman gauge). In fact,
all the diagrams which we shall be considering here are gauge independent and, therefore, the term i(1− a)

qαqβ

q4 does

not contribute to their evaluation.
The perturbation theory expansion generates a series in powers of the functions Π(l)(q2). Here we shall be concerned

with a particular selection of the terms in this series, namely those with three and four powers of the lowest order
Π(l)(q2) self–energies; more precisely with the terms:

1

1 +
∑

l Π
(l)(q2)

.
= −

[

Π(e)(q2)
]3

− 3
[

Π(e)(q2)
]2

Π(µ)(q2) − 3 Π(e)(q2)
[

Π(µ)(q2)
]2

(2.2)

−3
[

Π(e)(q2)
]2

Π(τ)(q2) (2.3)

+
[

Π(e)(q2)
]4

+ 4
[

Π(e)(q2)
]3

Π(µ)(q2) + 6
[

Π(e)(q2)
]2 [

Π(µ)(q2)
]2

+ 4 Π(e)(q2)
[

Π(µ)(q2)
]3

(2.4)

+4
[

Π(e)(q2)
]3

Π(τ)(q2) . (2.5)

When inserted in the free–photon propagator of the lowest order one loop muon vertex, these terms generate the
four types of Feynman diagrams collected in Fig. 1 and the five types of diagrams collected in Fig. 2. The Feynman
diagrams in these figures give, respectively, eighth order and tenth order contributions to the anomalous magnetic
moment of the muon, which are enhanced by powers of log

mµ

me
factors. This is why we are interested in these terms.

The reason why we only keep the terms in (2.3) and (2.5) with one power of Π(τ)(q2) is because, in spite of the

enhancement by log
mµ

me
factors, the τ–loop induces a suppression factor ∼ m2

µ

m2
τ
. Contributions from two or more

powers of Π(τ)(q2) factors to the muon anomaly will be, therefore, neglected.
A very convenient integral representation for the contribution to the muon anomaly from the graphs in Fig. 1 and

Fig. 2 can be obtained as follows. First we write a dispersion relation for the on–shell renormalized photon propagator
induced by electron self–energy loops only. This generates the following set of relations:

[

Π(e)(q2)
]j

=

∫ ∞

0

dt

t

q2

t − q2 − iǫ
ρj

(
4m2

e

t

)

, j = 1 , 2 , 3 , 4 , (2.6)

with

ρ1

(
4m2

e

t

)

=
1

π
ImΠ(e)(t) , (2.7)

ρ2

(
4m2

e

t

)

=
1

π

{

2 ReΠ(e)(t) ImΠ(e)(t)
}

, (2.8)

ρ3

(
4m2

e

t

)

=
1

π

{

3
[

ReΠ(e)(t)
]2

ImΠ(e)(t) −
[

ImΠ(e)(t)
]3
}

, (2.9)

ρ4

(
4m2

e

t

)

=
1

π

{

4
[

ReΠ(e)(t)
]3

ImΠ(e)(t) − 4ReΠ(e)(t)
[

ImΠ(e)(t)
]3
}

. (2.10)
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Using these representations, the contribution to the muon anomaly from the various terms in the series in
Eqs. (2.2), (2.3) and (2.4), (2.5) can be viewed as the convolution of electron spectral functions, modulated by
powers of the muon or tau self-energy functions, with a free–photon propagator replaced by a fictitious massive
photon propagator:

−igαβ
1

q2
⇒ −igαβ

(−1)

q2 − t + iǫ
. (2.11)

The muon vertex loop integral over the virtual q–momenta can then be traded by a Feynman x–parameter integral
(see the review article in ref. [15] and the earlier references therein), with a net contribution to the muon anomaly,
up to an overall combinatorial factor F(j,p) which can be read from the expansion in Eqs. (2.2) to (2.5):

a(j,p)
µ =

α

π

∫ ∞

0

dt

t

∫ 1

0

dx
x2(1 − x)

x2 + t

m2
µ
(1 − x)

F(j,p)

[

Π(l=µ ,τ)

( −x2

1 − x
m2

µ

)]p

ρj

(
4m2

e

t

)

, (2.12)

where p = 0, 1, 2, 3 when l = µ and p = 1 when l = τ , while the index j counts the number of electron loops in the
vacuum polarization; therefore

F(3,0) = 1 , F(2,1) = 3 , F(1,2) = 3 , (2.13)

and

F(4,0) = −1 , F(3,1) = −4 , F(2,2) = −6 , F(1,3) = −4 . (2.14)

Notice that in the process of trading the integral over the virtual q–momenta by the Feynman parameter x, one has
obtained the effective replacement:

q2 ⇒ −x2

1 − x
m2

µ , (2.15)

in the muon and tau self–energy functions.
The lowest order vacuum polarization self–energy functions in QED are well known. We shall use the representations

given in ref. [16]. With

δ =

√

1 − 4m2
e

t
, (2.16)

the lowest order spectral function for the electron is

1

π
ImΠ(e)(t) =

α

π
δ

(
1

2
− 1

6
δ2
)

θ
(
t − 4m2

e

)
, (2.17)

and the real part

(

δ =
√

1 − 4m2
e

q2

)

is

ReΠ(e)(q2) =
(α

π

) [8

9
− 1

3
δ2 + δ

(
1

2
− 1

6
δ2
)

log
|1 − δ|
1 + δ

]

. (2.18)

We shall also need the expression for the vacuum polarization self–energy induced by a muon loop, in the euclidean
region, and as a function of the Feynman x–parameter:

Π(µ)

( −x2

1 − x
m2

µ

)

=
(α

π

)[5

9
+

4

3x
− 4

3x2
+

(

−1

3
+

2

x2
− 4

3x3

)

log(1 − x)

]

; (2.19)

as well as the one induced by a tau loop which, for our purposes, it is more convenient to keep in the Feynman
parametric integral representation:

Π(τ)

( −x2

1 − x
m2

µ

)

= −α
π

∫ 1

0

dz2z(1− z) log

[

1 +
x2

1 − x
z(1 − z)

m2
µ

m2
τ

]

. (2.20)
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III. THE MELLIN–BARNES REPRESENTATION AND THE RENORMALIZATION GROUP

It is now useful to introduce the two Mellin–Barnes integral representations [33] :

x2(1 − x)

x2 + t

m2
µ
(1 − x)

=
1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

t

)s(
4m2

e

m2
µ

)−s

x2s(1 − x)1−s Γ(s)Γ(1 − s) , (3.1)

where the threshold scale 4m2
e is chosen for later convenience, and [34]

log

[

1 +
x2

1 − x
z(1 − z)

m2
µ

m2
τ

]

=
1

2πi

ct+i∞∫

ct−i∞

dt

(

m2
µ

m2
τ

)−t [
x2

1 − x
z(1 − z)

]−t
Γ(t)

t
Γ(1 − t) , (3.2)

where the integration paths along the imaginary axis are defined in the fundamental strips [11]:

cs = Re(s) ∈ ]0, 1[ and ct = Re(t) ∈ ] − 1, 0[ . (3.3)

The interest of these representations lies in the property that the dependence on the physical mass ratios
4m2

e

m2
µ

and

m2
µ

m2
τ

is then fully factorized and the Feynman parametric integrals one is left with are then those of a massless case.

The only new feature is that they have to be computed as functions of the Mellin s–complex variable, in the case of
electron and muon loops only; and as functions of the (s , t)–complex manifold in the case of electron, muon and tau
loops. In all the cases we shall be concerned with here, it is possible to obtain analytic expressions for these functions
in a rather straightforward way. In fact, they turn out to be rational functions of products of Gamma functions and
Polygamma functions which depend linearly on the Mellin variables s, or s and t.

Let us first discuss the case where we only have one Mellin s–complex variable. It corresponds to the Feynman
diagrams where only two mass scales are involved (i.e. the case where l = µ in Eq. (2.12)). Using the representation
in Eq. (3.1) one can rewrite Eq. (2.12), for a fixed p and j, as follows

aµ =
α

π

1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

M(s) , (3.4)

with

M(s) = Γ(s)Γ(1 − s)

∫ 1

0

dx x2s(1 − x)1−s F(j,p)

[

Π(µ)

( −x2

1 − x
m2

µ

)]p ∫ ∞

0

dt

t

(
4m2

e

t

)s

ρj

(
4m2

e

t

)

. (3.5)

The converse mapping theorem relates the asymptotic behaviour of aµ as a function of the small mass ratio 4m2
e/m

2
µ, to

the singularities of the integrand M(s) as a function of the Mellin s–complex variable. For m2
e ≪ m2

µ the appropriate
s–singularities are those in the left–hand–side of the fundamental strip and they are all on the negative real axis. The
precise relation goes as follows: with p ∈ R and k ∈ N, the function M(s) in the l.h.s. of the fundamental strip has a
singular expansion of the type (ordered in increasing values of p):

M(s) ≍
∑

p

∑

k

ap,k

(s+ p)k+1
. (3.6)

The corresponding asymptotic behaviour of aµ (ordered in increasing powers of p) is then:

aµ ∼
4m2

e

m2
µ

→ 0

α

π

∑

p

∑

k

(−1)k

k!
ap,k

(
4m2

e

m2
µ

)p

logk 4m2
e

m2
µ

, (3.7)

and the problem is then reduced to the calculation of the ap,k residues. This, in turn, requires the evaluation of the
moment integrals

∫ ∞

0

dt

t

(
4m2

e

t

)s

ρj

(
4m2

e

t

)

and

∫ 1

0

dx x2s(1 − x)1−s

[

Π(µ)

( −x2

1 − x
m2

µ

)]p

, (3.8)
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which appear in Eq. (3.5)
Let us consider a little bit further these two types of moments. First, the moments of the spectral functions

ρj

(
4m2

e

t

)

defined in Eqs. (2.7) to (2.10) i.e.,

(α

π

)j

Rj(s) ≡
∫ ∞

0

dt

t

(
4m2

e

t

)s

ρj

(
4m2

e

t

)

. (3.9)

One can immediately see that these moments can also be seen as the Mellin transform of the spectral functions ρj

with respect to the variable ξ =
4m2

e

t
, since

(α

π

)j

Rj(s) =

∫ ∞

0

dξ ξs−1 ρj(ξ) , ξ =
4m2

e

t
, (3.10)

where in fact the integral over ξ only runs from zero to one, because of the threshold factor θ(t−4m2
e) in the lowest order

spectral function in Eq. (2.17). The interest of this point of view lies in the fact that the Mellin–Barnes representation
relates the singular expansion of any of these Rj(s) moments to the asymptotic expansion of the spectral functions
ρj(ξ). Indeed, from Eq. (3.10) and the asymptotic behaviour of ρj(ξ) at small ξ and at large ξ, there follows that

ρj(ξ) =
(α

π

)j 1

2πi

rs+i∞∫

rs−i∞

ds

(
1

ξ

)s

Rj(s) , with rs = Re(s) ∈ ]0,∞[ . (3.11)

In other words, the direct mapping (in the sense of ref. [11]) establishes a precise relation between the asymptotic
expansion of the spectral functions ρj(ξ) at small ξ (which is known from their explicit analytic expression) and the
singular series of the moments Rj(s), for s ≤ 0, that we are interested in. We shall come back later on to these
relations in somewhat more detail.

The second type of moments in Eq. (3.8) are also well defined Mellin transforms; in this case with respect to the
invariant photon momenta

ω ≡ Q2

m2
µ

=
x2

1 − x
, (3.12)

flowing in the basic muon vertex diagram. Indeed, one can easily verify that

(α

π

)p

Ωp(s) ≡
∫ 1

0

dx x2s(1 − x)1−s

[

Π(µ)

( −x2

1 − x
m2

µ

)]p

=

∫ ∞

0

dω ωs−1

√
ω

4 + ω

(√
4 + ω −√

ω√
4 + ω +

√
ω

)2 [

Π(µ)(−ω m2
µ)
]p

. (3.13)

Again, the evaluation of the singular series associated to the moments Ωp(s), for s ≤ 0, is very much facilitated by

the direct mapping which relates them to the asymptotic expansion of
[
Π(µ)(−ω m2

µ)
]p

for small ω.
The remarkable property of the Mellin–Barnes representation is precisely the factorization in terms of moment

integrals as shown in Eq. (3.5). It is in fact this factorization which is at the basis of the renormalization group
properties discussed by many authors. The algebraic factorization above, however, is more general and it also shows
the full underlying renormalization group structure at work. The classical renormalization group constrains which have
been exploited in the literature only apply to the evaluation of leading asymptotic behaviours (powers of logarithms
and constant terms). In the example above, this is encoded by the properties of the Mellin singularity at s = 0. This
singularity governs the spectral function moments Rj(0) on the one hand, as well as the contribution to the muon
anomaly from vacuum polarization muon loop insertions (p loops): the moments Ωp(0). Notice that the moments
Rj(0) are UV–singular, hence the need of the s– regularization. The singularity is related to charge renormalization
and therefore to the QED β–function at a given order in perturbation theory [12], in our case the lowest order. The
predictive power of the renormalization group structure lies in the fact that once we know the two types of moments
in Eq. (3.8) at a given order in perturbation theory we have a prediction at a higher order for the convolution which
in our case gives aµ in Eq. (3.4). What is new here is that this factorization extends as well to the subleading terms
in the expansion modulated by inverse m2

µ/m
2
e–powers. What governs these terms is nothing but the residues of the

successive Mellin singularities in the negative real axis. Here, the expansion in inverse m2
µ/m

2
e–powers is analogous
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to the 1/Q2–expansion in the Operator Product Expansion of Green’s functions in QCD, while the moments Rj(s),
for s < 0, are the equivalent of the so called vacuum condensates. The big difference, of course, is that in QED these
condensates are moments of spectral functions which are known at all values of t and, therefore, can be calculated
explicitly at a given order in perturbation theory. Notice, however, that also in QED these moments (condensates)
are a priori ill defined because they are singular. The Mellin–Barnes technique provides a systematic regularization
and hence a precise separation of short–distance and long–distance effects.

The case of two Mellin (s , t)–complex variables, corresponding to Feynman diagrams with both electron loops and
tau loops, is conceptually more complicated and it requires a specific treatment which we shall provide in Section VII.
A detailed discussion of the very interesting underlying mathematics which governs this case will be given in a
forthcoming publication [21].

We finally give below the exact explicit expressions, in the Mellin–Barnes integral representation, of the contribution
to the muon anomaly from each of the specific set of Feynman diagrams in Fig. 1 and Fig. 2.

A. Eighth Order Contributions

Fig. 1 Eighth–order Feynman diagrams with lowest order vacuum polarization electron–loops and a τ–loop which contribute to
the Muon Anomaly and are enhanced by powers of log

mµ

me
factors. The dots indicate the other diagrams with different

permutations of the lepton–loops.

• Three Electron Loops, Fig. 1(A) [one diagram]:

a(eee)
µ =

(α

π

)4 1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω0(s) R3(s) . (3.14)
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• Two Electron Loops and One Muon Loop, Fig. 1(B) [three diagrams]:

a(eeµ)
µ =

(α

π

)4 3

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω1(s) R2(s) . (3.15)

• One Electron Loop and Two Muon Loops, Fig. 1(C) [three diagrams]:

a(eµµ)
µ =

(α

π

)4 3

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω2(s) R1(s) . (3.16)

• Two Electron Loops and One Tau Loop, Fig. 1(D) [three diagrams]:

Using the representation in Eq. (2.20)for the tau self–energy function as well as the Mellin–Barnes representation
in Eq. (3.2) one easily gets the expression

a(eeτ)
µ =

(α

π

)4 3

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s
1

2πi

ct+i∞∫

ct−i∞

dt

(

m2
µ

m2
τ

)−t

×

Γ(s)Γ(1 − s)
Γ(t)

t
Γ(1 − t) Θ(s, t) R2(s) , (3.17)

where Θ(s, t) is the Feynman parametric integral (see Eqs. (3.1) and (3.2))

Θ(s, t) =

∫ 1

0

dxx2s(1 − x)1−s

∫ 1

0

dz

(
x2

1 − x
z(1 − z)

)−t

= (−2)
Γ(2 − t)Γ(2 − t)

Γ(4 − 2t)

Γ(1 + 2s− 2t)Γ(2 − s+ t)

Γ(3 + s− t)
. (3.18)

Notice that the dependence on the variables s and t in the function Θ(s, t) is not factorized. It is this fact that
requires new technical considerations which we shall discuss in Section VII.

B. Tenth Order Contributions

• Four Electron Loops, Fig. 2(A) [one diagram]:

a(eeee)
µ =

(α

π

)5 (−1)

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s)Ω0(s) R4(s) . (3.19)

• Three Electron Loops and One Muon Loop, Fig. 2(B) [four diagrams]:

a(eeeµ)
µ =

(α

π

)5

(−4)
(−4)

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω1(s) R3(s) . (3.20)
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Fig. 2 Tenth–order Feynman diagrams with lowest order vacuum polarization electron–loops and a τ–loop which contribute to
the Muon Anomaly and are enhanced by powers of log

mµ

me
factors. The dots indicate the other diagrams with different

permutations of the lepton–loops.

• Two Electron Loops and Two Muon Loops, Fig. 2(C) [six diagrams]:

a(eeµµ)
µ =

(α

π

)5 (−6)

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω2(s) R2(s) . (3.21)

• One Electron Loop and Three Muon Loops, Fig 2.(D) [four diagrams]:

a(eµµµ)
µ =

(α

π

)5 (−4)

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω3(s) R1(s) . (3.22)

• Three Electron Loops and One Tau Loop, Fig. 2(E) [four diagrams]:

The only change here, with respect to the representation in Eq. (3.17), is the convolution with the moment
R3(s) (instead of R2(s)) and the combinatorial factor (−4) [instead of (3)]:
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a(eeeτ)
µ =

(α

π

)5 (−4)

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s
1

2πi

ct+i∞∫

ct−i∞

dt

(

m2
µ

m2
τ

)−t

×

Γ(s)Γ(1 − s)
Γ(t)

t
Γ(1 − t) Θ(s, t) R3(s) , (3.23)

where Θ(s, t) is the function defined in Eq. (3.18).

IV. THE MOMENT INTEGRALS

We are now left with two types of moment integrals: the Rj(s) moments of the electron–positron spectral functions
in Eq. (3.10), (the integrals over the variable ξ, or equivalently the variable δ in Eq. (2.16)); and the Ωp(s) moments
of the euclidean muon vacuum polarization, (the integrals over the invariant photon momenta ω, or equivalently
the Feynman x–parameter). It is a luxury that these integrals can all be done analytically. Here we shall give the
results and comment on a few technical points; in particular on their relation to the underlying renormalization group
properties.

• The Ω0(s) Moment.

This moment, which appears in a
(eee)
µ and a

(eeee)
µ , corresponds to the trivial x–integral

Ω0(s) =

∫ 1

0

dx(1 − x)

(
x2

1 − x

)s

=
Γ(1 + 2s)Γ(2 − s)

Γ(3 + s)
. (4.1)

The particular value Ω0(0) = 1
2 is precisely the coefficient of the lowest order muon anomaly, the Schwinger

term: aµ =
(

α
π

) [
Ω0(0) = 1

2

]
. Notice that Ω0(s) is IR–singular at s = −1/2,−3/2, · · · . It is precisely these

IR–singularities that are at the origin of the contributions in odd powers of me/mµ in a
(e)
µ , a

(ee)
µ , a

(eee)
µ and

a
(eeee)
µ that one encounters in the explicit calculations.

• The R1(s) Moment.

This moment appears in the expressions for a
(eµµ)
µ and a

(eµµµ)
µ in Eqs. (3.16) and (3.22) and it corresponds to

the integral

R1(s) =

∫ 1

0

dδ 2δ(1 − δ2)s−1 1

2
δ

(

1 − 1

3
δ2
)

, (4.2)

which can be trivially computed, with the simple result:

R1(s) =

√
π

4

1

s

Γ(2 + s)

Γ
(

5
2 + s

) , (4.3)

explicitly showing the singularities in the negative real axis (the origin s = 0 included). Notice that, because of

the zeros provided by the factor 1

Γ( 5
2
+s)

, there cannot be terms of O
[(

m2
e

m2
µ

)p]

for p = 5/2 + n, n = 0, 1, 2, · · ·
in vacuum polarization contributions to aµ from one electron loop.

The two moments Ω0(s) and R1(s) are the only quantities required to evaluate the contribution to a
(e)
µ from the

fourth order Feynman diagram in Fig. 3, which, in our representation, is given by the integral

a(e)
µ =

(α

π

)2 1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω0(s) R1(s) . (4.4)

Since the moments Ω0(s) and R1(s) are known analytically, the singular series expansion of the integrand can be
computed up to as many terms as one wishes; e.g.,
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Fig. 3 Fourth–order Feynman diagram with a lowest order vacuum polarization electron–loop.

Γ(s)Γ(1 − s) Ω0(s) R1(s) ≍ 1

6

1

s2
+

(
1

3
log 2 − 25

36

)
1

s

+
π2

8

1

1/2 + s

−1

2

1

(1 + s)2
+

(
3

4
− log 2

)
1

1 + s
+ · · · , (4.5)

and the converse mapping theorem tells us how to read in a straightforward way the corresponding asymptotic
expansion contribution [35]:

a(e)
µ ∼

m2
e

m2
µ

→ 0

(α

π

)2
{

1

6
log

m2
µ

m2
e

− 25

36

+
π2

4

(
m2

e

m2
µ

)1/2

+
m2

e

m2
µ

[

−2 log
m2

µ

m2
e

+ 3

]

+ O
[(

m2
e

m2
µ

)3/2
]}

. (4.6)

The reason why we consider this well known contribution here is that it allows us to discuss the factorization properties
of the Mellin–Barnes representation and its relation to the underlying renormalization group structure in a case which,
in spite of its simplicity, illustrates the generic features rather well. Notice that the singular expansion in Eq. (4.5)
results from the combination of the Laurent series of three factors: the geometric series factor Γ(s)Γ(1 − s), which
appears in the original Mellin–Barnes representation in Eq. (3.1), and the two moments Ω0(s) and R1(s). The residue

of the leading singularity in 1/s2, which provides the coefficient of the log
m2

µ

m2
e

term in Eq. (4.6), can be read off directly

from the asymptotic behaviour of the lowest order spectral function ρ
(

4m2
e

t

)

∼
t→∞

1
3 , (which in turn is correlated to

the residue of the leading term in the singular expansion of R1(s) ≍ 1
3

1
s ) and the lowest order result Ω0 = 1/2 ;

the geometric factor Γ(s)Γ(1 − s) providing the extra 1/s factor. This is precisely the leading prediction of the
renormalization group in this case [12].

The next–to–next–to–leading term in the asymptotic expansion in Eq. (4.6) (the second line) is governed by the
1

s+1/2 term in the singular expansion in Eq. (4.5) (the second line in this equation). The origin of this singularity

is the moment Ω0(s), which is singular at s = −1/2; the other factors are regular: Γ(−1/2)Γ(1 + 1/2) = −π and
R1(1/2) = −π

4 . Again, the residue of the 1
s+1/2–singularity of Ω0(s) can be read off from the leading term in the

asymptotic expansion of the integrand function in Eq. (3.13) i.e.,

√
ω

4 + ω

(√
4 + ω −√

ω√
4 + ω +

√
ω

)2

∼
ω→ 0

1

2

√
ω + O(ω) . (4.7)
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We see, therefore, how the factorization of the Mellin–Barnes representation allows one to fix a non–trivial coefficient

of the asymptotic expansion of an O
[(

α
π

)2
]

quantity from the knowledge of two numbers which appear at a lower

O
(

α
π

)
and have been very easily identified.

What about the next–to–leading term? This refers to the factor − 25
36 in the first line of Eq. (4.6), which is not fixed

by simple renormalization group arguments. The reason why simple renormalization group arguments fail to fix this
term is due to the fact that it does not originate from products of leading terms of singular expansions only. More
precisely, the coefficient of the 1

s term in Eq. (4.5) also depends on the next–to–leading terms of the Laurent series
of each of the individual factors Ω0(s) , and R1(s). These terms, however, can also be easily obtained without having
to calculate explicitly the functions Ω0(s) and R1(s). Indeed, since Ω0(s) is regular at s → 0 we can simply Taylor
expand the integrand and find

Ω0(s) ∼
s→ 0

1

2
− 5

4
s+ O(s2) . (4.8)

By contrast, the moment R1(s) is singular at s → 0; but here we know that the residue of the singularity originates
in the leading term of the asymptotic expansion of the lowest order spectral function in the integrand. Therefore,
subtracting this leading term from the spectral function itself produces a regular integral from which one can extract
the regular series in the Laurent expansion at s → 0 by simple Taylor expansion. The only integral we have to do is
then

(α

π

)

R1(s) ∼
s→ 0

1

3s
+

∫ ∞

0

dξ ξ−1

(

ρ1(ξ) −
1

3

)

+ O(s) =
1

3s
+

1

9
(6 log 2 − 5) + O(s) . (4.9)

Combining the results in Eqs. (4.8) and (4.9) with the fact that Γ(s)Γ(1 − s) ∼
s→ 0

1
s + O(s) , one easily gets the

coefficient of the 1
s–term in Eq. (4.5) and hence the term − 25

36 in the asymptotic expansion in Eq. (4.6).

We leave to the studious reader the pleasure of reproducing the residues of the 1
(s+1)2 and 1

(s+1) singularities in

Eq. (4.5), and hence the terms of O
(

m2
e

m2
µ

)

in Eq. (4.6), using similar simple arguments.

• The R2(s) Moment.

This moment appears in the expressions of a
(eeµ)
µ , a

(eeτ)
µ and a

(eeµµ)
µ in Eqs. (3.17), (3.15) and (3.21) and it is

given by the integral

(α

π

)2

R2(s) =

∫ ∞

0

dξ ξs−1 ρ2(ξ) , (4.10)

associated to the spectral function in the r.h.s. of Eq. (2.8). In terms of the variable δ, it gives rise to the
integral

R2(s) = 2

∫ 1

0

dδ 2δ(1 − δ2)s−1 1

2
δ

(

1 − 1

3
δ2
)[

8

9
− 1

3
δ2 + δ

(
1

2
− 1

6
δ2
)

log
1 − δ

1 + δ

]

, (4.11)

which can be done analytically rather easily with the result

R2(s) =

√
π

9

(−1 + s)(6 + 13s+ 4s2)

s2(2 + s)(3 + s)

Γ(1 + s)

Γ
(

3
2 + s

) , (4.12)

explicitly showing the singularities in the negative real axis. Notice that, because of the zeros provided by the

factor 1

Γ( 3
2
+s)

, there cannot be terms of O
[(

m2
e

m2
µ

)p]

for p = 3/2 + n, n = 0, 1, 2, · · · in vacuum polarization

contributions to aµ from two electron loops.

• The Ω1(s) Moment.

It corresponds to the Mellin transform (see Eq. (3.13))

(α

π

)

Ω1(s) =

∫ ∞

0

dω ωs−1

√
ω

4 + ω

(√
4 + ω −√

ω√
4 + ω +

√
ω

)2 [

Π(µ)(−ω m2
µ)
]

=

∫ 1

0

dx (1 − x)

(
x2

1 − x

)s [

Π(µ)

( −x2

1 − x
m2

µ

)]

. (4.13)
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This integral can also be easily done, using the expression in Eq. (2.18) in terms of a subtracted logarithm:

log(1 − x) →
[

log(1 − x) −
(

−x− x2

2
− x3

3

)]

+

(

−x− x2

2
− x3

3

)

. (4.14)

The integral over x is then convergent at x = 0 term by term, with the result

Ω1(s) = Γ(2 − s)

{

−4

3

Γ(−1 + 2s)

Γ(1 + s)
+

4

3

Γ(2s)

Γ(2 + s)
+

5

9

Γ(1 + 2s)

Γ(3 + s)

+

[

−4

3

Γ(−2 + 2s)

Γ(s)
+ 2

Γ(−1 + 2s)

Γ(1 + s)
− 1

3

Γ(1 + 2s)

Γ(3 + s)

]

H1−s +

4

3

Γ(−2 + 2s)

Γ(s)
H−1+s − 2

Γ(−1 + 2s)

Γ(1 + s)
Hs +

1

3

Γ(1 + 2s)

Γ(3 + s)
H2+s

}

, (4.15)

where Hs denotes the function

Hs = ψ(1 + s) + γE , (4.16)

related to the ψ–function[36] ψ(z) = d
dz log Γ(z), as follows

ψ(z) = −γE +

∞∑

m=0

(
1

m+ 1
− 1

z +m

)

, (4.17)

and, therefore, when z is an integer n, Hn corresponds to the Harmonic sum

Hn = 1 +
1

2
+

1

3
+

1

4
+ · · · + 1

n
. (4.18)

Notice that Ω1(0) = − 119
36 + π2

2 is precisely the well known coefficient of the fourth order contribution to a
(µ)
µ

from the Feynman graph in Fig. 4:

a(µ)
µ =

(α

π

)2
(

−119

36
+
π2

2

)

. (4.19)

Fig. 4 Fourth–order Feynman diagram with a lowest order vacuum polarization muon–loop.

Another property of Ω1(s), which is also valid for all Ωp(s) with p ≥ 1, is the fact that they are no longer

singular at s = −1/2. This can be readily seen from the fact that Π(µ)
(

−x2

1−xm
2
µ

)

in Eq. (4.13) vanishes at x = 0:

Π(µ)

( −x2

1 − x
m2

µ

)

∼
x→ 0

(α

π

) [

− 1

15
x2 + O(x3)

]

. (4.20)
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This is why Feynman graphs with electron loops and at least one muon loop insertion in the vacuum polarization

have no O
[(

m2
e

m2
µ

)1/2
]

terms in their asymptotic contributions. However, from the asymptotic behaviour

√
ω

4 + ω

(√
4 + ω −√

ω√
4 + ω +

√
ω

)2 [

Π(µ)(−ω m2
µ)
]

∼
ω→ 0

(α

π

) [

− 1

30
ω3/2 + O(ω2)

]

, (4.21)

in Eq. (4.13), there follows that

Ω1(s) ≍ − 1

30

1
3
2 + s

+ · · · , (4.22)

which induces a term of O
[(

m2
e

m2
µ

)3/2
]

in the asymptotic expansion of a
(eµ)
µ . A priori it could also induce terms

of O
[(

m2
e

m2
µ

)3/2
]

in a
(eeµ)
µ . That this is not the case is due to the fact that as we have seen R2(s) has zeros at

all s = −1/2 + n for n = −1,−2,−3, · · · . However, as we shall later see, R3(s) is finite at s = −3/2 and this

explains why a term of O
[(

m2
e

m2
µ

)3/2
]

does indeed appear in a
(eeeµ)
µ .

The moments Ω0(s) and R2(s) fix entirely the evaluation of the contribution to aµ from the sixth order Feynman
diagram in Fig. 5, which, in our representation, is given by the integral

a(ee)
µ =

(α

π

)3

(−1)
1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω0(s) R2(s) . (4.23)

Fig. 5 Sixth–order Feynman diagram with two lowest order electron–loop vacuum polarization insertions.

Since we know Ω0(s) and R2(s) analytically we can evaluate the full singular series of their product and, therefore,

by the converse mapping theorem, the asymptotic expansion of a
(ee)
µ to as high a degree of accuracy as we wish. As

an illustration, we give the results for the first few terms:

a(ee)
µ ∼

m2
µ

m2
e

→ ∞

(α

π

)3
{

1

18
log2 m

2
µ

m2
e

− 25

54
log

m2
µ

m2
e

+
317

324
+
π2

27

−
(
m2

e

m2
µ

)1/2
4

45
π2

+
m2

e

m2
µ

[

−2

3
log2 m

2
µ

m2
e

+
52

18
log

m2
µ

m2
e

− 4 − 4

9
π2

]

+ O
[(

m2
e

m2
µ

)2

log3 m
2
µ

m2
e

]}

, (4.24)

where the contribution from the leading singularity at s = 0 is the one in the first line, which agrees with the earlier

calculations in refs. [16, 22]. The exact analytic evaluation of a
(ee)
µ , as well as of the full sixth–order contribution to
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aµ from electron loop insertions, including light–by–light scattering loops, can be found in the papers by Laporta and
Remiddi [23, 24].

On the other hand, the moments Ω1(s) and R1(s) fix entirely the evaluation of the contribution to aµ from the
mixed sixth order Feynman diagram in Fig. 6, which, in our representation, is given by the integral

a(eµ)
µ =

(α

π

)3

(−2)
1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω1(s) R1(s) . (4.25)

Fig. 6 Sixth–order Feynman diagram with one electron–loop and one muon loop vacuum polarization insertions.

Again, since we know Ω1(s) and R1(s) we can compute as many terms as we wish of the asymptotic expansion of

a
(eµ)
µ . We give a few terms below:

a(eµ)
µ ∼

m2
µ

m2
e

→ ∞

(α

π

)3
{(

119

54
− 2

9
π2

)

log
m2

µ

m2
e

− 61

162
+
π2

27

−m2
e

m2
µ

(
115

27
+

4

9
π2

)

+ O
[(

m2
e

m2
µ

)2

log2 m
2
µ

m2
e

]}

, (4.26)

in agreement with earlier calculations [24, 25].
Finally, we observe that once the moments Ω1(s) and R2(s) are known, we have all the ingredients to evaluate the

eighth–order contribution a
(eeµ)
µ in Eq. (3.15) which we shall discuss in the next section. With R2(s) known we can

also attempt the evaluation of a
(eeτ)
µ in Eq. (3.17), which we shall do in Section VII.

• The R3(s) Moment.

This moment appears in the expressions of a
(eee)
µ , a

(eeeµ)
µ and a

(eeeτ)
µ in Eqs. (3.14) (3.20) and (3.23) and it is

given by the Mellin transform

(α

π

)3

R3(s) =

∫ ∞

0

dξ ξs−1 ρ3(ξ) , (4.27)

of the spectral function in the r.h.s. of Eq. (2.9). It gives rise to the δ–integral

R3(s) =

∫ 1

0

dδ 2δ(1 − δ2)s−1

{

3δ

(
1

2
− 1

6
δ2
)[

8

9
− 1

3
δ2 + δ

(
1

2
− 1

6
δ2
)

log
1 − δ

1 + δ

]2

−π2

[

δ

(
1

2
− 1

6
δ2
)]3

}

. (4.28)

Only the terms proportional to log2 1−δ
1+δ require special attention. They give rise to integrals of the type

f(σ) =

∫ 1

0

dδ(1 − δ2)σ log2 1 − δ

1 + δ
with σ = s+ n− 1 and n = 0, 1, 2, 3, 4, 5 . (4.29)
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Integrating by parts, we observe that f(σ) obeys a simple functional relation

(1 + 2σ)f(σ) − 2σf(σ − 1) +
2
√
π

σ

Γ(σ)

Γ
(

1
2 + σ

) = 0 , (4.30)

from which, and the boundary condition f(0) = π2

3 , there follows that

f(σ) =
√
π

Γ(1 + σ)

Γ
(

3
2 + σ

)ψ(1)(1 + σ) , where ψ(1)(z) =
d

dz
ψ(z) . (4.31)

One can then do the integral in Eq. (4.28). After some rearrangement so as to exhibit explicitly the singular
structure, we get the following expression

R3(s) =

√
π

864

Γ(s)

Γ
(

11
3 + s

)

[
P7(s)

s(1 + s)(2 + s)
− (1 + s)(35 + 21s+ 3s2)

(

27π2 − 162 ψ(1)(s)
)]

, (4.32)

with P7(s) the seventh degree polynomial

P7(s) = 3492− 8748s− 26575s2 − 9214s3 + 18395s4 + 17018s5 + 5120s6 + 512s7 . (4.33)

The function ψ(1)(z) is called the Polygamma function of index one. In general, the Polygamma function of index
n is defined as:

ψ(n)(z) =
dn

dzn
ψ(z) , with ψ(0)(z) = ψ(z) for n = 1, 2, 3, . . . . (4.34)

These functions are also related to the Hurwitz function (also called the generalized zeta function)

ζ(s, z) =

∞∑

m=0

(m+ z)−s z 6= 0,−1,−2, . . . , Res > 1 , (4.35)

as follows

ψ(n)(z) = (−1)n+1 n! ζ(n+ 1, z) . (4.36)

The Polygamma functions are therefore meromorphic with poles at z = 0,−1,−2, . . . , with multiplicities n + 1. In
fact, the Hurwitz function and therefore the Polygamma functions, have the following Mellin representation:

ζ(s, z) =
1

Γ(s)

∫ ∞

0

dt ts−1 e−zt 1

1 − e−t
Res > 1 , Rez > 0 . (4.37)

The moments Ω0(s) and R3(s) fix entirely the evaluation of the contribution to aµ from the eighth order Feynman
diagram in Fig. 1(A), while the moments Ω1(s) and R3(s) fix entirely the evaluation of the contribution to aµ from
the tenth order Feynman diagram in Fig. 2(B). We discuss these results in the next section. With R3(s) known one

can also attempt the evaluation of a
(eeeτ)
µ in Eq. (3.23), which we shall do in Section VII.

• The Ω2(s) Moment.

It corresponds to the Mellin transform (see Eq. (3.13))

(α

π

)2

Ω2(s) =

∫ ∞

0

dω ωs−1

√
ω

4 + ω

(√
4 + ω −√

ω√
4 + ω +

√
ω

)2 [

Π(µ)(−ω m2
µ)
]2

=

∫ 1

0

dx (1 − x)

(
x2

1 − x

)s [

Π(µ)

( −x2

1 − x
m2

µ

)]2

. (4.38)

This integral can also be done, using the expression in Eq. (2.18) and replacing the logarithms with subtracted

logarithms, as in Eq. (4.14). One is then left with three types of integrals S(j)
p (s, n) defined below, where the
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upper index j refers to the power of the logarithm in the integrand , the lower index p to the degree of the
subtracted polynomial and k ∈ N :

S(0)(s, n) ≡
∫ 1

0

dx x2s+n(1 − x)1−s =
Γ(2 − s)Γ(1 + n+ 2s)

Γ(3 + n+ s)
, (4.39)

S(1)
5 (s, n) ≡

∫ 1

0

dx x2s+n(1 − x)1−s

[

log(1 − x) −
(

−x− x2

2
− x3

3
− x4

4
− x5

5

)]

=
1

60
Γ(2 − s)

{

60
Γ(2 + n+ 2s)

Γ(4 + n+ s)
+ 30

Γ(3 + n+ 2s)

Γ(5 + n+ s)

+20
Γ(4 + n+ 2s)

Γ(6 + n+ s)
+ 15

Γ(5 + n+ 2s)

Γ(7 + n+ s)
+ 12

Γ(6 + n+ 2s)

Γ(8 + n+ s)

+60
Γ(1 + n+ 2s)

Γ(3 + n+ s)
(H1−s − H2+n+s)

}

, (4.40)

and

S(2)
6 (s, n) ≡

∫ 1

0

dx x2s+n(1 − x)1−s

[

log2(1 − x) −
(

x2 + x3 +
11x4

12
+

5x5

6
+

137x6

180

)]

= − 1

180
Γ(2 − s)

{

−180
Γ(3 + n+ 2s)

Γ(5 + n+ s)
− 180

Γ(4 + n+ 2s)

Γ(6 + n+ s)

−165
Γ(5 + n+ 2s)

Γ(7 + n+ s)
− 150

Γ(6 + n+ 2s)

Γ(8 + n+ s)
− 137

Γ(7 + n+ 2s)

Γ(9 + n+ s)

+
180

Γ(3 + n+ s)

[
Γ(1 + n+ 2s)

(
ψ2(2 − s) − 2ψ(2 − s)ψ(3 + n+ s)+

+ψ2(3 + n+ s) + ψ(1)(2 − s) − ψ(1)(3 + n+ s)
)]}

. (4.41)

The analytic result for Ω2(s) can then be expressed in terms of these three integrals as follows:

Ω2(s) = − 88

135
S(0)(s, 1) +

217

135
S(0)(s, 2) − 3

5
S(0)(s, 3) − 347

540
S(0)(s, 4)

+
1

6
S(0)(s, 5) +

137

1620
S(0)(s, 6)

−10

27
S(1)

5 (s, 0) − 8

9
S(1)

5 (s,−1) +
28

9
S(1)

5 (s,−2) +
104

27
S(1)

5 (s,−3)

−80

9
S(1)

5 (s,−4) +
32

9
S(1)

5 (s,−5)

+
1

9
S(2)

6 (s, 0) − 4

3
S(2)

6 (s,−2) +
8

9
S(2)

6 (s,−3) + 4 S(2)
6 (s,−4)

−16

3
S(2)

6 (s,−5) +
16

9
S(2)

6 (s,−6) . (4.42)

In particular, the value of Ω2(s) at s = 0 fixes the contribution to the muon anomaly from the Feynman diagram
in Fig. 7, i.e.

a(µµ)
µ =

(α

π

)3

Ω2(0) =
(α

π

)3
[

−943

324
− 4

135
π2 +

8

3
ζ(3)

]

. (4.43)
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Fig. 7 Sixth–order Feynman diagram with two lowest order muon–loop vacuum polarization insertions.

Knowing Ω2(s) and R1(s) we have all the ingredients to evaluate a
(eµµ)
µ in Fig. 1C and knowing Ω2(s) and R2(s)

we can also evaluate a
(eeµµ)
µ in Fig. 2C. We discuss these calculations in the next section.

• The R4(s) Moment.

This moment appears in the expression of a
(eeee)
µ and it is given by the Mellin transform

(α

π

)4

R4(s) =

∫ ∞

0

dξ ξs−1 ρ4(ξ) , (4.44)

of the spectral function in the r.h.s. of Eq. (2.10). It gives rise to the δ–integral

R4(s) =

∫ 1

0

dδ 2δ(1 − δ2)s−1

{

4δ

(
1

2
− 1

6
δ2
)[

8

9
− 1

3
δ2 + δ

(
1

2
− 1

6
δ2
)

log
1 − δ

1 + δ

]3

−4π2

[
8

9
− 1

3
δ2 + δ

(
1

2
− 1

6
δ2
)

log
1 − δ

1 + δ

] [

δ

(
1

2
− 1

6
δ2
)]3

}

. (4.45)

Here only the integrals proportional to log3 1−δ
1+δ are new with respect to the integrals which already appeared

in the evaluation of R2(s). By integration by parts, they can be reduced to integrals proportional to log2 1−δ
1+δ

and hence to the function f(s) in Eq. (4.31). In terms of f(s) and the auxiliary function

g(σ) = 2
√
π

Γ(σ)

Γ
(
σ + 1

2

) = 2B

(
1

2
, σ

)

, (4.46)

we then find:
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R4(s) =

(

− 250

2187
+

10

243
π2

)

g(s) −
(

325

2187
− π2

243

)

g(s+ 1) +

(
80

2187
− 31

486
π2

)

g(s+ 2)

+

(
34

243
− 25

972
π2

)

g(s+ 3) +

(
2

27
+

23

972
π2

)

g(s+ 4)

+

(
1

81
+

17

972
π2

)

g(s+ 5) +
π2

324
g(s+ 6)

+

(
50

243
− 2

81
π2

)
g(s)

s
+

20

81

g(s+ 1)

s+ 1
−
(

13

162
− π2

27

)
g(s+ 2)

s+ 2

−
(

115

486
− π2

81

)
g(s+ 3)

s+ 3
−
(

19

162
+
π2

72

)
g(s+ 4)

s+ 4

−
(

1

54
+

π2

108

)
g(s+ 5)

s+ 5
− π2

648

g(s+ 6)

s+ 6

+
1

81
[−40 f(−1 + s) − 4 f(s) + 62 f(1 + s) + 25 f(2 + s)

−23 f(3 + s) − 17 f(4 + s) − 3 f(5 + s)]

+
1

54

[

16
f(−1 + s)

s
− 24

f(1 + s)

s+ 2
− 8

f(2 + s)

s+ 3

+9
f(3 + s)

s+ 4
+ 6

f(4 + s)

s+ 5
+
f(5 + s)

s+ 6

]

. (4.47)

Knowing explicitly the function R4(s) will allow us to perform the evaluation of a
(eeee)
µ which we do in the next

section.

• The Ω3(s) Moment.

It corresponds to the Mellin transform (see Eq. (3.13))

(α

π

)2

Ω3(s) =

∫ ∞

0

dω ωs−1

√
ω

4 + ω

(√
4 + ω −√

ω√
4 + ω +

√
ω

)2 [

Π(µ)(−ω m2
µ)
]3

=

∫ 1

0

dx (1 − x)

(
x2

1 − x

)s [

Π(µ)

( −x2

1 − x
m2

µ

)]3

. (4.48)

As in the evaluation of the integral in Eq. (4.38), the first step consists in replacing the logarithms and their
powers by subtracted logarithms and subtracted power logarithms. One is then left with integrals of the type

S(j)
p (s, n) like those already introduced in the evaluation of Ω2(s). The new ones are:

S(1)
7 (s, n) ≡

∫ 1

0

dx x2s+n(1 − x)1−s

[

log(1 − x) −
(

−x− x2

2
− x3

3
− x4

4
− x5

5
− x6

6
− x7

7

)]

= S(1)
5 (s, n) +

1

42
Γ(2 − s)

[

7
Γ(7 + n+ 2s)

Γ(9 + n+ s)
+ 6

Γ(8 + n+ 2s)

Γ(10 + n+ s)

]

, (4.49)
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S(2)
8 (s, n) ≡

∫ 1

0

dx x2s+n(1 − x)1−s
[
log2(1 − x) −

(

x2 + x3 +
11x4

12
+

5x5

6
+

137x6

180
+

7x7

10
+

363x8

560

)]

= S(2)
6 (s, n) − 1

5040
Γ(2 − s)

[

3528
Γ(8 + n+ 2s)

Γ(10 + n+ s)
+ 3267

Γ(9 + n+ 2s)

Γ(11 + n+ s)

]

, (4.50)

and

S(3)
9 (s, n) ≡

∫ 1

0

dx x2s+n(1 − x)1−s
[
log3(1 − x) −

−
(

−x3 − 3x4

2
− 7x5

4
− 15x6

8
− 29x7

15
− 469x8

240
− 29531x9

240

)]

=
1

15120
Γ(2 − s)

{

15120
Γ(4 + n+ 2s)

Γ(6 + n+ s)
+ 22680

Γ(5 + n+ 2s)

Γ(7 + n+ s)
+ 26460

Γ(6 + n+ 2s)

Γ(6 + n+ s)

+28350
Γ(7 + n+ 2s)

Γ(9 + n+ s)
+ 29232

Γ(8 + n+ 2s)

Γ(10 + n+ s)

+29547
Γ(9 + n+ 2s)

Γ(11 + n+ s)
+ 29531

Γ(10 + n+ 2s)

Γ(12 + n+ s)

+
15120

Γ(3 + n+ s)

[
Γ(1 + n+ 2s)

(
ψ3(2 − s) − 3ψ(2 − s)2ψ(3 + n+ s) − ψ3(3 + n+ s)

−3ψ(3 + n+ s)
[

ψ(1)(2 − s) − ψ(1)(3 + n+ s)
]

+3ψ(2 − s)
[

ψ2(3 + n+ s) + ψ(1)(2 − s) − ψ(1)(3 + n+ s)
]

+ψ(2)(2 − s) − ψ(2)(3 + n+ s)
)]}

. (4.51)

The analytic result for Ω3(s) can then be expressed in terms of the S(j)
p (s, n) integrals as follows:

Ω3(s) = −482

405
S(0)(s, 1) +

3007

567
S(0)(s, 2) − 125281

17010
S(0)(s, 3) − 16729

11340
S(0)(s, 4) +

8329

2268
S(0)(s, 5)

−11726

8505
S(0)(s, 6) − 1937

2520
S(0)(s, 7) +

1091

5670
S(0)(s, 8) +

29531

408240
S(0)(s, 9)

−25

81
S(1)

7 (s, 0) − 40

27
S(1)

7 (s,−1) +
14

9
S(1)

7 (s,−2) +
908

81
S(1)

7 (s,−3)

−160

27
S(1)

7 (s,−4) − 608

27
S(1)

7 (s,−5) +
224

9
S(1)

7 (s,−6) − 64

9
S(1)

7 (s,−7)

+
5

27
S(2)

8 (s, 0) +
4

9
S(2)

8 (s,−1) − 8

3
S(2)

8 (s,−2) − 104

27
S(2)

8 (s,−3) +
140

9
S(2)

8 (s,−4)

+
32

9
S(2)

8 (s,−5) − 928

27
S(2)

8 (s,−6) +
256

9
S(2)

8 (s,−7) − 64

9
S(2)

8 (s,−8)

− 1

27
S(3)

9 (s, 0) +
2

3
S(3)

9 (s,−2) − 4

9
S(3)

9 (s,−3) − 4 S(3)
9 (s,−4) +

16

3
S(3)

9 (s,−5)

+
56

9
S(3)(s,−6) − 16 S(3)(s,−7) +

32

3
S(3)

9 (s,−8) − 64

27
S(3)

9 (s,−9) . (4.52)
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In particular, the value of Ω3(s) at s = 0 fixes the contribution to the muon anomaly from the Feynman diagram
in Fig. 8, i.e.

Fig. 8 Eighth–order Feynman diagram with three lowest order muon–loop vacuum polarization insertions.

a(µµµ)
µ =

(α

π

)4

Ω3(0) =
(α

π

)4
[

−151849

40824
+

2

45
π4 − 32

63
ζ(3)

]

. (4.53)

Knowing Ω3(s) and R1(s) we have all the ingredients to evaluate a
(eµµµ)
µ in Fig. 2D. We discuss these calculations

in the next section.

V. EIGHTH ORDER RESULTS FROM ELECTRON AND MUON VACUUM POLARIZATION LOOPS

We have now all the ingredients to proceed to the calculation of the eighth order contributions illustrated by the
Feynman diagrams in Fig. 1.

• Three Electron Loops, Fig. 1(A) [one diagram]:

We recall the expression in Eq. (3.14)

a(eee)
µ =

(α

π

)4 1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω0(s) R3(s) . (5.1)

The converse mapping theorem relates the asymptotic behaviour of a
(eee)
µ as a function of the small mass ratio

4m2
e/m

2
µ to the singularities of the integrand in this equation as a function of the Mellin s–complex variable.

Using the explicit expressions for Ω0(s) and R3(s) given in Eqs. (4.1) and (4.28) we can proceed to the calculation
of the singular series expansion of the integrand in question. The relevant singularities are those in the left–hand
side of the Mellin s–plane. They occur as multipoles at s = 0,−1,−2,−3, . . . , because of the factors Γ(s) and
R3(s); and as single poles at s = −1/2,−3/2,−5/2, . . . because of the factor Ω0(s). The leading singularity at
s→ 0 has a quadruple pole, a triple pole, a double pole and a single pole. Their residues govern the successive

terms of O(log3 m2
µ

m2
e
), of O(log2 m2

µ

m2
e
), of O(log

m2
µ

m2
e
) and of O(Cte.) in the leading contributions to a

(eee)
µ for

m2
µ

m2
e

large:

a(eee)
µ ∼

[s → 0]

(α

π

)4
[

1

54
log3 m

2
µ

m2
e

− 25

108
log2 m

2
µ

m2
e

+

(
317

324
+
π2

27

)

log
m2

µ

m2
e

−8609

5832
− 25

162
π2 − 2

9
ζ(3)

]

. (5.2)
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The next to leading singularity at s → −1/2 is a simple pole, induced by Ω0(−1/2), which governs the contri-

bution of O
(

me

mµ

)

:

a(eee)
µ ∼

[s → − 1
2 ]

(α

π

)4 me

mµ

101

1536
π4 . (5.3)

The next singularity at s → −1 in the Mellin plane is again a multipole type singularity which, by the inverse
mapping theorem, governs the terms

a(eee)
µ ∼

[s → −1]

(α

π

)4 m2
e

m2
µ

[

−2

9
log3 m

2
µ

m2
e

+
13

9
log2 m

2
µ

m2
e

−
(

152

27
+

4

9
π2

)

log
m2

µ

m2
e

+
967

315
+

26

27
π2 +

136

35
ζ(3)

]

. (5.4)

There is no problem in evaluating as many terms as we wish. In the Appendix we give the result of the

asymptotic contribution to a
(eee)
µ up to terms of O

[
(

α
π

)4
(

m2
e

m2
µ

)5/2
]

. Because of the present experimental error

in the
mµ

me
ratio, there is no need to go beyond this approximation, but we have checked that including higher

order terms up to O
[
(

α
π

)4
(

m2
e

m2
µ

)3
]

does not change our final numerical result in Table 1 in the Appendix. The

terms up to O
[
(

α
π

)4
(

m2
e

m2
µ

)3/2
]

agree with those obtained by Laporta [8] using a very different method. The

agreement with the numerical determination by Kinoshita and Nio [5] is quite remarkable, although our result
is of course more precise.

• Two Electron Loops and One Muon Loop, Fig. 1(B) [three diagrams]:

The corresponding expression is the one in Eq. (3.15)

a(eeµ)
µ =

(α

π

)4

3
1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω1(s) R2(s) , (5.5)

with Ω1(s) and R2(s) given in Eqs. (4.15) and (4.12). The relevant singularities in the Mellin s–plane occur at
s = 0,−1,−2,−3, · · · as multipoles. The singularity at s = 0 governs the terms

a(eeµ)
µ ∼

[s → 0]

(α

π

)4
[(

119

108
− π2

9

)

log2 m
2
µ

m2
e

−
(

61

162
− π2

27

)

log
m2

µ

m2
e

+
7627

1944
+

13

27
π2 − 4

45
π4

]

, (5.6)

in the asymptotic expansion. The next–to –leading singularity is at s = −1 and it is responsible for the higher
order terms

a(eeµ)
µ ∼

[s → −1]

(α

π

)4
(
m2

e

m2
µ

)[(

−115

27
+

4

9
π2

)

log
m2

µ

m2
e

+
227

18
− 4

3
π2

]

. (5.7)

The analytic results in Eqs. (5.6) and (5.7) agree with those given by Laporta in ref. [8]. As discussed previously,
there is no singularity at s = −1/2 because of the presence of a muon loop self–energy (see the discussion around
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Eq. (4.20) ). There could be a priori a singularity at s = −3/2 because it appears in the singular expansion of
Ω1(s); however, it is screened by the fact that R2(s) has a zero at s = −3/2. In the Appendix we give the result

for a
(eeµ)
µ including terms of O

[
(

α
π

)4
(

m2
e

m2
µ

)2
]

. Taking into account higher order terms brings in contributions

which numerically are of the order of the error induced by the present value of the
m2

µ

m2
e

ratio in the previous

terms. Numerically, our result is more precise than the one obtained by Kinoshita and Nio [5], though it agrees
very well within their quoted error.

• One Electron Loop and Two Muon Loops, Fig. 1(C) [three diagrams]:

The corresponding expression is the one in Eq. (3.16)

a(eµµ)
µ =

(α

π

)4

3
1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω2(s) R1(s) , (5.8)

with Ω2(s) and R1(s) given in Eqs. (4.42) and (4.3). The relevant singularities in the Mellin s–plane occur at
s = 0,−1,−2,−3, · · · . The singularity at s = 0 is a double pole and governs the terms

a(eµµ)
µ ∼

[s → 0]

(α

π

)4
[(

−943

324
− 4

135
π2 +

8

3
ζ(3)

)

log
m2

µ

m2
e

+
57899

9720
− 5383

4050
π2 +

2

27
π4 − 2

45
ζ(3)

]

. (5.9)

The next–to–leading singularity at s = −1 is a single pole which governs the next–to–leading term

a(eµµ)
µ ∼

[s → −1]

(α

π

)4
(
m2

e

m2
µ

)[
458

81
− 26

105
π2 − 8

3
ζ(3)

]

; (5.10)

and so on. The results in Eqs. (5.9) and (5.10) agree with those of Laporta [8]. In the appendix we have also

included terms up to O
[
(

α
π

)4
(

m2
e

m2
µ

)2
]

. These are the terms one needs to fix a
(eµµ)
µ to the accuracy required by

the present knowledge of the
m2

e

m2
µ

mass ratio. It is not surprising that this analytic evaluation allows for a more

accurate determination of this term than the numerical estimate by Kinoshita and Nio [5], though it agrees with
it within their given error.

VI. TENTH ORDER RESULTS FROM ELECTRON AND MUON VACUUM POLARIZATION LOOPS

We also have all the ingredients to proceed to the calculation of the tenth order contributions illustrated by the
Feynman diagrams in Fig. 2.

• Four Electron Loops, Fig. 2(A) [one diagram]:

We recall the expression in Eq. (3.19)

a(eeee)
µ =

(α

π

)5

(−1)
1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω0(s) R4(s) , (6.1)

with Ω0(s) and R4(s) given in Eqs. (4.1) and (4.47). The converse mapping theorem relates the asymptotic

behaviour of a
(eee)
µ as a function of the small mass ratio 4m2

e/m
2
µ, to the singular series expansion of the

integrand in this equation. The relevant singularities are those in the left–hand side of the Mellin s–plane.
They occur as multipoles at s = 0,−1,−2,−3, . . . , because of the factors Γ(s) and R4(s); and as single poles
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at s = −1/2,−3/2,−5/2, . . . because of the factor Ω0(s). The multipoles at s → 0 govern the asymptotic
contributions:

a(eeee)
µ ∼

[s → 0]

(α

π

)5
{

1

162
log4 m

2
µ

m2
e

− 25

243
log3 m

2
µ

m2
e

+

(
317

486
+

2

81
π2

)

log2 m
2
µ

m2
e

−
(

8609

4374
+

50

243
π2 +

8

27
ζ(3)

)

log
m2

µ

m2
e

+
64613

26244
+

317

729
π2 +

2

135
π4 +

100

81
ζ(3)

}

. (6.2)

There is only a simple pole at s = −1/2. It governs the next–to–leading asymptotic contribution

a(eeee)
µ ∼

[s → −1/2]

(α

π

)5
(
m2

e

m2
µ

)1/2 [

− 18203

374220
π4

]

. (6.3)

The contributions in Eqs. (6.2) and (6.3) agree with those given by Laporta in ref. [9]. We have calculated

further contributions, up to the required accuracy governed by the present knowledge of the
m2

e

m2
µ

ratio. They are

given in the Appendix. Numerically, although our result is much more precise than the one given by Kinoshita
and Nio [5], it agrees very well with it within their quoted errors.

• Three Electron Loops and One Muon Loop, Fig. 2(B) [four diagrams]:

We recall the expression in Eq. (3.20)

a(eeeµ)
µ =

(α

π

)5

(−4)
1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω1(s) R3(s) , (6.4)

with Ω1(s) and R3(s) given in Eqs. (4.15) and (4.28). The relevant singularities here occur as multipoles at
s = 0,−1,−2,−3, . . . , because of the factors Γ(s) and R3(s); and as single poles at s = −3/2,−5/2, . . . because
of the factor Ω1(s). The multipoles at s→ 0 govern the asymptotic contributions:

a(eeeµ)
µ ∼

[s → 0]

(α

π

)5
{(

119

243
− 4

81
π2

)

log3 m
2
µ

m2
e

−
(

61

243
− 2

81
π2

)

log2 m
2
µ

m2
e

+

(
7627

1458
+

52

81
π2 − 16

135
π4

)

log
m2

µ

m2
e

+
64244

6561
− 2593

2187
π2 +

8

405
π4 − 476

81
ζ(3) +

16

27
π2ζ(3)

}

. (6.5)

This expression agrees with the one given by Laporta [9]. We have also calculated the corresponding terms

up to O
[(

m2
e

m2
µ

)5/2
]

, as required by the wanted accuracy. Again,although numerically our result is much more

precise than the one given by Kinoshita and Nio [5], it agrees very well with it within their quoted errors.

• Two Electron Loops and Two Muon Loops, Fig. 2(C) [six diagrams]:

We recall the expression in Eq. (3.21)

a(eeµµ)
µ =

(α

π

)4

(−6)
1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω2(s) R2(s) , (6.6)
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with Ω2(s) and R2(s) in Eqs. (4.42) and (4.12). Here, the multipoles at s = 0 generate the terms

a(eeµµ)
µ ∼

[s → 0]

(α

π

)5
{(

−943

486
− 8

405
π2 +

16

9
ζ(3)

)

log2 m
2
µ

m2
e

+

(
57899

7290
− 10766

6075
π2 +

8

81
π4 − 8

135
ζ(3)

)

log
m2

µ

m2
e

−1090561

109350
− 148921

91125
π2 − 106

6075
π4 +

10732

2025
ζ(3) +

32

27
π2ζ(3)

}

, (6.7)

which agree with the expression found in Laporta [9]. We have also calculated the contributions up to

O
[(

m2
e

m2
µ

)3

log3 m2
µ

m2
e

]

, which can be found in the Appendix. Our numerical result agrees with the one given

by Kinoshita and Nio [5] within their quoted errors.

• One Electron Loop and Three Muon Loops, Fig 2.(D) [four diagrams]:

We recall the expression in Eq. (3.22)

a(eµµµ)
µ =

(α

π

)5

(−4)
1

2πi

cs+i∞∫

cs−i∞

ds

(
4m2

e

m2
µ

)−s

Γ(s)Γ(1 − s) Ω3(s) R1(s) , (6.8)

with Ω3(s) and R1(s) in Eqs. (4.42) and (4.12). Here, there is a double pole at s = 0 which generates the terms

a(eµµµ)
µ ∼

[s → 0]

(α

π

)5
{(

151849

30618
− 8

135
π4 +

128

189
ζ(3)

)

log
m2

µ

m2
e

−46796257

3214890
+

143

81
π2 +

124

8505
π4 +

92476

6615
ζ(3) − 16

9
π2ζ(3)

}

, (6.9)

in agreement wit the expression found in Laporta [9]. We have also calculated the contributions up to

O
[(

m2
e

m2
µ

)3

log3 m2
µ

m2
e

]

, which are given in the Appendix. Our numerical result also agrees very well with the

one given by Kinoshita and Nio [5] within their quoted errors.

VII. CONTRIBUTIONS FROM ELECTRON LOOPS AND ONE TAU LOOP

We shall finally discuss the calculation of vacuum polarization contributions involving electron loops and a tau loop.
The corresponding expressions are the ones in Eqs. (3.17) and (3.23). As already mentioned, the problem here is the
non factorization of the dependence in the the two Mellin variables s and t because of the presence in the integrand
of the function Θ(s, t) defined in Eq. (3.18).

A. Two Electron Loops and One Tau Loop

The corresponding expression in this case is the one given in Eq. (3.17). Using the result obtained for R2(s) in
Eq. (4.12) and the expression for Θ(s, t) in Eq. (3.18), we have:

a(eeτ)
µ =

(α

π

)4 3

(2iπ)2

cs+i∞∫

cs−i∞

ds

cs+i∞∫

cs−i∞

dt

(
4m2

e

m2
µ

)−s
(

m2
µ

m2
τ

)−t
Γ(1 + 2s− 2t) Γ(2 − s+ t)

Γ(3 + s− t)
×

2

9

√
π

6 + 13s+ 4s2

s3(2 + s)(3 + s)

Γ2(1 + s) Γ(2 − s)

Γ(3
2 + s)

Γ(t) Γ(1 − t) Γ2(2 − t)

t Γ(4 − 2t)
. (7.1)
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The evaluation of the asymptotic behaviour of this type of integral calls for a more sophisticated material than
the inverse mapping theorem applied to the previous cases where there was only one ratio of masses. Indeed, the
generalization of the inverse mapping theorem to this case is a typical problem of calculus of residues in C2. Let us
then adopt the standard notation of multidimensional complex analysis [37] and denote by ω(eeτ) the following 2-form:

ω(eeτ) =
2
√
π

3

(
4m2

e

m2
µ

)−s
(

m2
µ

m2
τ

)−t
Γ(t) Γ(1 − t) Γ2(2 − t)

t Γ(4 − 2t)
×

(6 + 13s+ 4s2)

s3(2 + s)(3 + s)

Γ2(s+ 1) Γ(2 − s)

Γ(s+ 3
2 )

×

Γ(1 + 2s− 2t) Γ(2 − s+ t)

Γ(3 + s− t)
ds ∧ dt . (7.2)

Recall that the Mellin–Barnes representation in Eq. (7.1) is valid for all s and t such that Re(s) ∈]0, 1[ and Re(t) ∈
] − 1, 0[; these two conditions resulting in the grey fundamental square in the plane [Re(s),Re(t)], as illustrated in
Fig. 9. In the case of two Mellin variables, this fundamental square, which in general may become a fundamental

polyhedra, generalizes the concept of the fundamental strip in the case of one variable. Since both
4m2

e

m2
µ

and
m2

µ

m2
τ

are

small, the asymptotic behaviour we are looking for in Eq. (7.1), will be governed by the residues associated to the
singularities of ω(eeτ) in the cone {Re(s) ≤ 0,Re(t) ≤ −1}, denoted by Π in Fig. 9. Formally, the solution to our
problem is then given by the sum [38]

a(eeτ)
µ =

(α

π

)4 ∑

(s0,t0)∈Π

Res(s0,t0) ω
(eeτ) . (7.3)

From the expression in Eq. (7.2), one can easily see that the singularities in the plane [Re(s),Re(t)] associated to
ω(eeτ), are defined by a set of straight lines. For example, Γ(2− s+ t) induces a family of singular lines parameterized
by the affine equation: Re(t) = Re(s) − (2 + n), n ≥ 0. Each of the singular lines is called a divisor. As discussed in
ref. [29], it is sufficient for our purposes to consider the singular set of points defined by the intersections of all the
divisors in the appropriate cone. In our case, a subset of the nearest singular points to the origin of the cone Π, is
illustrated by the red dots in Fig. 9.

Fig. 9 Plot of the divisors and the singular set of points of ω(eeτ) in Eq. (7.2). The small red dots are singularities of the first
kind; the larger red dots are singularities of the second kind. Notice that the singularities on the line s = − 2k+1

2
, k ≥ 1, are

screened by the presence of the factor Γ(s+ 3
2
) in the denominator of ω(eeτ).

There are in fact two kinds of singularities to consider:

1. Singularities of the first kind, where only vertical and horizontal divisors (two or more) cross each other.

In order to obtain the residue associated to such a singular point (s0, t0), one proceeds as follows:
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• First perform the change of variables s ↔ s0 + s, t ↔ t0 + t so as to bring the singularity to the origin
(0, 0).

• Use the functional relation Γ(z+1) = zΓ(z) for each singular Gamma function until reaching an expression
of the type

ω(eeτ) =
h(s, t)

sntm
ds ∧ dt , (7.4)

explicitly showing the full singular behaviour at the origin, with h(s, t) an analytic function at (0, 0) and
n and m positive integers.

• Then, use the Cauchy formula

Res(0,0) ω
(eeτ) =

1

(n− 1)!(m− 1)!

∂n+m−2 h(s, t)

∂sn−1∂tm−1

∣
∣
∣
∣
∣
(0,0)

. (7.5)

2. Singularities of the second kind, where two or more divisors cross each other, one or more of them being
oblique lines.

This is the case, for instance, at the point (0,−2) in Fig. 9. In fact, in our case, the singularities of the second
kind at a point (s0, t0) are induced either by the oblique divisors generated by Γ(1 + 2s + 2t) or the oblique
divisors generated by Γ(2 − s+ t). In order to obtain the residue associated to a singularity of the second kind
at a generic point (s0, t0), one proceeds as follows:

• Again, first perform the change of variables s ↔ s0 + s, t ↔ t0 + t so as to bring the problem back to
a singularity at the origin (0, 0); and then apply the functional relation Γ(z + 1) = zΓ(z) to the singular
Gamma functions in question, until able to write ω(eeτ) in a way which explicitly shows the full singular
behaviour in question:

ω(eeτ) =
h(s, t)

sn tm (−s+ t)
ds ∧ dt , (7.6)

with h(s, t) an analytic function at (0, 0) and n and m positive integers. The factor t−s in the denominator
is specific to the class of oblique divisors in our case which are all parallel lines to s = t with multiplicity
one.

• Apply the Transformation Law for Residues [26], to the form ω(eeτ) in Eq. (7.6) so as to fully decouple the
s and t dependence in the denominator. This, of course, requires some explanation which we next provide.

To be precise, let us discuss the case of the singular point (0,−2) in Fig. 9. There is a very important theorem in
multidimensional complex analysis, known as the Transformation Law for Residues [26] which, in the case of C2,

states that if U is an open set containing (0, 0); if f =

[
f1(s, t)
f2(s, t)

]

and g =

[
g1(s, t)
g2(s, t)

]

are two analytic mappings

from U to C2 such that f−1(0, 0) = g−1(0, 0) = (0, 0); and if there exists an analytic two-by-two matrix A such
that g = Af , then

Res(0,0)
h(s, t)

f1(s, t) f2(s, t)
ds ∧ dt = Res(0,0)

h(s, t) detA(s, t)

g1(s, t) g2(s, t)
ds ∧ dt . (7.7)

The application of this theorem to our case goes as follows:

• First note that with the change of variables s→ s− t, t→ t,

Res(0,0)
h(s, t)

s3t(−s+ t)
ds ∧ dt = Res(0,0)

h(−s+ t, t)

st(−s+ t)3
ds ∧ dt . (7.8)

We do this because in this form and as shown in the next step, we can then find easily a matrix A to apply
the Transformation Law for Residues.



28

• Indeed, with f the vector:

f =

[
st

(−s+ t)3

]

, (7.9)

we can find a matrix A which does the transformation:
[
−s4
t4

]

︸ ︷︷ ︸
.
=g

=

[
−t2 + 3st− 3s2 s
s2 − 3st+ 3t2 t

]

︸ ︷︷ ︸
.
=A

[
st

(−s+ t)3

]

︸ ︷︷ ︸
.
=f

, (7.10)

and

detA = −(s3 + t3) . (7.11)

• By virtue of the theorem quoted above, we can then assert that

Res(0,0)
h(−s+ t, t)

st(−s+ t)3
ds ∧ dt = Res(0,0) h(−s+ t, t)

s3 + t3

s4t4
ds ∧ dt

= Res(0,0) h(−s+ t, t)

(
1

st4
+

1

s4t

)

ds ∧ dt

=
1

6

[
∂3[h(−s+ t, t)]

∂t3
+
∂3[h(−s+ t, t)]

∂s3

]

(0,0)

, (7.12)

where in going from the second line to the third, we have applied the Cauchy formula in Eq. (7.5).

• Finally, from Eq. (7.8), and applying the formula for chain–derivation in Eq. (7.12), we get the result

Res(0,0)
h(s, t)

s3t(−s+ t)
ds ∧ dt =

1

2

∂3h(s, t)

∂s2∂t

∣
∣
∣
∣
∣
(0,0)

+
1

2

∂3h(s, t)

∂s∂t2

∣
∣
∣
∣
∣
(0,0)

+
1

6

∂3h(s, t)

∂t3

∣
∣
∣
∣
∣
(0,0)

. (7.13)

We shall now proceed to the calculation of a
(eeτ)
µ in Eq. (7.3), following the procedure which we have just outlined.

• Singularities on the line t = −1.

– The leading singularity is at the point (s0, t0) = (0,−1), and it is a singularity of the first kind. After
translation to the origin and the reduction to an explicit singular form, we can write ω(eeτ) in the following
way:

ω(eeτ) =
h(0,−1)(s, t)

s3t
ds ∧ dt , (7.14)

with

h(0,−1)(s, t) =
2
√
π

3

(
4m2

e

m2
µ

)−s
(

m2
µ

m2
τ

)1−t
Γ(3 + 2s− 2t) Γ(1 − s+ t)

Γ(4 + s− t)
×

Γ2(1 + s)Γ(2 − s)(6 + 13s+ 4s2)

(2 + s)(s+ 3)Γ
(

3
2 + s

)
Γ2(3 − t)Γ(1 + t)Γ(2 − t)

(−1 + t)2 Γ(6 − 2t)
. (7.15)

Then, using Eq. 7.5, we get

Res(0,−1) ω
(eeτ) =

1

2

∂2h(0,−1)

∂s2

∣
∣
∣
∣
∣
(0,0)

=

(

m2
µ

m2
τ

)[

1

135
log2 m

2
µ

m2
e

− 1

135
log

m2
µ

m2
e

− 61

2430
+

2

405
π2

]

. (7.16)
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– The next singularity on the line t = −1 is at the point (s0, t0) = (−1,−1), and it is also a singularity of
the first kind. In a similar way to the singularity in (0,−1), one can easily find that the residue associated
to this singularity is given by the expression

Res(−1,−1) ω
(eeτ) =

(
m2

e

m2
τ

)[

2

15
log

m2
µ

m2
e

− 5

9

]

, (7.17)

which gives a small contribution because of the suppression factor
(

m2
e

m2
τ

)

.

• Singularities on the line t = −2

– The singularity nearest to the origin on the line t = −2 is at (s0, t0) = (0,−2) and it is of the second kind.
After translation to the origin and the reduction to an explicit singular form, we can write ω(eeτ) in the
following way:

ω(eeτ) =
h(0,−2)(s, t)

s3t(−s+ t)
ds ∧ dt , (7.18)

where

h(0,−2)(s, t) =

(
4m2

e

m2
µ

)−s
(

m2
µ

m2
τ

)2−t
2
√
π

3

Γ(5 + 2s− 2t)Γ(1 − s+ t)

Γ(5 + s− t)
×

(6 + 13s+ 4s2)Γ2(1 + s)Γ(2 − s)

(2 + s)(3 + s)Γ
(

3
2 + s

)
Γ(1 + t)Γ(3 − t)

(−1 + t)(−2 + t)2
Γ2(4 − t)

Γ(8 − 2t)
. (7.19)

Then, using the result in Eq. 7.13,we get

Res(0,−2) ω
(eeτ) =

1

2

∂3h(0,−2)

∂s2∂t
|(0,0) +

1

2

∂3h(0,−2)

∂s∂t2
|(0,0) +

1

6

∂3h(0,−2)

∂t3
|(0,0)

=

(

m2
µ

m2
τ

)2 [

1

1260
log3 m

2
µ

m2
τ

−
(

1

420
log

m2
µ

m2
e

+
37

44100

)

log2 m
2
µ

m2
τ

+

(

1

420
log2 m

2
µ

m2
e

+
37

22050
log

m2
µ

m2
e

+
40783

4630500

)

log
m2

µ

m2
τ

+
3

19600
log2 m

2
µ

m2
e

+

(
π2

630
− 229213

12348000

)

log
m2

µ

m2
e

+
π2

1512
− 30026659

5186160000

]

, (7.20)

which for convenience we have ordered in decreasing powers of
(

m2
µ

m2
τ

)2

logn m2
µ

m2
τ

with n = 3, 2, 1, 0.

The other singularities on the line t = −2 (for s = −1, −2 and further) turn out to give contributions which are
too small to be of physical relevance.

• Other Singularities

In fact there is only one more singularity which can give rise to a term of the order of the present experimental
error limitations. This is the singularity at (0,−3). Its residue can be computed exactly in the same way

as the one for the singularity at (0,−2) with the result, ordered in decreasing powers of
(

m2
µ

m2
τ

)3

logn m2
µ

m2
τ

with

n = 3, 2, 1, 0:
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Res(0,−3) ω
(eeτ) =

(

m2
µ

m2
τ

)3 [

2

2835
log3 m

2
µ

m2
τ

−
(

2

945
log

m2
µ

m2
e

+
199

595350

)

log2 m
2
µ

m2
τ

+

(

2

945
log2 m

2
µ

m2
e

+
199

297675
log

m2
µ

m2
e

+
1368473

187535250

)

log
m2

µ

m2
τ

+
131

297675
log2 m

2
µ

m2
e

−
(

4

2835
π2 − 1102961

75014100

)

log
m2

µ

m2
e

+
π2

14175
− 311791591

472588830000

]

. (7.21)

The total contribution from Eqs. (7.16), (7.17), (7.20) and (7.21) to a
(eeτ)
µ , ordered in a decreasing order of

magnitude, is given in Eq. (3.17) in the Appendix.

B. Three Electron Loops and One Tau Loop

The corresponding expression in this case is the one given in Eq. (3.23). Using the result obtained for R3(s) in
Eq. (4.28) and the expression for Θ(s, t) in Eq. (3.18), we can write explicitly the two form associated to this integral
as follows:

ω(eeeτ) =
8
√
π

864

(
4m2

e

m2
µ

)−s
(

m2
µ

m2
τ

)−t
Γ(t) Γ(1 − t) Γ2(2 − t)

t Γ(4 − 2t)
×

Γ2(s)Γ(1 − s)

Γ
(

11
2 + s

)

[
P7(s)

s(1 + s)(2 + s)
− (1 + s)(35 + 21s+ 3s2)

(

27π2 − 162 ψ(1)(s)
)]

×

Γ(1 + 2s− 2t) Γ(2 − s+ t)

Γ(3 + s− t)
ds ∧ dt , (7.22)

where P7(s) is the polynomial given in Eq. (4.33). When comparing the two forms ω
(eeτ)
µ in Eq. (7.2) and ω

(eeeτ)
µ

in Eq. (7.22), we can see that they only differ in the form of the factorized s–dependence. Therefore, except for the

multiplicity of the vertical divisors, the plot of the singular points associated to ω
(eeeτ)
µ which we show in Fig. 10 is

pretty much the same as the one for ω
(eeeτ)
µ in Fig. 9. It is then not surprising that the calculation of the asymptotic

behaviour of the integral in Eq. (3.23) turns out to be very similar to the one discussed in the previous subsection.

Fig. 10 Plot of some of the divisors and singular points of ω
(eeeτ)
µ with the same conventions as in Fig. 9. Only the

multiplicity of the vertical divisors differs from the former case.
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Residues at the singular points in Fig. 10 are computed following the strategy discussed in the previous subsection,
where one uses the functional relations: Γ(z + 1) = zΓ(z) and ψ(1)(1 + z) = ψ(1)(z) − 1

z2 .
For the singularities of the first kind one can then use Eq. (7.5). The new type of singularities of the second kind are
reducible to a form of the type

ω(eeeτ) =
h(s, t)

s4 t (−s+ t)
ds ∧ dt , (7.23)

with h some analytic function at the origin. In this case, the appropriate A-matrix to implement the Transformation
Law for Residues reads:

[
−t3 + 4st2 − 6s2t+ 4s3 s
−s3 + 4s2t− 6st2 + 4t3 t

]

, (7.24)

and proceeding as explained in the previous subsection one finally obtains:

Res(0,0)
h(s, t)

s4 t (−s+ t)
ds ∧ dt =

1

4!

[
∂4h(s, t)

∂t4
+ 4

∂4h(s, t)

∂s∂t3
+ 6

∂4h(s, t)

∂s2∂t2
+ 4

∂3hs, t)

∂s3∂t

]

(0,0)

. (7.25)

Let us now discuss the explicit calculation of a
(eeeτ)
µ .

• Singularities on the line t = −1.

– As in the case of a
(eeτ)
µ , the leading singularity is the one at (s0, t0) = (0,−1) and it is a singularity of the

first kind. Performing the change of variables t ↔ −1 + t we write:

ω(eeeτ) =
h(0,−1)(s, t)

s4t
ds ∧ dt , (7.26)

where

h(0,−1)(s, t) =
8
√
π

864

(
4m2

e

m2
µ

)−s
(

m2
µ

m2
τ

)1−t
Γ(1 + t) Γ(2 − t) Γ2(3 − t)

(−1 + t)2 Γ(6 − 2t)

Γ2(1 + s)Γ(1 − s)

Γ
(

11
2 + s

) ×
{

s P7(s)

(1 + s)(2 + s)
− (1 + s)(35 + 21s+ 3s2)

[

−162 + 27π2s2 − 162 ψ(1)(1 + s)
]}

×

Γ(3 + 2s− 2t) Γ(1 − s+ t)

Γ(4 + s− t)
. (7.27)

From this expression we obtain

Res(0,−1) ω
(eeeτ) =

1

3!

∂3h(0,−1)

∂s3

∣
∣
∣
∣
∣
(0,0)

=

(

m2
µ

m2
τ

)[

4

1215
log3 m

2
µ

m2
e

− 2

405
log2 m

2
µ

m2
e

−
(

122

3645
− 8π2

1215

)

log
m2

µ

m2
e

+
2269

32805
− 4π2

215
− 16

405
ζ(3)

]

, (7.28)

which provides the leading contribution to a
(eeeτ)
µ

– The next singularity is at (s0, t0) = (−1,−1). Also a singularity of the first kind, whose residue we find to
be

Res(−1,−1) ω
(eeeτ) =

(
m2

e

m2
τ

)[

4

45
log2 m

2
µ

m2
e

− 20

27
log

m2
µ

m2
e

+
634

405
+

8π2

135

]

, (7.29)

and gives a contribution suppressed by a factor
(

m2
e

m2
τ

)

.
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• Singularities on the line t = −2.

– The singularity at (s0, t0) = (0,−2) is of the second kind. After the change of variables t ↔ −2 + t, and
using standard functional relations, one can write ω(eeeτ) in the following way

ω(eeeτ) =
h(0,−2)(s, t)

s4t(−s+ t)
ds ∧ dt (7.30)

with

h(0,−2)(s, t) =
8
√
π

864

(
4m2

e

m2
µ

)−s
(

m2
µ

m2
τ

)2−t
Γ(1 + t) Γ(3 − t) Γ2(4 − t)

(−1 + t)(−2 + t)2 Γ(8 − 2t)
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Γ
(

11
2 + s

) ×
{

s P7(s)
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− (1 + s)(35 + 21s+ 3s2)

[

−162 + 27π2s2 − 162 ψ(1)(1 + s)
]}

×

Γ(5 + 2s− 2t) Γ(1 − s+ t)

Γ(5 + s− t)
. (7.31)

According to Eq. (7.25), we have:

Res(0,−2) ω
(eeeτ) =

1

4!

[
∂4h(0,−2)

∂t4
+ 4
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π4 − 1
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ζ(3)
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(7.32)

which for convenience we have ordered in decreasing powers of
(

m2
µ

m2
τ

)2

logn m2
µ

m2
τ

with n = 4, 3, 2, 1, 0.

• Singularities on the line t = −3.

– The singularity at (0,−3) is also of the second kind, and its residue can be computed in the same way as
the one for the singularity at (0,−2). One finds:
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Res(0,−3) ω
(eeeτ) =
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(
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(7.33)

which for convenience we have ordered in decreasing powers of
(

m2
µ

m2
τ

)3

logn m2
µ

m2
τ

with n = 4, 3, 2, 1, 0.

The other singularities have residues which give contributions smaller than the error induced by the leading

term. The total contribution from Eqs. (7.28), (7.29), (7.32) and (7.33) to a
(eeeτ)
µ , ordered in a decreasing order

of magnitude, is given in Eq. (B.9) in the Appendix. Notice that, numerically, the contribution with one tau

loop and three electron loops: a
(eeeτ)
µ , is of the same size as the contribution from three muon loops and one

electron loop: a
(eµµµ)
µ .

APPENDIX

The purpose of this appendix is to collect systematically the various results discussed in the previous sections. This
may be useful to readers who are only interested in the final analytic expressions and the numerical results. The
values that we have used for the lepton masses are the ones in the 2006 PDG booklet [30]:

me = 0.510 998 92(04) MeV , mµ = 105.658 369(9) MeV and mτ = 1776.99(29) MeV . (0.34)

A. Eighth Order Results

These are the results corresponding to the Feynman diagrams in Fig. 1 with the combinatoric factors included. The
numbers in italics are the results from the numerical evaluation of Kinoshita and Nio in ref. [5].
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B. Tenth Order Results

These are the results corresponding to the Feynman diagrams in Fig. 2 with the combinatoric factors included.

Our numerical results for a
(eeee)
µ , a

(eeeµ)
µ , a

(eeµµ)
µ , and a

(eµµµ)
µ agree, within errors, with those of Laporta [9] which,

however, he obtained using an older determination of the mass ratio
mµ

me
= 206.768 262(30). The number in italics

are the results from the numerical evaluation of Kinoshita and Nio in ref. [6].
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